8TH QUANTUM MECHANICS HOMEWORK SHEET
 To be handed in on the 02.06 .

Q 21: Laguerre Polynomial (5 points)

In the lectures you have learnt about the bound states of the Coulomb potential (without spin or relativistic corrections)

$$
\psi_{n l m}(r, \theta, \phi)=\psi_{n l}(r) Y_{l m}(\theta, \phi)
$$

where

$$
\psi_{n l}(r)=-\frac{2}{n^{2}} \sqrt{\frac{(n-l-1)!}{((n+l)!)^{3}}}\left(\frac{Z}{a}\right)^{3 / 2}\left(\frac{2 Z}{n a} r\right)^{l} e^{-\frac{Z}{n a} r} L_{n+l}^{2 l+1}\left(\frac{2 Z}{n a} r\right)
$$

with $a:=\frac{\hbar^{2}}{m e_{0}^{2}}$.
$L_{n}^{m}(x)$ are the associated Laguerre polynomials, that are given by

$$
L_{n}^{m}(x)=\frac{d^{m}}{d x^{m}} L_{n}(x)=\frac{d^{m}}{d x^{m}}\left(e^{x} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right)\right)
$$

with $m, n \in \mathbb{N}_{0}$ and the Laguerre polynomials $L_{n}(x)=e^{x} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right)$. The associated Laguerre polynomials satisfy the orthogonality relation

$$
\frac{(n-m)!}{(n!)^{3}} \int_{0}^{\infty} x^{m} e^{-x} L_{n}^{m}(x) L_{p}^{m}(x) d x=\delta_{p n}
$$

as well as the differential equation

$$
x \frac{d^{2} y}{d x^{2}}+(m+1-x) \frac{d y}{d x}+(n-m) y=0 .
$$

a) Calculate the associated Laguerre polynomials $L_{2}^{1}(x), L_{2}^{2}(x), L_{3}^{2}(x), L_{3}^{4}(x)$. (2 points)
b) Verify the orthogonality relation for $m=2, n=2, p=3$, and again for the case $m=1, n=2, p=2$. (2 points)
c) Verify that $L_{3}^{2}(x)$ satisfies the given differential equation for $m=2, n=3$. ($\mathbf{1}$ point)

Q 22: 3D isotropic harmonic oscillator (15 points)
Consider a particle in the 3D oscillator potential $V(\vec{r})=\frac{1}{2} m \omega^{2} r^{2}$ with $r^{2}=|\vec{r}|^{2}$ (see the lectures). The Hamiltonian of the system is given by

$$
\hat{H}=\sum_{i=x, y, z} \hat{H}_{i} \quad \text { mit } \quad \hat{H}_{i}=\frac{1}{2 m}\left(\hat{P}_{i}^{2}+m^{2} \omega^{2} \hat{Q}_{i}^{2}\right)
$$

with $i=x, y, z$. If U_{i} is the state space belonging to the conjugate pairs \hat{P}_{i}, \hat{Q}_{i}, then the state space of the complete system is given by the tensor product $U=$ $U_{x} \otimes U_{y} \otimes U_{z}$. One defines for every conjugate pair $\hat{Q}_{i}, \hat{P}_{i}, i=x, y, z$ (in analogue to the 1 D case, see the lectures) the ladder operators $\hat{a}_{i}, \hat{a}_{i}^{\dagger}$:
$\hat{a}_{i}=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{m \omega} \hat{Q}_{i}+\frac{i}{\sqrt{m \omega}} \hat{P}_{i}\right), \quad \quad \hat{a}_{i}^{+}=\frac{1}{\sqrt{2 \hbar}}\left(\sqrt{m \omega} \hat{Q}_{i}-\frac{i}{\sqrt{m \omega}} \hat{P}_{i}\right)$
They satisfy the commutation relation

$$
\left[\hat{a}_{i}, \hat{a}_{j}\right]=\left[\hat{a}_{i}^{\dagger}, \hat{a}_{j}^{\dagger}\right]=0, \quad\left[\hat{a}_{i}, \hat{a}_{j}^{\dagger}\right]=\delta_{i, j}
$$

The corresponding number operators are $\hat{n}_{i}=\hat{a}_{i}^{\dagger} \hat{a}_{i}$. If $\left|n_{i}\right\rangle$ are the Eigenvectors of the Hamiltonian \hat{H}_{i}, then $\left|n_{x} n_{y} n_{z}\right\rangle=\left|n_{x}\right\rangle\left|n_{y}\right\rangle\left|n_{z}\right\rangle$ form a complete orthonormal system in U.
If $|000\rangle$ is the Eigenvector of the ground state, then

$$
\begin{align*}
\hat{a}_{x}|000\rangle & =\hat{a}_{y}|000\rangle=\hat{a}_{z}|000\rangle=0 \tag{1}\\
\left|n_{x} n_{y} n_{z}\right\rangle & =\left(n_{x}!n_{y}!n_{z}!\right)^{-\frac{1}{2}} \hat{a}_{x}^{\dagger n_{x}} \hat{a}_{y}^{\dagger n_{y}} \hat{a}_{z}^{\dagger n_{z}}|000\rangle
\end{align*}
$$

From the lectures you know that for a central potential $\hat{H}, \hat{\vec{L}}^{2}$ and \hat{L}_{z} form a complete set of commuting observables as well. The complete set of Eigenvectors are labelled by the quantum numbers n, l and m with the corresponding Eigenvalues $E_{n}, \hbar^{2} l(l+1)$ and $\hbar m$. The states $|n l m\rangle$ result from $\left|n_{x} n_{y} n_{z}\right\rangle$ via a unitary transformation.
(a) Write the operators \hat{L}_{x}, \hat{L}_{y} and \hat{L}_{z} in terms of the operators \hat{a}_{i}^{\dagger} and $\hat{a}_{i}(i=$ $x, y, z)$.
(3 points)
(b) Consider the states with the energy $E=\hbar \omega\left(1+\frac{3}{2}\right)$. The corresponding Eigenvectors of \hat{H} in the $\left|n_{x} n_{y} n_{z}\right\rangle$ representation are then $|100\rangle,|010\rangle,|001\rangle$. These form a basis in the subspace of all Eigenvectors of \hat{H} with Eigenvalue $E=\hbar \omega\left(1+\frac{3}{2}\right)$. Determine the matrix representation of \hat{L}_{z} and calculate the corresponding Eigenvalues and Eigenvectors (as a linear combination of the states $|100\rangle,|010\rangle,|001\rangle)$ from \hat{L}_{z}.
(5 points)
(c) Show that the Eigenvectors constructed in (b) as Eigenvectors of \hat{L}_{z} are also Eigenvectors of $\hat{\vec{L}}^{2}$ with Eigenvalue $2 \hbar^{2}$ (i.e. $l=1$). For doing this, write $\hat{\vec{L}}^{2}$ as a function of \hat{a}_{i}^{\dagger} and \hat{a}_{i} and let $\hat{\vec{L}}^{2}$ act directly on the Eigenvectors. points)
(d) Determine the position space representation of the states $\langle\vec{r} \mid 100\rangle,\langle\vec{r} \mid 010\rangle,\langle\vec{r} \mid 001\rangle$ and show that the Eigenvectors from (b) of \hat{L}_{z}, which are linear combinations of these functions, give

$$
\psi_{n l m}(\vec{r})=\text { const } \quad r e^{-\frac{1}{2} \alpha^{2} r^{2}} Y_{l}^{m}(\theta, \phi)
$$

with $l=1$ und $m=0, \pm 1, \alpha=\sqrt{\frac{m \omega}{\hbar}}$.

