8TH QUANTUM MECHANICS HOMEWORK SHEET To be handed in on the 02.06.

Q 21: Laguerre Polynomial (5 points)

In the lectures you have learnt about the bound states of the Coulomb potential (without spin or relativistic corrections)

$$\psi_{nlm}(r,\theta,\phi) = \psi_{nl}(r)Y_{lm}(\theta,\phi)$$

where

$$\psi_{nl}(r) = -\frac{2}{n^2} \sqrt{\frac{(n-l-1)!}{((n+l)!)^3} \left(\frac{Z}{a}\right)^{3/2} \left(\frac{2Z}{na}r\right)^l e^{-\frac{Z}{na}r} L_{n+l}^{2l+1} \left(\frac{2Z}{na}r\right)}$$

with $a := \frac{\hbar^2}{me_0^2}$. $L_n^m(x)$ are the associated Laguerre polynomials, that are given by

$$L_n^m(x) = \frac{d^m}{dx^m} L_n(x) = \frac{d^m}{dx^m} \left(e^x \frac{d^n}{dx^n} \left(x^n e^{-x} \right) \right)$$

with $m, n \in \mathbb{N}_0$ and the Laguerre polynomials $L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x})$. The associated Laguerre polynomials satisfy the orthogonality relation

$$\frac{(n-m)!}{(n!)^3} \int_0^\infty x^m e^{-x} L_n^m(x) L_p^m(x) \, dx = \delta_{pn}$$

as well as the differential equation

$$x \frac{d^2 y}{dx^2} + (m+1-x) \frac{dy}{dx} + (n-m)y = 0.$$

- a) Calculate the associated Laguerre polynomials $L_2^1(x), L_2^2(x), L_3^2(x), L_3^4(x)$. (2 points)
- b) Verify the orthogonality relation for m = 2, n = 2, p = 3, and again for the case m = 1, n = 2, p = 2. (2 points)
- c) Verify that $L_3^2(x)$ satisfies the given differential equation for m = 2, n = 3. (1 point)

Q 22: 3D isotropic harmonic oscillator (15 points)

Consider a particle in the 3D oscillator potential $V(\vec{r}) = \frac{1}{2}m\omega^2 r^2$ with $r^2 = |\vec{r}|^2$ (see the lectures). The Hamiltonian of the system is given by

$$\hat{H} = \sum_{i=x,y,z} \hat{H}_i \qquad \text{mit} \qquad \hat{H}_i = \frac{1}{2m} \left(\hat{P}_i^2 + m^2 \omega^2 \hat{Q}_i^2 \right)$$

with i = x, y, z. If U_i is the state space belonging to the conjugate pairs \hat{P}_i, \hat{Q}_i , then the state space of the complete system is given by the tensor product $U = U_x \otimes U_y \otimes U_z$. One defines for every conjugate pair $\hat{Q}_i, \hat{P}_i, i = x, y, z$ (in analogue to the 1D case, see the lectures) the ladder operators $\hat{a}_i, \hat{a}_i^{\dagger}$:

$$\hat{a}_i = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega} \, \hat{Q}_i + \frac{i}{\sqrt{m\omega}} \, \hat{P}_i \right), \qquad \hat{a}_i^+ = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega} \, \hat{Q}_i - \frac{i}{\sqrt{m\omega}} \, \hat{P}_i \right)$$

They satisfy the commutation relation

$$[\hat{a}_i, \hat{a}_j] = \begin{bmatrix} \hat{a}_i^{\dagger}, \hat{a}_j^{\dagger} \end{bmatrix} = 0, \qquad \begin{bmatrix} \hat{a}_i, \hat{a}_j^{\dagger} \end{bmatrix} = \delta_{i,j}$$

The corresponding number operators are $\hat{n}_i = \hat{a}_i^{\dagger} \hat{a}_i$. If $|n_i\rangle$ are the Eigenvectors of the Hamiltonian \hat{H}_i , then $|n_x n_y n_z\rangle = |n_x\rangle |n_y\rangle |n_z\rangle$ form a complete orthonormal system in U.

If $|000\rangle$ is the Eigenvector of the ground state, then

$$\hat{a}_{x}|000\rangle = \hat{a}_{y}|000\rangle = \hat{a}_{z}|000\rangle = 0$$

$$|n_{x}n_{y}n_{z}\rangle = (n_{x}!n_{y}!n_{z}!)^{-\frac{1}{2}} \hat{a}_{x}^{\dagger n_{x}} \hat{a}_{y}^{\dagger n_{z}} \hat{a}_{z}^{\dagger n_{z}}|000\rangle$$

$$(1)$$

From the lectures you know that for a central potential \hat{H} , $\hat{\vec{L}}^2$ and \hat{L}_z form a complete set of commuting observables as well. The complete set of Eigenvectors are labelled by the quantum numbers n, l and m with the corresponding Eigenvalues E_n , $\hbar^2 l(l+1)$ and $\hbar m$. The states $|nlm\rangle$ result from $|n_x n_y n_z\rangle$ via a unitary transformation.

- (a) Write the operators \hat{L}_x , \hat{L}_y and \hat{L}_z in terms of the operators \hat{a}_i^{\dagger} and \hat{a}_i (i = x, y, z). (3 points)
- (b) Consider the states with the energy $E = \hbar\omega(1 + \frac{3}{2})$. The corresponding Eigenvectors of \hat{H} in the $|n_x n_y n_z\rangle$ representation are then $|100\rangle, |010\rangle, |001\rangle$. These form a basis in the subspace of all Eigenvectors of \hat{H} with Eigenvalue $E = \hbar\omega(1 + \frac{3}{2})$. Determine the matrix representation of \hat{L}_z and calculate the corresponding Eigenvalues and Eigenvectors (as a linear combination of the states $|100\rangle, |010\rangle, |001\rangle$) from \hat{L}_z . (5 points)
- (c) Show that the Eigenvectors constructed in (b) as Eigenvectors of \hat{L}_z are also Eigenvectors of \vec{L}^2 with Eigenvalue $2\hbar^2$ (i.e. l = 1). For doing this, write $\hat{\vec{L}}^2$ as a function of \hat{a}_i^{\dagger} and \hat{a}_i and let $\hat{\vec{L}}^2$ act directly on the Eigenvectors. (3 points)
- (d) Determine the position space representation of the states $\langle \vec{r} | 100 \rangle, \langle \vec{r} | 010 \rangle, \langle \vec{r} | 001 \rangle$ and show that the Eigenvectors from (b) of \hat{L}_z , which are linear combinations of these functions, give

$$\psi_{nlm}(\vec{r}) = \text{const} \quad re^{-\frac{1}{2}\alpha^2 r^2} Y_l^m(\theta,\phi)$$

with l = 1 und $m = 0, \pm 1, \alpha = \sqrt{\frac{m\omega}{\hbar}}$. (4 points)