7TH HOMEWORK SHEET FOR QUANTUM MECHANICS

To be handed in on the 26.05.

Q 19: Angular momentum, matrix representation
(8 points)
In the lectures you have been introduced to the operators $L_{+}=L_{x}+i L_{y}$ and $L_{-}=L_{x}-i L_{y}$.
a) Show that

$$
\begin{aligned}
L_{+} L_{-} & =L_{x}^{2}+L_{y}^{2}+\hbar L_{z} \\
L_{-} L_{+} & =L_{x}^{2}+L_{y}^{2}-\hbar L_{z}
\end{aligned}
$$

(1 point)
b) Let $|l, m\rangle$ be the Eigenstate of both L_{z} and \vec{L}^{2} with
$L_{z}|l, m\rangle=\hbar|l, m\rangle$ and $\vec{L}^{2}|l, m\rangle=\hbar^{2} l(l+1)|l, m\rangle$ (see the lectures).
Show that

$$
L_{ \pm}|l, m\rangle=\hbar \sqrt{l(l+1)-m(m \pm 1)}|l, m \pm 1\rangle
$$

(2 points)
c) Determine the matrix representation of the angular momentum operators L_{x}, L_{y} as well as L_{+}and L_{-}in the basis of the angular momentum Eigenstates $|l, m\rangle$ for $l=1$.
Tip: Calculate L_{x} and L_{y} in terms of L_{+}and L_{-}and use the result in section b). (5 points)

Q 20: Gaussian wave packet
(12 points)
Remark: This exercise requires a lot of calculation but is a typical and informative problem. The following integrals can often be solved in terms of the standard integral

$$
\int_{-\infty}^{\infty} d x e^{-c(x-d)^{2}}=\sqrt{\frac{\pi}{c}}
$$

with the in general complex constants $c, d \in \mathbb{C}, \operatorname{Re}(c)>0$ or sometimes through simple symmetry arguments

Consider a 1D problem of a force free particle of mass m. The corresponding time dependent Schrodinger equation is

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t) \tag{1}
\end{equation*}
$$

a) Show that the 1D plane wave

$$
\psi(x, t)=\alpha \cdot \exp \left\{\frac{i}{\hbar}\left(p x-\frac{p^{2}}{2 m} t\right)\right\}
$$

(with a constant α) is a solution of the time dependent Schroedinger equation (1).

The general solution of the Schrodinger equation (1) is then given by a superposition of such plane waves

$$
\begin{equation*}
\psi(x, t)=\int_{-\infty}^{+\infty} \frac{d p}{2 \pi \hbar} \phi(p) \exp \left\{\frac{i}{\hbar}\left(p x-\frac{p^{2}}{2 m} t\right)\right\} \tag{2}
\end{equation*}
$$

One such superposition of planes waves is described as a wavepacket.
b) The amplitude function $\phi(p)$ allows one to determine the initial conditions $\psi(x, t=0)$. Explain how!

Now consider the amplitude function of a so called 1D Gaussian wave packet

$$
\begin{equation*}
\phi(p)=A \exp \left\{-\frac{\left(p-p_{0}\right)^{2} d^{2}}{\hbar^{2}}\right\} \tag{3}
\end{equation*}
$$

with the constants $A, d, p_{0} \in \mathbb{R}$.
c) Use this Gaussian amplitude function in (2) and perform the required integration. Then determine $|\psi(x, t)|^{2}$.
(4 points)
Use the shortened notation $v=\frac{p_{0}}{m}$ and $\delta_{t}=\frac{t \hbar}{2 m d^{2}}$.
d) Determine the constant A, so that $\int_{-\infty}^{\infty} d x|\psi(x, t)|^{2}=1$.
e) Calculate $<x>$ and $\Delta x=\sqrt{<(x-<x>)^{2}>}$ as time dependent functions. Sketch $|\psi(x, 0)|^{2}$ and $|\psi(x, t)|^{2}$ for $t>0$ and describe how the form of $|\psi(x, t)|^{2}$ varies with time.

