Theoretische Quantenmechanik Prof. Dr. Wetterich

Friederike Bock

30. Juni 2009

Inhaltsverzeichnis

1	Qua	ntenphysik des Zwei-Zustands-Systems 1
	1.1	Statistische Beschreibung der Welt
	1.2	Zwei-Zustands-System
	1.3	Wahrscheinlichkeitsamplitude
	1.4	Normierung der Wellenfunktion
	1.5	Skalarprodukt zweier Zustandssummen
	1.6	Operatoren und Erwartungswerte
		1.6.1 Energie-Operator, Hamilton-Operator, \hat{H}
		1.6.2 Besetzungszahloperator für Falle 1
		1.6.3 Spin- Operator
	1.7	Quantenmechnik
	1.8	Spin
	1.9	Bewegung eines Spins im Magnetfeld
	1.10	Spin- Präzession
	1.11	Erhaltung der Normierung
	1.12	Schwankungsquadrate
	1.13	Eigenvektoren und Eigenwerte 11
	1.14	Messung in der Quantenmechanik
	1.15	Spin im Magnetfeld: Unschärfe
	1.16	Oszilationen zwischen Positionen
	1.17	Zusammenfassung 17
2	N-K	omponenten-System 19
-	2.1	N-komponentige Zustandsvektoren
	$\frac{-1}{2.2}$	Realteil und Imaginärteil von $\langle A \rangle$
	2.3	Unitäre Zustandsentwicklung
	$\frac{0}{2.4}$	Allgemies Zweizustandssystem
	2.5	Grenzübergang $N \to \infty$. Wellenfunktion
	$\frac{0}{2.6}$	Interpretation der Wellenfunktion 24
	$\frac{2.0}{2.7}$	Quantenmechanik für Teilchen im Potential
	$\frac{2.1}{2.8}$	Differentialoperatoren im N-Zustandssystem 26
	$\frac{2.0}{2.9}$	Hermitzität des Impuls-Operators
3	Well	e-Teilchen-Dualismus 27
	3.1	Beschreibungsgrößen der klassischen Physik
	3.2	Teilchen und Wellen 28
	3.3	Elektromagnetische Strahlung
	3.4	Beziehung zwischen Teilchen und Wellengrößen
	3.5	Welleneigenschaften der Teilchen 31
4	Mot	ivation der Schrödingergleichung 33
	4.1	'Wellenfunktion' für 'Photon' 33
		4.1.1 Ebene monochromatische Welle in x-Richtung, zirkular polarisiert 33
		4.1.2 Wahrscheinlichkeitsinterpretation (für Spezialfall)
		4.1.3 Komplexe Schreibweise
		4.1.4 Impuls und Energieoperator
	4.2	Schrödinger-Gleichung
		4.2.1 relativistisches Teilchen

		4.2.2	Nichtrelativiste Näherung					•	. 37
5	Einfa	ache ei	eindimensionale Probleme						39
	5.1	Statio	onäre Zustände						. 39
	5.2	Potent	ntialtopf						. 39
	5.3	Harmo	nonischer Oszillator						. 42
	5.4	Algebi	praische Methode, Auf- und Asteigeoperatoren						. 43
	5.5	Abstei	eigen im Spektrum						. 44
	5.6	Energi	gie des Grundzustands						. 46
	57	Grund	dzustand		• •	• •		•	48
	5.8	Spektr	trum angeregte Zustände		•••	•••	• •	•	. 10
	5.0	Bosotz	zungszahl Darstellung		• •	•••	• •	•	. 50
	5.9 E 10	Euclisti	zungszam-Darstenung		• •	•••	• •	•	. 01 E9
	0.10				• •	• •	• •	·	. 55
	5.11	Leiter	roperatoren im Zwei-Zustands-System		• •	•••	• •	•	. 54
6	Bew	egung	g im Zentralpotential, Drehimpuls						55
	6.1	Schröd	ödinger Gleichung für isotrope Systeme		• •			•	. 55
	6.2	Drehir	impulsoperator						. 55
	6.3	Erhalt	ltene Größen						. 58
	6.4	Drehir	impuls in Kugelkoordinaten						. 58
	6.5	Spekti	trum des Drehimpulsoperators						. 60
	6.6	Bahnd	drehimpuls in Kugelkoordinaten Kugelfunktionen						65
	6.7	Bindu	ungezustände	•••	•••	• •	• •	•	. 00
	0.1	671	Padialalaidhung		• •	• •	• •	•	. 00
		679	Findimensionale Schrödingensleichung	•••	• •	• •	• •	•	. 00
		0.7.2	Enformensionale Schrödingergleichung		• •	• •	• •	•	. 00
		0.7.3	Normierung		• •	• •	• •	·	. 69
		6.7.4	Anfangswertproblem		• •	• •	• •	•	. 69
		6.7.5	Verhalten für $r \to 0$		• •	•••	• •	•	. 69
		6.7.6	Numerische Lösung: 'Schießen'		• •	• •	• •	•	. 70
		6.7.7	Lösung für $r \to \infty$				• •	•	. 71
	6.8	Wasse	erstoff-Atom						. 71
		6.8.1	Wichtige Größen in der Atomphysik						. 71
		6.8.2	Dimensionslose Radialgleichung						. 72
		6.8.3	Verhalten für $r \to \infty$. 73
		6.8.4	Reskalieren der Ortsvariablen						. 73
		685	Ansatz unter Berücksichtigung des Grenzverhaltens		• •	• •	• •	•	73
		686	Taylorontwicklung	•••	•••	• •	• •	•	. 10
		697	Polyurgionaformal		• •	• •	• •	·	. 14
		0.0.1			• •	• •	• •	•	. 14
		0.8.8	vernalten für grobe k		• •	•••	• •	·	. (4
		6.8.9	Abbruch der Taylor-Entwicklung	•••	• •	• •	• •	•	. 75
	6.9	Diskre	etes Spektrum		• •	• •	• •	·	. 75
	6.10	Spin u	und Gesamtdrehimpuls		• •	• •	• •	•	. 76
	6.11	Schale	enmodell					•	. 77
	6.12	Weller	enfunktion $\psi_{nl}(r)$. 79
	6.13	Vollstä	tändiges Funktionensystem						. 79
	6.14	Beweg	gung im elektromagnetischen Feld						. 80
	6.15	Magne	netisches Moment des Elektron, Zeeman-Effekt						. 81
	6.16	Dreidi	limensionaler harmonischer Oszillator Moleküle						. 82
7	N 4 - 4								0 r
1		nemati	lischer Formalismus der Quantenmechanik						85
	(.1	Hilber	ertraum		• •	• •	• •	·	. 85
	7.2	Basis-	-Wechsel		• •	• •	• •	·	. 87
	7.3	Linear	are Operatoren						. 88
		7.3.1	Definition, Linearität						. 88
		7.3.2	adjungierter Operator A^{\dagger}						. 89
		7.3.3	Operator-Multiplikation						. 89
	7.4	Selbsta	tadjungierte Operatoren (hermitesche Operatoren)						. 89
	7.5	Spektr	trum von Operatoren						. 90
	7.6	ON-Ba	Basis						. 91

Inhaltsverzeichnis

	7.7	Darstellung von Operatoren	92
	7.8	Kommutator	93
	7.9	Heisenberg'sche Unschärferelation	94
	7.10	Darstellungstheorie	96
	7.11	Verallgemeinerung: Orts- und Impulsdarstellung	96
8	Stat	ionäre Störungsrechnung und Näherungsverfahren für gebundene Zustände	99
	8.1	Störungstheorie ohne Entartung	100
	8.2	Entartete Störungsrechnung	104
9	Zeit	abhängige Quantenmechanik	109
	9.1	'Bewegung' und Zeitabhängigkeit	109
	9.2	Zeitentwicklungsoperator $H = H(t)$	110
	9.3	Schröginger und Heisenberg Bild	113
	9.4	Korrespondenz mit Klassischer Mechanik	114
	9.5	Übergangswahrscheinlichkeit	115
	9.6	Zeitabhängige Störungsrechnung	116
		9.6.1 Formale Lösung der Zeitentwicklungsgleichung	116
		9.6.2 Iterative Lösung	116
		9.6.3 Basis von Eigenzuständen zu H_0	117
		9.6.4 Reduzierte Übergangsamplitude	117
	9.7	Fermis Goldene Regel (Pauli 1928)	117

In halts verz eichnis

1 Quantenphysik des Zwei-Zustands-Systems

1.1 Statistische Beschreibung der Welt

• Die Physik ist einer stetigen Weiterentwicklung ausgesetzt, in der allerdings Ideen auch gleichzeitig bestehen können.

So wurden in den vorangegangen Vorlesungen bisher die Punktmechanik (Newton), die deterministische Physik und die statistische Physik betrachtet. Es ist dabei eine konzeptionelle Trendwende zu beobachten

Früher betrachtete man die statistische Physik als Grenzfall der deterministischen Physik, da die deterministische Physik im Rahmen der Fehler gut genug die Realität beschreiben konnte. Heute ist es genau andersrum und die statistische Physik wird als Ausgangspunkt genutzt in der die deterministische Physik nur ein Grenzfall ist.

Die deterministischen Gesetze resultieren dabei aus sehr vielen zufälligen Ereignissen.

- Noch weitere Entwicklungen können festgestellt werden so stellt sich vielfach die Frage, ob man eine diskrete oder kontinuierliche Beschreibung anwenden soll, oder ob man eine Erscheinung als Teilchen oder Welle betrachten soll. Früher war es ein ausschließendes oder heute spricht man in der Quantenmechanik von dem Wellen-Teilchen-Dualismus, der beide Aspekte vereint.
- Ebenso stehen sich die Betrachtungen der Wahrscheinlichkeitsverteilung (klassische Mechanik) und der Wahrscheinlichkeitsamplitude (Quantenmechanik) gegenüber.

1.2 Zwei-Zustands-System

Beispiele	Zustände	
2 Energieniveaus	E_1 besetzt	E_2 besetzt
2 Atomfallen	Atom in Falle 1	Atom in Falle 2
Biophysik Ionenkanal	Kanal offen	Kanal zu
Spin in z-Richtung	$s_z = \frac{\hbar}{2}$	$s_z = -\frac{\hbar}{2}$
Bit im Computer	1	0

klassische Wahrscheinlichkeit p_1

$$p_i \in \mathbf{R}, \quad p_i \ge 0, \quad \sum_i p_i = 1$$

 $p_1 + p_2 = 1$

 p_2

Beobachtungsgrößen

- mittlere Energie: $\langle E \rangle = p_1 E_1 + p_2 E_2$
- mittlere Anzahl von Atomen in Falle: $\langle N_1 \rangle = p_1 * N$
- Ionentransport $\langle T \rangle = t p_1$
- Mittelwert des Spins $\langle S_z \rangle = \frac{\hbar}{2} p_1 \frac{\hbar}{2} p_2$

1.3 Wahrscheinlichkeitsamplitude

 \equiv Wellenfunktion \equiv Zustandsvektor

$$\begin{aligned} |\psi\rangle &= \begin{pmatrix} a \\ b \end{pmatrix}; a, b \in \mathbf{C} \\ |\psi\rangle &= a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ &= a |\uparrow\rangle + b |\downarrow\rangle \end{aligned}$$

a: Wahrscheinlichkeitsamplitude für Zustand 1 $|a|^2:$ Wahrscheinlichkeit für Zustand

$$p_1 = |a|^2$$
 , $p_2 = |b|^2$
 $p_1 + p_2 = 1 \Rightarrow |a|^2 + |b|^2 = 1$

Axiom 1 In der Quantenmechanik werden (reine) Zustände durch Wahrscheinlichkeitsamplituden beschrieben.

konjugierter Zustandsvektor

$$\langle \psi | = (a^*, b^*) = |\psi\rangle^{\dagger} \tag{1.1}$$

 $\dagger \equiv$ hermitesche Konjugation = komplexe Konjugation \circ Transposition = (*) \circ (T)

$$\hat{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
$$\hat{A}^{T} = \begin{pmatrix} a_{11} & a_{11} \\ a_{12} & a_{22} \end{pmatrix}$$
$$\hat{A}^{*} = \begin{pmatrix} a_{11}^{*} & a_{12}^{*} \\ a_{21}^{*} & a_{22}^{*} \end{pmatrix}$$
$$\hat{A}^{\dagger} = \begin{pmatrix} a_{11}^{*} & a_{21}^{*} \\ a_{12}^{*} & a_{22}^{*} \end{pmatrix}$$
$$\begin{pmatrix} a \\ b \end{pmatrix}^{\dagger} : \begin{pmatrix} a \\ b \end{pmatrix}^{*} = \begin{pmatrix} a^{*} \\ b^{*} \end{pmatrix}$$
$$\begin{pmatrix} a \\ b \end{pmatrix}^{\dagger} = (a^{*}, b^{*})$$

1.4 Normierung der Wellenfunktion

Gesamtwahrscheinlichkeit 1 \Leftrightarrow Normierung

$$\begin{array}{rcl} \langle \psi | \psi \rangle & = & 1 \\ (a^*, b^*) \begin{pmatrix} a \\ b \end{pmatrix} & = & a^*a + b^*b \\ & = & 1 \\ |\psi \rangle & = & \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \\ \langle \psi | \psi \rangle & = & \psi_1^* \psi_1 + \psi_2^* \psi_2 \\ & = & 1 \\ \ddot{\mathrm{U}}\mathrm{bung} \\ \langle \psi | \varphi \rangle & = & \langle \varphi | \psi \rangle^* \end{array}$$

1.5 Skalarprodukt zweier Zustandssummen

$$\begin{aligned} \langle \varphi | \psi \rangle &= \varphi_1^* \psi_1 + \varphi_2^* \psi_2 \\ |\psi \rangle &= \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \\ \langle \varphi | &= (\varphi_1^*, \varphi_2^*) \\ \langle \varphi | \psi \rangle &= (\varphi_1^*, \varphi_2^*) \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \\ &= (\varphi^* \psi_1 + \varphi_2^* \psi_2), \langle \varphi | \psi \rangle \in \mathbf{C} \end{aligned}$$

Norm von $|\psi\rangle$: $\langle\psi|\psi\rangle$

Folglich ist die Norm eines Zustandsvektors gleich dem Skalarprodukt des Zustandsvektors mit sich selbst.

Zustandsvektoren haben die Norm 1, $\langle \psi | \psi \rangle = 1$

1.6 Operatoren und Erwartungswerte

1.6.1 Energie-Operator, Hamilton-Operator, \hat{H}

$$\begin{aligned} \hat{H} &= \begin{pmatrix} E_1 & 0\\ 0 & E_2 \end{pmatrix} \\ \langle E \rangle &= \langle \psi | \hat{H} | \psi \rangle \\ \hat{H} | \psi \rangle &= \begin{pmatrix} E_1 & 0\\ 0 & E_2 \end{pmatrix} \begin{pmatrix} \psi_1\\ \psi_2 \end{pmatrix} \\ &= \begin{pmatrix} E_1 \psi_1\\ E_2 \psi_2 \end{pmatrix} \\ \langle \psi | \hat{H} | \psi \rangle &= \psi_1^* E_1 \psi_1 + \psi_2^* E_2 \psi_2 \\ &= E_1 \psi_1^* \psi_1 + E_2 \psi_2^* \psi_2 \\ &= E_1 p_1 + E_2 p_2 \\ &= \langle E \rangle \end{aligned}$$

Allgemein:

In einem Zwei-Zustandssystem werden Operatoren durch 2 x2- Matrizen dargestellt.

1.6.2 Besetzungszahloperator für Falle 1

$$\hat{N}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\langle N_1 \rangle = \langle \psi | \hat{N}_1 | \psi \rangle$$

1.6.3 Spin- Operator

$$\hat{S}_{z} = \begin{pmatrix} \frac{\hbar}{2} & 0\\ 0 & -\frac{\hbar}{2} \end{pmatrix}$$
$$\langle S_{z} \rangle = \langle \psi | \hat{S}_{z} | \psi \rangle$$
$$= \frac{\hbar}{2} p_{1} - \frac{\hbar}{2} p_{2}$$

Axiom 2 Physikalische Observablen A werden Operatoren \hat{A} zugeordnet

$$\hat{A}^{\dagger} = \hat{A}$$

Axiom 3 Der Erwartungswert eines Operators \hat{A} lässt sich wie folgt berechnen

$$\langle A \rangle = \langle \psi | \hat{A} | \psi \rangle$$

Dies ist eine der grundlegenden Regeln in der Quantenmechanik.

1.7 Quantenmechnik

Bisher wurden nur Tatsachen umschrieben, für die auch die klassischen Wahrscheinlichkeiten gelten.

Quantenmechnik :

A) Zeitentwicklungsgleichungen werden für $|\psi\rangle$ formuliert, nicht für p_1,p_2 Schrödinger-Gleichung

Axiom 4

$$\begin{split} \imath \hbar \frac{\partial}{\partial t} |\psi\rangle &= \hat{H} |\psi\rangle \\ \frac{\partial}{\partial t} |\psi\rangle &= |\dot{\psi}\rangle \end{split}$$

 $|\psi(t)\rangle$: Zeitabhänige Wahrscheinlichkeitsamplitude

B) Weitere wichtige Operatoren können als Matrizen im Zwei-Zustands-System angegeben werden; diese sind oft nicht diagonal

$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

Spin in x-Richtung

1.8 Spin

(Kernspinresonanz, Magnetspeicher)

$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Pauli Matrizen

$$\tau_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\tau_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\tau_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\hat{S}_x = \hat{S}_1 = \frac{\hbar}{2}\tau_1$$

$$\hat{S}_i = \frac{\hbar}{2}\tau_i$$

$$\hat{\vec{S}}_i = \frac{\hbar}{2}\tau$$

$$\vec{\tau} = \begin{pmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{pmatrix}$$

Erwartungswert von $\langle \hat{S}_x \rangle$

$$\begin{array}{rcl} \langle S_x \rangle &=& \langle \psi | \hat{S}_x | \psi \rangle \\ &=& \frac{\hbar}{2} \langle \psi | \tau_1 | \psi \rangle \\ \tau_1 | \psi \rangle &=& \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \\ &=& \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix} \\ \langle S_x \rangle &=& \frac{\hbar}{2} (\psi_1^* \psi_2 + \psi_2^* \psi_1) \\ \text{Beispiel} \\ &| \psi \rangle &=& \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \Rightarrow \langle S_x \rangle &=& 0 \end{array}$$

1.9 Bewegung eines Spins im Magnetfeld

Kernspinresonanz, Magnetspeicher Energie für Spin im Magnetfeld

$$\begin{split} E \sim \vec{S} \vec{B} \\ \hat{H} &= -\mu_B \vec{\tau} \vec{B} \\ &= \mu_B \sum_{k=1}^3 B_k \tau_k \end{split}$$

für Elektron :

$$\mu_B = \frac{e\hbar}{2mc}$$
 Bohr'sches Magneton

Schrödingergleichung

$$i\hbar \frac{\partial}{\partial t} |\psi\rangle = \hat{H} |\psi
angle$$

= $-\mu_B \vec{B} \vec{\tau} |\psi
angle$

1 Quantenphysik des Zwei-Zustands-Systems

Vereinfachte Schreibweise

$$i\hbar \frac{\partial \psi}{\partial t} = H\psi$$

= $-\mu_B \vec{B} \vec{\tau} \psi$ Vektorgleichung

Man wähle

$$\vec{B} = \begin{pmatrix} 0\\0\\B_z \end{pmatrix}$$
(1.2)

$$H = -\mu_B B_z \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$= -\hbar\omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $\omega: \mathrm{Kreisfrequenz}$

$$\omega = \frac{\mu_B B}{\hbar} (B_z = B)$$
$$= \frac{eB}{2mc}$$
$$i\hbar \left(\frac{\dot{\psi}_1}{\dot{\psi}_2} \right) = -\hbar \omega \left(\frac{\psi_1}{-\psi_2} \right)$$
$$\dot{\psi}_1 = i\omega\psi_1$$
$$\dot{\psi}_2 = -i\omega\psi_2$$

Lösung

$$\psi_1 = ae^{\imath\omega t}$$

$$\psi_2 = be^{-\imath\omega t}$$

$$\begin{aligned} |\psi(t=0)\rangle &= \begin{pmatrix} a\\b \end{aligned} \\ |a|^2 + |b|^2 &= 1\\ |\psi(t)\rangle &= \begin{pmatrix} \psi_1(t)\\\psi_2(t) \end{aligned} \end{aligned}$$

Damit is die Wellenfunktion für jeden Zeitpunkt
t bekannt. Die Erwartungswerte von \vec{S} können nun mit den Be
obachtungen verglichen werden.

1.10 Spin- Präzession

Zwei Anfangszustände

i) Anfangszustand

$$|\psi(0)\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

 $\langle S_z \rangle = \frac{\hbar}{2}$

$$\begin{aligned} |\psi(t)\rangle &= \begin{pmatrix} e^{i\omega t} \\ 0 \end{pmatrix} \\ \langle \psi(t)| &= (e^{-i\omega t}, 0) \\ \langle S_z \rangle &= \frac{\hbar}{2} \langle \psi(t) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \psi(t) \rangle \\ &= \frac{\hbar}{2} \\ \langle S_x \rangle &= \frac{\hbar}{2} \langle \psi(t) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \psi(t) \rangle \\ &= 0 \\ \langle S_y \rangle &= 0 \end{aligned}$$

Hierbei tritt keine Zeitänderung der Erwartungswerte für diesen Anfangszustand ein.

ii) Anfangszustand

$$\begin{aligned} |\psi(0)\rangle &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} \\ \langle S_x \rangle &= \frac{\hbar}{2} \end{aligned}$$

$$\begin{aligned} |\psi(t)\rangle &= \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\omega t} \\ e^{-i\omega t} \end{pmatrix} \\ \langle \psi(t)| &= \frac{1}{\sqrt{2}} (e^{i\omega t}, e^{-i\omega t}) \\ \langle S_z \rangle &= \frac{\hbar}{2} \frac{1}{2} (1-1) \\ &= 0 \\ \langle S_x \rangle &= \frac{\hbar}{2} \frac{1}{2} d(e^{2i\omega t} - e^{-2i\omega t}) \\ &= \frac{\hbar}{2} \cos 2\omega t \\ \langle S_y \rangle &= \frac{\hbar}{2} \frac{1}{2} (-ie^{-2i\omega t} + ie^{2i\omega t}) \\ &= -\frac{\hbar}{2} \sin 2\omega t \\ \langle S_x \rangle^2 + \langle S_y \rangle^2 &= \frac{\hbar^2}{2} \end{aligned}$$

Für diesen Anfangszustand dreht sich der Vektor in der x-y-Ebene mit der Periode $\frac{\pi}{\omega}$ oder der Kreisfrequenz 2 ω . Der Vektor präzediert, die Präzessionslänge ist $\frac{\hbar}{2}$

$$\begin{pmatrix} \langle S_x \rangle \\ \langle S_y \rangle \\ \langle S_z \rangle \end{pmatrix}$$
 (1.3)

1.11 Erhaltung der Normierung

Gesamtwahrscheinlichkeit p_1+p_2 bleibt 1 für alle t

$$\begin{aligned} \langle \psi(t) | \psi(t) \rangle &= \psi_1^*(t) \psi_1(t) + \psi_2^*(t) \psi_2(t) \\ &= a^* e^{-\imath \omega t} a e^{\imath \omega t} + b^* e^{\imath \omega t} b e^{-\imath \omega t} \\ &= a^* a + b^* b \\ &= 1 \end{aligned}$$

1 Quantenphysik des Zwei-Zustands-Systems

Allgemeine Bedingung für \hat{H} für die Erhaltung der Norm:

$$\hat{H}^{\dagger} = \hat{H} \tag{1.4}$$

Der Hamiltonoperator muss hermitesch sein.

$$\begin{split} \frac{\partial}{\partial t} \langle \psi | \psi \rangle &\stackrel{!}{=} & 0 \\ &= & \langle \dot{\psi} | \psi \rangle + \langle \psi | \dot{\psi} \rangle \\ | \dot{\psi} \rangle &= & \frac{1}{i\hbar} \hat{H} | \psi \rangle \\ \langle \dot{\psi} | &= & | \dot{\psi} \rangle^{\dagger} \\ &= & -\frac{1}{i\hbar} (\hat{H} | \psi \rangle)^{\dagger} \\ &= & -\frac{1}{i\hbar} (\hat{H} | \psi \rangle^{*})^{T} \\ &= & -\frac{1}{i\hbar} (\hat{H} | \psi \rangle^{*})^{T} \\ &= & -\frac{1}{i\hbar} (\psi | \hat{H} | \psi \rangle^{*})^{T} \\ &= & -\frac{1}{i\hbar} \langle \psi | H^{\dagger} \\ \frac{\partial}{\partial t} \langle \psi | \psi \rangle &= & \frac{1}{i\hbar} (\langle \psi | \hat{H} | \psi \rangle - \langle \psi | \hat{H}^{\dagger} | \psi \rangle) \\ &= & \frac{1}{i\hbar} \langle \psi | (\hat{H} - \hat{H}^{\dagger}) | \psi \rangle \end{split}$$

Erhaltene Normierung

 $\hat{H}^{\dagger}=\hat{H}$

Linearität des Skalarproduktes

$$\langle \varphi | \psi_1 \rangle + \langle \varphi | \psi_2 \rangle = \langle \varphi | \psi_1 + \psi_2 \rangle$$

Linearität der Multiplikation mit Operator

$$\hat{A}|\psi\rangle + \hat{B}|\psi\rangle = (\hat{A} + \hat{B}|\psi\rangle)$$

falls für all
e $|\psi\rangle$ gilt

$$\begin{array}{rcl} \langle \psi | \hat{A} | \psi \rangle & = & 0 \\ \Rightarrow \hat{A} & = & 0 \end{array}$$

für irgendein $|\psi\rangle$ folgt nicht $\hat{A} = 0$!

1.12 Schwankungsquadrate

In statistischen Systemen:

$$\langle A^2 \rangle \neq \langle A \rangle^2$$
 Fluktuationen treten auf (1.5)

$\langle A \rangle$	=	0
$\langle A^2 \rangle$	\neq	0

$$\begin{split} \triangle A^2 &= \langle (A - \langle A \rangle)^2 \rangle \\ &= \langle A^2 - 2A \langle A \rangle + \langle A \rangle^2 \rangle \\ &= \langle A^2 \rangle - \langle A \rangle^2 \text{ Schwankungsquadrat} \\ \triangle A^2 &\geq 0 \\ \triangle A &= \sqrt{\triangle A^2} \end{split}$$

In der Quantenmechanik

$$\langle A^2 \rangle \quad = \quad \langle \psi | \hat{A}^2 | \psi \rangle$$

Das Quadrat des Operators ist ein Matrixprodukt und ergibt somit wieder einen Operator!

wenn
$$A \rightarrow \hat{A}$$

dann $A^n \rightarrow \hat{A}^n$

1 Quantenphysik des Zwei-Zustands-Systems

(Teil 2 von Axiom 2)

$$\hat{S}_{x}^{2} = \frac{\hbar^{2}}{4} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \frac{\hbar^{2}}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\hat{S}_{y}^{2} = \frac{\hbar^{2}}{4} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$= \frac{\hbar^{2}}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\hat{S}_{z}^{2} = \frac{\hbar^{2}}{4} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$= \frac{\hbar^{2}}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Eigenschaft der Paulimatrizen $\tau_i^2 = \mathbf{1}$ Multiplikation eines Vektors mit der Einheitsmatrix lässt diesen unverändert; deshalb nutzt man auch diese Schreibweise

$$\begin{array}{rcl} \hat{S}_{x}^{2} & = & \hat{S}_{y}^{2} = \hat{S}_{z}^{2} = \frac{\hbar^{2}}{4} \\ \tau_{i}^{2} & = & 1 \\ \langle \vec{S}^{2} \rangle & = & \langle \hat{S}_{x}^{2} + \hat{S}_{y}^{2} + \hat{S}_{z}^{2} \rangle \\ & = & \frac{3}{4} \hbar^{2} \end{array}$$

Es gilt die allgemeine Regel für die Drehimpulse

$$\langle L^2 \rangle = l(l+1)\hbar^2 \tag{1.6}$$

Für den Spin ist $l = \frac{1}{2}$, folglich ist der Spin ein halbzahliger innerer Drehimpuls. 2 Beispiele

• Zustand $\begin{pmatrix} 1\\ 0 \end{pmatrix}$

$$\begin{split} \langle \hat{S}_z \rangle &= \frac{\hbar}{2} \quad , \quad \langle \hat{S}_x \rangle = \langle \hat{S}_y \rangle = 0 \\ & \triangle \hat{S}_z^2 \quad = \quad \frac{\hbar^2}{4} - \frac{\hbar^2}{4} \\ & = \quad 0 \\ & \triangle \hat{S}_x^2 \quad = \quad \triangle \hat{S}_y^2 = \frac{\hbar^2}{4} \end{split}$$

Es ergibt sich folglich ein scharfer Wert für $\hat{S}_z,$ während \hat{S}_x,\hat{S}_y beide unscharf sind.

• Zustand $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\langle S_x \rangle = \frac{\hbar}{2} \frac{1}{2} (1,1) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= \frac{\hbar}{2} \frac{1}{2} 2$$

$$= \frac{\hbar}{2}$$

$$\langle S_x \rangle = \frac{\hbar}{2} \quad , \quad \langle S_z \rangle = \langle S_y \rangle = 0$$

$$\Delta S_x^2 = 0$$

$$\Delta S_y^2 = \Delta S_z^2 = \frac{\hbar^2}{4}$$

Es ergibt sich ein scharfer Wert für S_x , während S_y,S_z beide unscharf sind.

1.13 Eigenvektoren und Eigenwerte

 $|\psi\rangle$ ist Eigenvektor zu Operator \hat{A} , wenn

$$\hat{A}|\psi\rangle=\lambda|\psi\rangle,\,\lambda$$
heißt Eigenwert
, $\lambda\in{\bf C}$

dann gilt auch

$$\begin{array}{rcl} \langle A \rangle & = & \lambda \\ \triangle A^2 & = & 0 \end{array}$$

Ist ein Zustand ein Eigenvektor zu \hat{A} mit Eigenwert λ so hat die dazugehörige Größe einen scharfen Wert λ .

Beweis:

$$\begin{array}{rcl} \langle A \rangle & = & \langle \psi \hat{A} \psi \rangle \\ & = & \langle \psi | \lambda | \psi \rangle \\ & = & \lambda \langle \psi | \psi \rangle \\ & = & \lambda \\ \langle A^2 \rangle & = & \langle \psi | \hat{A}^2 | \psi \rangle \\ & = & \langle \psi | \hat{A} \hat{A} | \psi \rangle \\ & = & \lambda \langle \psi | \hat{A} | \psi \rangle \\ & = & \lambda^2 \psi \langle \psi | \psi \rangle \\ & = & \lambda^2 \end{array}$$

Beispiele:

• $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ ist Eigenvektor zu \hat{S}_z mit $\lambda = \frac{\hbar}{2}$

Beweis:

1 Quantenphysik des Zwei-Zustands-Systems

$$\hat{S}_{z}|\psi\rangle = \hat{S}_{z} \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

$$= \frac{\hbar}{2} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

$$= \frac{\hbar}{2} \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

$$= \frac{\hbar}{2}|\psi\rangle$$

• $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ist Eigenvektor zu \hat{S}_x mit $\lambda = \frac{\hbar}{2}$

Beweis:

$$\hat{S}_x |\psi\rangle = \hat{S}_z \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}} \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\1 & 0 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$= \frac{\hbar}{2} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$= \frac{\hbar}{2} |\psi\rangle$$

Spektrum eines Operators: Menge seiner Eigenwerte \hat{S}_z hat Eigenwerte $\frac{\hbar}{2}, -\frac{\hbar}{2}$. Damit ergibt sich das Spektrum $(-\frac{\hbar}{2}, \frac{\hbar}{2})$ und die dazugehörigen Eigenvektoren sind:

$$\lambda = \frac{\hbar}{2}; \quad |\psi\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} = |\uparrow\rangle \text{ Spin up}$$
$$\lambda = -\frac{\hbar}{2}; \quad |\psi\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} = |\downarrow\rangle \text{ Spin down}$$

offensichtlich, d
a \hat{S}_z bereits Diagonal
gestalt hat

$$\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \tag{1.7}$$

Eigenwertproblem für \hat{S}_x Eigenwertproblem für $\tau_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$\begin{aligned} \tau_{1}|\psi\rangle &= \lambda|\psi\rangle\\ \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} &= \begin{pmatrix} b\\ a \end{pmatrix}\\ &= & \lambda \begin{pmatrix} a\\ b \end{pmatrix}\\ &= & \begin{pmatrix} \lambda a\\ \lambda b \end{pmatrix}\\ b &= & \lambda a\\ a &= & \lambda b\\ a &= & \lambda b\\ a &= & \lambda^{2}a \quad , \quad \lambda^{2} = 1, \lambda = \pm 1\end{aligned}$$
Spektrum von $\tau_{1} : (-1, 1)$
Spektrum $\hat{S}_{x} : (-\frac{\hbar}{2}, \frac{\hbar}{2})$

Eigenvektoren von τ_1

$$\lambda = 1 : \begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} , \quad a = b$$
$$|\psi\rangle = \begin{pmatrix} a \\ a \end{pmatrix}$$
Normierung $\langle \psi | \psi \rangle = a^* a + a^* a$
$$= 2|a|^2$$
$$= 1$$
$$\Rightarrow |a|^2 = \frac{1}{2}$$
$$a = \frac{e^{i\varphi}}{\sqrt{2}}$$

Die Phase von φ kann dabei beliebig gewählt werden. Daraus ergibt sich der Eigenvektor zu \hat{S}_x als $|\psi\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ mit dem dazugehörigen Eigenwert $\frac{\hbar}{2}$

$$\begin{split} \lambda &= -1: \begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} -a \\ -b \end{pmatrix} \quad , \quad b = -a \\ & |\psi\rangle \quad = \quad e^{i\varphi} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{split}$$

Allgemein gilt : Ist $|\psi\rangle$ ein normierter Eigenvektor so gilt dies auch für $e^{i\varphi}|\psi\rangle$

1.14 Messung in der Quantenmechanik

- i) Eine Messapparatur analysiert einen bestimmten Operator.
- ii) Messergebnisse eines einzelnen Ereignisses sind stets Eigenwerte aus dem Spektrum des Operators.
- iii) Die Quantenmechanik macht Aussagen über die **statistische Verteilung** der Messergebnisse in einem Essemble von Ereignissen.

${\bf Verbindung \ Formalismus} \leftrightarrow {\bf Experiment}$

i), iii) sind konzeptionelle Grundlage für $\langle A \rangle$

ii) folgt aus den Axiomen2+3

Beispiel: Stern- Gerlach- Experiment (Analysator für S_z falls ein inhomogenes Magnetfeld in z-Richtung vorliegt.)

Alle Atome landen entweder in Detektor A oder B nichts dazwischen; entweder $s_z = \frac{\hbar}{2}$ oder $-\frac{\hbar}{2}$ Es kommt somit zur Aufspaltung eines Atomstrahls je nach Spin der Atome. Dabei stellt sich die Frage, wie viele nach A und wie viele nach B gehen.

i) $|\psi\rangle = {1 \choose 0}$: $\Delta S_z = 0, \langle S_z \rangle = \frac{\hbar}{2}$: Alle Teilchen haben den Spin up und gehen nach A.

ii) $|\psi\rangle = \frac{1}{\sqrt{2}} {\binom{1}{1}}$: $\langle S_z \rangle = 0$: 50 % der Teilchen haben Spin up und gehen nach A und 50 % der Teilchen haben Spin down und gehen nach B.

 $\triangle S_z^2 = \frac{\hbar^2}{4}$, da $S_z^2 = \frac{\hbar^2}{4}$.

Folglich stellt sich die Frage ob S_z^2 schwankt.

Nein, $|\psi\rangle$ ist ein Eigenvektor zu \hat{S}_z^2 mit Eigenwert $\frac{\hbar^2}{4}$. Damit hat jede Einzelmessung den Wert $S_z^2 = \frac{\hbar^2}{4}$. \Rightarrow für jede Einzelmessung ergibt sich entweder $S_z^2 = \frac{\hbar}{2}$ oder $S_z^2 = -\frac{\hbar}{2}$

 \Rightarrow Alle Messwerte liegen im Spektrum des Operators \hat{S}_z

Abbildung 1.1: Aufbau eines Stern-Gerlach-Experimentes in z-Richtung

wichtige Bemerkung:

Axiom 5 In statistischen Systemen verändert eine Messung den Zustand des Systems. Nach der Messung einer Observablen:

Zustand ist Eigenvektor zum gemessenen Eigenwert.

Muss so sein, da 2 hintereinander ausgeführte Messungen einer Größe dasselbe Resultat ergeben sollen!

Am Schluss genauso viele $S_z = \frac{\hbar}{2}$ und $S_z = -\frac{\hbar}{2}$ obwohl im ersten Stern-Gerlach-Experiment **alle** $S_z = -\frac{\hbar}{2}$ herausgefiltert werden!

Nach dem x-Stern-Gerlachexperiment: wieder maximale Unschärfe von $S_z!$ Da in S_x -Eigenzustand $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}!$

$$S_z = \frac{\hbar}{2}$$
 blau $S_x = \frac{\hbar}{2}$ Kugel $S_z = -\frac{\hbar}{2}$ grün $S_x = -\frac{\hbar}{2}$ Kubus

 S_x,S_y,S_z haben keine klassischen Eigenschaften, die vor der Messung schon Bestand haben (wie Farbe und Form der Objekte)

Der Zustand ändert sich durch die Messung, nicht nur durch das Herausnehmen der Mitglieder des Ensembles, die nicht die gesuchten Eigenschaften haben.

Hier ist eher die Analogie zur Polarisation des Lichtes zu beobachten \rightarrow Dies weist auf die Welleneigenschaft hin.

Abbildung 1.2: Hintereinanderausführen mehrerer Stern-Gerlach-Experimente

	klassisch	Quantenmechanik
Anfangszustand	50 grün, 50 blau	
(100 Objekte)	50 Kugel, 50 Kubus	
	\Rightarrow	
	25 grüne Kuben	
	25 grüne Kugeln	
	25 blaue Kuben	
	25 blaue Kugeln	
Ergebnis nach Apparat 1	25 blaue Kugeln	$50 S_z = \frac{\hbar}{2}$
$(S_z = \frac{\hbar}{2})$	25 blaue Kuben	-
Ergebnis nach Apparat 2	25 blaue Kugeln	$25 S_x = \frac{\hbar}{2}$
$(S_x = \frac{\hbar}{2})$		-
Ergebnis nach Apparat 3	0	12,5 $S_z = \frac{\hbar}{2}$
$(S_z = -\frac{\hbar}{2})$		-

1.15 Spin im Magnetfeld: Unschärfe

Anfangzustand i) $|\psi\rangle = {\binom{e^{i\omega t}}{0}}, \langle S_z \rangle = \frac{\hbar}{2}$

$$\Delta S_z^2 = \frac{\hbar^2}{4} - \frac{\hbar^2}{4} = 0$$
$$\Delta S_x^2 = \frac{\hbar^2}{4} - 0 = \frac{\hbar^2}{4}$$
$$\Delta S_y^2 = \frac{\hbar^2}{4} - 0 = \frac{\hbar^2}{4}$$

Der Spin-Vektor hat einen scharfen Wert in z-Richtung ($\triangle S_z = 0!$); Unschärfe besteht in x,y-Richtung.

Anfangszustand ii) $|\psi\rangle = \frac{1}{\sqrt{2}} {e^{\imath\omega t} \choose e^{-\imath\omega t}}, \langle S_x \rangle = \frac{\hbar}{2} \cos 2\omega t, \langle S_y \rangle = -\frac{\hbar}{2} \sin 2\omega r$

1 Quantenphysik des Zwei-Zustands-Systems

$$\Delta S_z^2 = \frac{\hbar^2}{4} - 0 = \frac{\hbar^2}{4}$$
$$\Delta S_z^2 = \frac{\hbar^2}{4} - \frac{\hbar^2}{4}\cos^2 2\omega t = \frac{\hbar^2}{4}\sin^2 2\omega t$$
$$\Delta S_y^2 = \frac{\hbar^2}{4} - \frac{\hbar^2}{4}\sin^2 2\omega t = \frac{\hbar^2}{4}\cos^2 2\omega t$$

Zum Zeitpunkt t = 0 hat S_x einen scharfen Wert. Für $t = \frac{\pi}{4\omega}$ hat S_y einen scharfen Wert. Richtung des scharfen Wertes dreht sich;

in den Spinkomponenten orthogonal zum scharfen Wert: Unschärfe!

Gedankenexperiment

Man variere $B_z \Rightarrow$ variere ω

$$t = \frac{L}{v} \tag{1.8}$$

Wobei v die Geschwindigkeit der Atome.

$$\Delta S_x^2 = \frac{\hbar^2}{4} \sin^2 2\omega \frac{L}{v}$$
$$= \frac{\hbar^2}{4} \sin^2 \frac{2L}{v} \frac{\mu_0 B_z}{\hbar}$$
$$= \frac{\hbar^2}{4} \sin^2 \frac{eB_z L}{Mvc}$$
$$= \frac{\hbar^2}{4} \sin^2 \frac{eB_z L}{Mc^2} \frac{c}{v}$$

Folglich variert die Unschärfe mit B!

$$\langle S_x \rangle = \frac{\hbar}{2} \cos \frac{eB_z L}{Mc^2} \frac{c}{v}$$

Neutrino Oszillatoren

 $\nu_e = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \nu_\mu = \begin{pmatrix} 0\\ 1 \end{pmatrix}$

$$\hat{H} \sim \begin{pmatrix} mv_e & 0\\ 0 & mv_\mu \end{pmatrix} + \Delta \tau_1 \tag{1.9}$$

Sonnenneutrinos: Anfangszustand $|\nu_e\rangle = {1 \choose 0}$ (werden zusammen mit Elektronen produziert) Zeitentwicklung: Oszillation zwischen ν_e und ν_μ Auf der Erde kommt eine Mischung von ν_e und ν_{μ} an. Welches in zahlreichen Experimenten nachgewiesen werden konnte!

Ähnliches ist bei Neutrinos aus Kernreaktionen zu beobachten.

Dabei ist die Wahrscheinlichkeit ν_e zu finden wie folgt zu berechnen.

$$P_{\nu_e} = \langle \psi | \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} | \psi \rangle \sim \cos cL$$

Ozillationen zwischen Materie und Antimaterie

 K^0 . \overline{K}^0 \bar{K}^0 ist Antiteilchen zu K^0

$$H \sim \begin{pmatrix} m_K & 0\\ 0 & m_K \end{pmatrix} + \Delta \tau_1$$

 \triangle verletzt die Symmetrien

P Parität, Spiegelsymmetrie

C Ladungskonjugation (Teilchen \rightarrow Antiteilchen)

Oszillationen von K^0 nach \overline{K}^0 und zurück!

1.16 Oszilationen zwischen Positionen

 $|\uparrow\rangle$ Position 1 $\begin{pmatrix}1\\0\end{pmatrix}$ $|\downarrow\rangle$ Position 2 $\begin{pmatrix}0\\1\end{pmatrix}$

$$\hat{H} = \frac{\triangle E}{2}\tau_3 + \alpha\tau_1 + const$$

Der Term $\alpha \tau_1$ stellt das Einstrahlen der Resonanzfrequenz oder am Übergang dar. Die Konstante ist irrelevant.

 $|\triangle E| \ll |\alpha|$: vernachlässige $\triangle E$ (kleine Störung), für NH_3 : $\triangle E = 0$

Stört in Zustand $|1\rangle$: Ergebnis: Oszillationen zwischen $|1\rangle$ und $|2\rangle$, Oszillationen der Unschärfe

Mathematische Behandlung analog zu

Spin im Magnetfeld $\begin{pmatrix} B_x \\ 0 \\ 0 \end{pmatrix}$, mit Anfangszustand $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ oder Spin im Magnetfeld $\begin{pmatrix} 0\\0\\B_z \end{pmatrix}$, mit Anfangszustand $\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$

1.17 Zusammenfassung

Einige einfache Hypothesen zur QM erlauben detaillierte Voraussagen für die Statistik von Beobachtungen im Zweizustandssystem

- 1 Quantenphysik des Zwei-Zustands-Systems
 - Wahrscheinlichkeits-Amplitude = Komponenten des Zustandsvektors $|\psi\rangle$ Axiom 1
 - Observablen A werden Operatoren \hat{A} zugeordnet Axiom 2
 - * Mittelwert der Observablen $\langle \hat{A} \rangle = \langle \psi | \hat{A} | \psi \rangle$ Axiom 3
 - * Ergebnisse von Einzelmessungen um das Spektrum von \hat{A} zu ermitteln
 - * Schwankungsquadrat $\bigtriangleup A^2 = \langle \psi | \hat{A}^2 | \psi \rangle \langle \psi | \hat{A} | \psi \rangle^2$
 - * Nach Messung Eigenzustand von \hat{A} Axiom 5
 - Schrödingergleichung $i\hbar |\dot{\psi}\rangle = \hat{H} |\psi\rangle$ Axiom 4

Durch Vielzahl von Experimenten bestätigt! Eine der wichtigen Konsequenzen ist dabei die **diskrete Verteilung von Messwerten**. Dies kann direkt zur Verallgemeinerung auf N-Zustands-Systeme oder kontinuerliche Systeme angewendet werden. Dann ist auch ein kontinuierliches Spektrum gewisser Operatoren möglich genauso wie eine kontinuierliche Verteilung von Messwerten. Mehr braucht es nicht!

- \rightarrow Identifiziere für gegebenes System \hat{A}_k, \hat{H}
- \rightarrow Löse Schrödingergleichung

2 N-Komponenten-System

2.1 N-komponentige Zustandsvektoren

- $\rightarrow\,$ Etwas abstraktere Beschreibung
- $\rightarrow\,$ Vorbereitung zum Übergang $N\rightarrow\infty$ (kontinuierliche Systeme)

Systeme mit ${\cal N}$ diskreten Zuständen

Beispiele

i) Drehimpuls $l \colon N = 2l+1$ Zustände, entsprechend dem Spektrum von L_z

$$\begin{aligned} |\psi\rangle &= \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \vdots \\ \psi_N \end{pmatrix}, \text{Komponenten } \psi_m, 1 \le m \le N \\ \hat{L}_z \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} &= 2\hbar \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ \hat{L}_z \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} &= \hbar \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ \hat{L}_z \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} &= -2\hbar \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \\ \hat{L}_z &= \hbar \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix} \end{aligned}$$

allgemein * Zustandsvektor / Wellenfunktion $|\psi\rangle: \text{N- komponentiger komplexer Vektor}$ * Operatoren

 \hat{A} : N × N- Matrix

Schrödinger-Gleichung

$2 \ {\it N-Komponenten-System}$

$$\begin{split} \imath\hbar|\dot{\psi}\rangle &= \hat{H}|\psi\rangle\\ \imath\hbar\dot{\psi} &= H\psi\\ \imath\hbar\dot{\psi}_m &= \sum_{n=1}^N H_{mn}\psi_n = H_{mn}\psi_n \end{split}$$

ii) Ein Atom, das sich in einer von N
 Fallen aufhalten kann
$$\begin{pmatrix} 1\\0\\0\\0\\0\\\vdots\\0 \end{pmatrix}$$
: Atom in Falle 1
$$\begin{pmatrix} 0\\0\\0\\\vdots\\1\\\vdots\\0 \end{pmatrix}$$
: Atom in Falle k (1 an k-ter Stelle)
$$\begin{pmatrix} 0\\0\\0\\\vdots\\1\\\vdots\\0 \end{pmatrix}$$

$$\psi_m = \delta_{mk}$$
: Atom in Falle k

Wie bisher

$$\langle \psi | = |\psi \rangle^{\dagger} = (\psi_1^*, \psi_2^*, \dots, \psi_N^*)$$
 (2.1)

2.2 Realteil und Imaginärteil von $\langle A \rangle$

$$\langle A \rangle = \langle \psi | \hat{A} | \psi \rangle \tag{2.2}$$

Komponentenschreibweise

$$\begin{aligned} (\hat{A}|\psi\rangle)_{m} &= \sum_{n=1}^{N} \hat{A}_{mn}\psi_{n} \\ &= A_{mn}\psi_{n} \\ \langle \varphi|\psi\rangle &= \sum_{m=1}^{N} \varphi_{m}^{*}\psi_{m} \\ &= \varphi_{m}^{*}\psi_{m}, \\ \langle \psi|\hat{A}|\psi\rangle &= \sum_{m=1}^{N} \psi_{m}^{*} \sum_{n=1}^{N} \hat{A}_{mn}\psi_{n} \\ &= \sum_{m,n} \psi_{m}^{*} \hat{A}_{mn}\psi_{n} \\ \langle A\rangle &= \psi_{m}^{*} \hat{A}_{mn}\psi_{n} \\ &= \psi_{n} \hat{A}_{mn}^{*}\psi_{n} \\ &= \psi_{m}^{*} \hat{A}_{mn}^{*}\psi_{n} \\ &= (\psi|\hat{A}^{\dagger}|\psi\rangle \\ \langle A\rangle_{I} &= -\frac{i}{2}(\langle A\rangle - \langle A\rangle^{*}) \\ &= -\frac{i}{2}\langle \psi|(\hat{A} - \hat{A}^{\dagger})|\psi\rangle \end{aligned}$$

Hermitesche Operatoren $\hat{A}^{\dagger} = \hat{A}$ haben reelle Erwartungswerte. Physikalische Observablen werden durch hermitesche Operatoren dargestellt.

Satz 1 Das Spektrum hermitescher Operatoren ist reell. Alle Eigenwerte hermitescher Operatoren sind reell.

einfacher Beweis durch Widerspruch für den Eigenvektor gilt in diesem Fall : $\langle A \rangle = \lambda$ falls $Im\lambda \neq 0 \Rightarrow Im\langle A \rangle \neq 0$ Widerspruch falls $\hat{A} = \hat{A}^{\dagger}$

2.3 Unitäre Zustandsentwicklung

$$\hat{H} = \hat{H}^{\dagger} \tag{2.3}$$

- i) Eigenwerte von \hat{H} : Energiezustände, reell
- ii) Erhaltung der Norm

Beweis völlig analog zum Zweizustandssystem

$$\frac{\partial}{\partial t} \langle \psi | \psi \rangle = 0$$

$$\psi_m^*(t) \psi_m(t) = 1$$

unitäre Zeitentwicklung (ähnlich zu Drehungen bei reellem Vektor)

$$\psi_m(t) = U_{mn}(t)\psi_n(0)$$
$$U^{\dagger}U = \mathbf{1};$$
$$U^{\dagger}_{mn}U_{np} = \delta_{mp}$$

U: Zeitentwicklungs-Operator, Evolutionsoperator

$$\psi_m^*(t) = \bar{U}_{mn}^*(t)\psi_n^*(0)$$

$$\psi_m^*(t)\psi_m(t) = U_{mn}^*(t)\psi_n^*(0)U_{mn'}(t)\psi_{n'}(0) - \psi_n^*(0)U_{nm}^{\dagger}(t)U_{mp}(t)\psi_p(0)$$

Unitäre Zeitentwicklung \Rightarrow Form der Schrödinger-Gleichung

$$\begin{array}{rcl} \psi(t) &=& U(t)\psi_{0}, \\ \psi_{0} &=& U^{\dagger}(t)\psi(t) \\ \dot{\psi}(t) &=& \dot{U}(t)\psi_{0} \\ &=& \dot{U}(t)U^{\dagger}(t)\psi(t) \\ \imath\hbar\dot{\psi}(t) &=& \imath\hbar\dot{U}(t)U^{\dagger}(t)\psi(t) \\ \hat{H} &=& \imath\hbar\dot{U}U^{\dagger} \\ \hat{H}^{\dagger} &=& \imath\hbar\dot{U}U^{\dagger} \\ \hat{H}^{\dagger} &=& \imath\hbar U\dot{U}^{\dagger} \\ \frac{d}{dt}(UU^{\dagger}) &=& 0 \\ &=& \dot{U}U^{\dagger} + U\dot{U}^{t} \\ U\dot{U}^{\dagger} &=& -\dot{U}U^{\dagger} \\ \hat{H}^{\dagger} &=& \hat{H} \end{array}$$

Was hier noch fehlt ist der Beweis, dass $\hat{H} \equiv$ Energieoperator.

 \Rightarrow

2.4 Allgemies Zweizustandssystem

Für ${\cal N}=2$ gibt es vier unabhänigige hermitesche Operatoren

$$\begin{aligned} \tau_1, \tau_2, \tau_3, \mathbf{1} &= \tau_0 \\ \hat{A} &= \hat{A}^{\dagger} \quad \Leftrightarrow \quad \hat{A} &= \sum_{m=0}^3 \alpha_m \tau_m, \ \alpha_m \text{ reell} \end{aligned}$$

beliebige 2×2 Matrix

$$\hat{A} = \sum_{m=0}^{3} \beta_m \tau_m, \ \beta_m \in \mathbf{C}$$
$$\hat{A}^{\dagger} = \sum_{m=0}^{3} \beta_m^* \tau_m^{\dagger}$$
$$= \sum_{m=0}^{3} \beta_m^* \tau_m$$

für
$$\hat{A}^{\dagger} = \hat{A}$$
 und β_m reell

$$\tau_m^{\dagger} = \tau_m \text{ für } \tau_1, \tau_3, \tau_0 \text{ ist dies klar}$$

$$\tau_2^{\dagger} = (\tau_2^*)^T$$

$$= \left(\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}^* \right)^T$$

$$= \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}^T$$

$$= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Konvergenz:

Jedes Zwei-Zustands-System kann auf ein Spin-System in einem Magnetfeld abgebildet werden (Spin $\frac{1}{2})$

$$\hat{H} = \sum_{m=0}^{3} \alpha_m \tau_m$$
$$= \vec{\alpha} \vec{\tau} + \text{const.}$$
$$\equiv c \vec{B} \vec{\tau} + \text{const}$$

2.5 Grenzübergang $N \rightarrow \infty$, Wellenfunktion

Identifiziere Falle mit Gitterpunkten (z.B. in Festkörpern) eindimensional, äquidistant. Gitterabstand a

$$x = ma$$

statt Vektor (ψ_1, \ldots, ψ_m) , diskrete Funktion $\psi(x)$

für (m-1)a < x < ma:

$$\psi(x) = \frac{\psi_m}{\sqrt{a}} \tag{2.4}$$

Die Zeichnung ist für ein reelles $\psi(x)$, sonst muss der $Re \ \psi$ und der $Im \ \psi$ simultan angegeben werden. Skalarprodukt $\langle \varphi | \psi \rangle$

Abbildung 2.1: Histogramm für die Wahrscheinlichkeit, dass sich das Teilchen am Ort x aufhält

$$\sum_{m} \varphi_m^* \psi_m = \int_0^L dx \varphi_*(x) \psi(x), \ (\Delta x = a)$$
(2.5)

statt von $0 \le x \le L$ auch $-L \le x \le L$ (dann reicht meben von -N < m < N)

Zustandsvektor = Wellenfunktion (nicht stetig)

Limes $a \to 0$ (bei festem L) $\equiv \lim_{N \to \infty}$

$$\psi_m \to \psi(x)$$

Interpretation einer Funktion als unendlich-dimensionaler Vektor (Mathematisch: Funktionenräume \ldots)

Die Wellenfunktion ist normiert

$$\int_{-L}^{L} dx \psi^*(x) \psi(x) = 1$$
(2.6)

 $\psi(x)$: quadratintegrabel

Dieser Grenzübergang ist mathematisch nicht trivial. Man geht dazu über Folgen von Vektoren zu betrachten für $N \to \infty$ $(a \to 0)$ sodass für jedes N

$$\sum_{m=1}^{N} \psi_m^* \psi_m = 1 \tag{2.7}$$

Durch die Quadratintegrabiliät wird die 'Glattheit der resultierenden Funktion' garantiert, dies bedingt nicht notwendig Stetigkeit oder Differenzierbarkeit. Deshalb gilt es herauszufinden unter welchen Bedingungen der Limes ein eindeutiges Resultat für eine physikalische Variable liefert.

2.6 Interpretation der Wellenfunktion

$$p_m = \psi_m^* \psi_m \tag{2.8}$$

Wahrscheinlichkeit, dafür dass ein Atom am Gitterpunkt m sitzt. Die Summe der Einzelwahrscheinlichkeiten ergibt 1. ($\sum_{m} p_m = 1$). Gleichzeitig ist dies aufzufassen als die Wahrscheinlichkeit, dass ein Atom im Intervall (m-1)a < x < ma zu finden ist.

$$\psi^*(x)\psi(x) = \frac{\psi_m^*\psi_m}{a}$$
: Wahrscheinlichkeitsdichte
 $\int dx \psi^*(x)\psi(x) = 1$

Nun können einfache Verallgemeinerungen für $L \to \infty$ und für drei Raumdimensionen vorgenommen werden.

Wellenfunktion $\psi(\vec{x})$ Wahrscheinlichkeitsdichte, dass Teilchen am Ort \vec{x} zu finden ist: $\psi^*(\vec{x})\psi(\vec{x})$

$$\int d^3x \psi^*(\vec{x})\psi(\vec{x}) = 1: \text{ Normierung}$$
(2.9)

In dieser Betrachtungsweise dient das Gitter nur noch als Hilfskonstruktion, das Teilchen befindet sich irgendwo im Raum.

Untersucht man nur ein Teilchen, so ist es eine diskrete Betrachtung. Die Wahrscheinlichkeitsamplitude, dass das Teilchen bei x lokalisiert ist wird durch $\psi(\vec{x})$ dargestellt. Es ist eine kontinuierliche Funktionon.

Die Wahrscheinlichkeitsfunktion hat Welleneigenschaften!

2.7 Quantenmechanik für Teilchen im Potential

Die Beschreibung der Bewegung eines Teilchens in einem Potential ähnelt sehr der Problemstellung aus der klassischen Newton'schen Mechanik. Dabei ist die enscheidende Beschreibungsgröße die Wellenfunktion $\psi(\vec{x},t)$ mit der dazugehörigen Wahrscheinlichkeitsamplitude.

Man führt nun einen Ortsoperator: $\vec{X} = \vec{x}$ ein.

Der Mittelwert des Ortes des Teilchens berechnet sich dann wie folgt:

$$\langle \vec{x} \rangle = \int d^3 x \psi^*(\vec{x}) \vec{x} \psi(\vec{x})$$
(2.10)

Während die Unschärfe der x und y Koordinate so zu berechenen ist:

$$\begin{split} & \triangle x^2 &= \langle x^2 \rangle - \langle x \rangle^2 \\ & \triangle y^2 &= \langle y^2 \rangle - \langle y \rangle^2 \\ & \triangle y^2 &= \int d^3 x \psi^*(\vec{x}) y^2 \psi(\vec{x}) - \left(\int d^3 x \psi^*(\vec{x}) y \psi(\vec{x}) \right)^2 \end{split}$$

Nun stellen sich 2 weitere wichtige Fragen:

Was ist \hat{H} ?

Was ist der Impulsoperator?

Impulsoperator

$$\vec{P} = -i\hbar\vec{\bigtriangledown}$$
$$\hat{p}_x = -i\hbar\frac{\partial}{\partial x}$$
$$\hat{p}_y = -i\hbar\frac{\partial}{\partial y}$$
$$\hat{p}_z = -i\hbar\frac{\partial}{\partial z}$$

Der Impulsoperator ist ein Differentialoperator!

Hamiltonoperator für Teilchen in einem Potential

$$\hat{H} = \frac{\vec{p}^2}{2m} + V(\hat{X})$$

$$= -\frac{\hbar^2}{2m} \triangle + V(\vec{x})$$

$$\triangle = \vec{\nabla}\vec{\nabla}$$

$$= \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
: Laplace Operator

Schrödingergleichung

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \bigtriangleup \psi + V(\vec{x})\psi$$

Die Lösungen der Schrödinger-Gleichung geben Auskunft über:

Die **Welleneigenschaften** der Wahrscheinlichkeits**amplitude** auch wenn präzise 1 Atom sich im Raum bewegt, was einer diskreten Teilcheneigenschaft entspricht.

Partielle lineare Differentialgleichung

Postulat 1 Die Schrödingergleichung ist für die Quantenmechnik wie die Newton'schen Axiome für die klassische Mechanik. Von ihr ausgehend können Teilchen im Potetial in der Quantenmechanik betrachtet werden.

Die Schritte zur Lösung dieses Problems sind:

- $V(\vec{x})$ ist gegeben
- Suche die Lösungen $\psi(x,t)$
- Berechne die Zeitentwicklung der Mittelwerte
- Vergleich die statistischen Aussagen mit dem Experiment

mittlere Bahn

$$\langle \vec{x}(t) \rangle \quad = \quad \int d^3x \psi^*(\vec{x},t) \vec{x} \psi(\vec{x},t)$$

 \vec{x} ist dabei ein fester Operator das 'Schrödinger Bild' Der mittlere Impuls zur Zeitt

$$\langle \vec{p}(t) \rangle = -i\hbar \int d^3x \psi^*(\vec{x},t) \vec{\bigtriangledown} \psi(\vec{x},t)$$

Es stellt sich die Frage ob $\langle \dot{\vec{x}} \rangle = \frac{\langle \vec{p} \rangle}{m}$ gilt?

2.8 Differentialoperatoren im N-Zustandssystem

-EXKURS-

 $Der \ eindimensionale \ Impulsoperator:$

$$\begin{split} \hat{p} &= -i\hbar \frac{\partial}{\partial x} \\ \hat{p}\psi(x) &= -i\hbar \frac{\partial\psi}{\partial x} \\ &= -i\hbar \frac{\psi(x+a) - \psi(x-a)}{2a}; (m-1)a < x < ma \\ &= -i\hbar \frac{\psi(x+a) - \psi(x-a)}{2a}; (m-1)a < x < ma \\ &= -i\hbar \frac{\psi(x+a) - \psi(x-a)}{\sqrt{a}} \\ &= -\frac{i\hbar}{2a} \frac{\psi_{m+1} - \psi_{m-1}}{\sqrt{a}} \\ &= \frac{(\hat{p}|\psi))_m}{\sqrt{a}} \\ &= \frac{(\hat{p}|\psi))_m}{\sqrt{a}} \\ &= \frac{1}{\sqrt{a}} \sum_n \hat{p}_{mn}\psi_n \\ \hat{p}_{mn} &= -\frac{i\hbar}{2a} (\delta_{m+1,n} - \delta_{m-1,n}) \\ \hat{p} &= -\frac{i\hbar}{2a} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ & & \ddots \\ 0 & & \ddots \end{pmatrix} \\ \hat{p}^{\dagger} &= \hat{p} \end{split}$$

2.9 Hermitzität des Impuls-Operators

hier: Beweis dass $\langle p_x \rangle$ reell

$$\langle p_x \rangle^* = \left(-i\hbar \int dx \psi^* \frac{\partial}{\partial x} \psi \right)^*$$

$$= i\hbar \int dx \psi \frac{\partial \psi^*}{\partial x}$$

$$= -i\hbar \int dx \frac{\partial \psi}{\partial x} \psi^*$$

$$= -i\hbar \int dx \psi^* \frac{\partial}{\partial x} \psi$$

$$= \langle p_x \rangle$$

wichtig:

i der Impulsoperator ist 'imaginär' und 'antisymmetrisch' $(\int dx a \cdot \frac{\partial}{\partial x} b = -\int \frac{\partial}{\partial x} a \cdot b)$

3 Welle-Teilchen-Dualismus

3.1 Beschreibungsgrößen der klassischen Physik

Raum und Zeit sind vorgegeben. Für die Newton'sche Mechanik gelten die folgenden Bedingungen

- $\bullet~{\rm Euklidischer}~{\rm Raum}$ + Zeit
- Galilei- Transformationen

Die spezielle Relativitätstheorie hingegen

- Minkowski- Raum
- Lorentz- Transformation

Wir möchten in diesem Rahmen die allgemeine Relativitätstheorie und die Quantengravitation nicht in unsere Überlegungen mit einbeziehen.

Physikalische Objekte

Teilchen in Newtonscher Mechanik

Zustand	Ort $\vec{r}(t)$
	Impuls $\vec{p}(t)$
Dynamik	bestimmt durch Kräfte
Beispiel	elektromagnetische Kraft
	$\vec{F} = -e(\vec{E} + \frac{1}{c}\vec{v} \times \vec{B})$
	$\vec{F} = \vec{F}(\vec{r}(t), \vec{p(t)}, \vec{E}(\vec{r}, t), \vec{B}(\vec{r}, t))$

Felder

Zustand	$E(\vec{r},t)$
	$ec{B}(ec{r},t)$
Dynamik	bestimmt durch Feldgleichungen
Beispiel	Maxwell-Gleichungen

$$\begin{array}{rcl} \displaystyle \frac{1}{c} \frac{\partial}{\partial t} \vec{E} &=& \operatorname{rot} \, \vec{B} - \frac{1}{c} \vec{j} \\ & \operatorname{div} \, \vec{E} &=& \rho \\ \displaystyle \frac{1}{c} \frac{\partial}{\partial t} \vec{B} &=& -\operatorname{rot} \, \vec{E} \\ & \operatorname{div} \, \vec{B} &=& 0 \\ \displaystyle \Rightarrow \vec{B} = \operatorname{rot} \, \vec{A} &, \quad \vec{E} = -\operatorname{grad} \, \varphi - \frac{1}{c} \frac{\partial}{\partial t} \vec{A} \end{array}$$

Teilchen : diskrete Objekte Felder: kontinuierliche Objekte

Die Ermittlung von $\vec{E}(\vec{x},t)$ benötigt unendlich viele Messungen. Unter der Kontinuumsmechanik versteht man die Betrachtung von Feldern, wie zum Beispiel ein Dichtefeld. Die Kontinuumsmechanik ist in der klassischen Mechanik nicht grundlegend, sie wurde aus der Punktmechanik abgeleitet für sehr viele Teilchen (das umgekehrte funktioniert zumindestens näherungsweise). Die absolute Vorhersagbarkeit ist auch in der klassischen Physik nicht gegeben (chaotische Phänomene ...). Darum sind auch in der klassischen Physik oft nur statistische Aussagen möglich.

Vereinheitlichung der Konzepte

In der Quantenmechanik vereint man die Konzepte von Welle und Teilchen. Dadurch muss allerdings auf die Punktmechanik verzichtet werden, sie kann nur noch als Näherung dienen. Daher wird sowohl das klassische Teilchenbild, als auch das Feldbild modifiziert!

3.2 Teilchen und Wellen

Der Energietransport (einschließlich der Ruhemasse) soll von A nach B erfolgen.

Teilchenbild: Teilchen bewegt sich von A nach B Feldbild: Welle breitet sich von A nach B aus

In der Quantenmechanik haben Teilchen auch Welleneigenschaften und Wellen auch Teilcheneigenschaften.

Teilcheneigenschaften	diskrete Ereignisse
Intensität	Wahrscheinlichkeit, ein Teilchen oder ein Energiequant nachzuweisen
Welleneigenschaften	Räumlich ausgedehnt
	Superposition von Amplituden
	$\varphi(\vec{r},t) = \varphi_1(\vec{r},t) + \varphi_2(\vec{r},t)$
	Interferenz
Intensität	$I(r,t) = \varphi(\vec{r},t) ^2$

3.3 Elektromagnetische Strahlung

Hinter der Idee das Licht als elektromagnetische Welle aufzufassen, steht ein historischer Streit, so vertraten zum Beispiel Newton, Goethe, Einstein die These, dass Licht aus Teilchen besteht, während Huygens und Maxwell davon ausgingen, dass Licht eine Welle ist.

Ende des vorletzten Jahrhunderts sah es nach einem Sieg für die Wellenhypothese: Da es schien als wären Interferenz, Beugung und ähnliches völlig geklärt indem man einfach nur die Maxwell-Gleichungen löst.

Heute kann man z.B. am LEP-Experiment (CERN Genf) beobachten, dass ein Photon genauso ein Teilchen ist, wie Elektronen und Positronen. Es gibt dabei keinerlei prinzipielle Unterschied.

Maxwellgleichungen

Annahme: kontinuierliche Strahlungsfeldverteilung

gemessen: Photon trifft nur in **eine** Detektorzelle (Region). Damit finden wir die Lichtquanten (Photonen-)hypothese bestätigt! Allerdings entspricht die räumliche Energieverteilung der Photonen bei sehr vielen Wiederholungen des Experimentes gut der Energieverteilung des Maxwell'schen Strahlungsfeldes (aber es müssen Korrekturen vorgenommen werden: Quantenfeldtheorie). Die klassische Feldtheorie liegt dabei nicht vollkommen daneben, aber es können für sehr viele Experimente nur statistische Aussagen getroffen werden!

 $\vec{E}_{\text{klassisch}}(\vec{r}) \neq 0$ bedeutet für einzelnes Experiment **nicht**, **da ist 'etwas'** bei \vec{r} , es gibt lediglich eine Wahrscheinlichkiet an.

Quanteneffekte treten nur bei sehr hohen Energien oder sehr kleinen Abständen auf! Nicht nur in der Mikrophysik!

Abbildung 3.1: Elektron- Positron Interaktion

Beispiel

Bei der Beobachtung eines schwachen Sterns (geringe Intensität der Strahlung) wird der Nachweis des Lichtes durch Photomultiplikatoren vorgenommen, dabei hat das Nachweisgerät eine räumliche Zellenstruktur.

Abbildung 3.2: relevanter Operator: Teilchenanzahl in Bin X, Zustandsvektor $\psi_m, \ m = 1 \dots N, \ N$ Anzahl Bins

Wenn man lange genug wartet, kann man ein klassisches Beugungsmuster feststellen. Bei sehr geringer Intensität kann man eine Quantisierung beobachten, die Wahrscheinlichkeiten entsprechen dabei denen der klassischen Optik. Für sehr viele Photonen wird die Quantisierung unwichtig. Eine ähnliche Beobachtung kann man bei der Energieverteilung von Neutrinos aus der letzten Supernova vornehmen.

Aufgabe der Interpretation, dass kontinuierliches Feld eine kontinuierliche Energieverteilung beschreibt.

Energiedichte der elektromagnetischen Strahlung

$$\frac{1}{2}(\vec{E}^2(x) + \vec{B}^2(x))$$

3 Welle-Teilchen-Dualismus

benötigt stets eine Wahrscheinlichkeitsinterpretation.

Eine Wahrscheinlichkeitsverteilung für diskrete Ereignisse ist (oft) kontinuierlich. Das macht die kontinuierliche Wellenbeschreibung mit beobachteter Diskretheit der Ereignisse kompatibel. Dabei sind Ereignisse diskret, während die Wahrscheinlichkeit kontinuierlich ist.

Teilchen im Potential

1 Teilchen: diskret (nicht 0,7345... Teilchen) Wahrscheinlichkeitsamplitude $\psi(\vec{x})$: Feld

 $\psi(\vec{x}) = \text{const.}$ heißt **nicht**, dass das Teilchen überall ist nur: wenn Messung, dann gleiche Wahrscheinlichkeit für alle \vec{x} , das Teilchen dort zu finden.

Photon im Raum

1 Photon wird abgestrahlt von einer Punktquelle, dieses wird in genau **einer** Detektorzelle registriert. Die Wahrscheinlichkeitsamplitude kann eine Kugelwelle sein, für **jeden** Detektor verschieden von Null und gleich.

 $\vec{E}(\vec{x}), \vec{B}(\vec{x})$ hängen mit der Wahrscheinlichkeits**amplitude** zusammen. $\vec{E}^2(\vec{x}) \neq 0$ heißt **nicht**, dass bei \vec{x} Energie sitzt - nur: mit einer gewissen Wahrscheinlichkeit ist das Photon bei \vec{x} !

3.4 Beziehung zwischen Teilchen und Wellengrößen

Compton Streuung

Abbildung 3.3: Compton- Streuung

	vorher		nachher	
	Licht	Elektron	Licht	Elektron
Energie	$\hbar\omega$	mc^2	$\hbar\omega'$	$\sqrt{m^2c^2+\vec{p}^2}$
Impuls	$\hbar ec k$	0	$\hbar ec k'$	$ec{p}$
Frequenz	ω	$\frac{mc^2}{\hbar}$	ω'	$\frac{E'_e}{\hbar}$
Wellenvektor	$ec{k}$	0	$ec{k}'$	$\frac{\vec{p}}{\hbar}$
$$\begin{split} \omega &= c |\vec{k}|, \\ \omega' &= c |\vec{k}'| \end{split}$$

Experiment

- (1) $\hbar \vec{k} = \hbar \vec{k}' + \vec{p}$
- (2) $\hbar\omega + mc^2 = \hbar\omega' + \sqrt{m^2c^4 + c^2\vec{p}^2}$
- (1) Impulser haltung, falls der Photonimpuls $\hbar \vec{k}$
- (2) Energieerhaltung, falls die Photonenergie $\hbar\omega$

\hbar : Plancksches Wirkungsquantum

 $\hbar=1,06\cdot 10^{-27}~{\rm erg~sec}$

fundamentale Naturkonstante

c : Vereinheitlichung Raum Zeit $m \sim \sec \hbar$: Vereinheitlichung Teilchen Welle $erg \sim \sec^{-1}$

(In der Teilchenpyhsik entspricht $\hbar = 1, c = 1$: alles wird in Sekunden beziehungsweise eV gemessen)

3.5 Welleneigenschaften der Teilchen

Ein bewegtes Elektron hat die Wellenlänge

$$\lambda = \frac{2\pi\hbar}{|p|}$$

$$\omega = \frac{E}{\hbar}$$

$$\nu = \frac{\omega}{2\pi}$$

$$= \frac{E}{2\pi\hbar}$$

$$= \frac{E}{h}$$

$$\hbar = \frac{h}{2\pi}$$

$$h\nu = E$$

Interferenz-Phänomene?

ebene Welle

$$\begin{split} \psi &\sim e^{i(k\vec{x}-\omega t)} \\ \vec{k}\psi &= -i\vec{\bigtriangledown}\psi \\ \omega\psi &= i\frac{\partial}{\partial t}\psi \end{split}$$

Impulsoperator

$$\vec{P} = \hbar \vec{k} = -\imath \hbar \vec{\bigtriangledown} \tag{3.1}$$

3 Welle-Teilchen-Dualismus

Energie für massives nicht- relativistisches Teilchen im Potential

$$E = \frac{\vec{p}^2}{2m} + V(\vec{x})$$

$$\hbar\omega = \frac{\hbar^2 \vec{k}^2}{2m} + V(x)$$

$$E\psi = \left(\frac{\hbar^2 k^2}{2m} + V(x)\right)\psi$$

$$\rightarrow$$

$$i\hbar \frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m} \bigtriangleup \psi + V(x)\psi \text{ Schrödingergleichung}$$

4 Motivation der Schrödingergleichung

• Interpretation

$$i\hbar \frac{\partial}{\partial t} = \hat{E}$$
 Energieoperator (entspricht Zeittranslation) (4.1)

$$-i\hbar \vec{\nabla} = \vec{p}$$
 Impulsoperator (entspricht Raumtranslation) (4.2)

$$(\hat{E} - \hat{H})|\psi\rangle = 0 \tag{4.3}$$

$$(\hat{E} - \frac{\vec{p}^2}{2m} - V(\vec{x})) = 0 \tag{4.4}$$

$$E = \frac{\vec{p}^2}{2m} + V \text{ in der Klassischen Mechanik}$$
(4.5)

- Wellengleichung für Photon: Maxwell-Gleichungen Wellengleichung für Atom: Schrödinger-Gleichung
- für Photon bekannt: Die Elektrodynamik stellt bereits die Quantenmechanik für Photonen dar (in Situationen ohne Erzeugung und Vernichtung von Energiequanten). Es ändert sich hier nur die Art der Interpretation.

Die Maxwell-Gleichung ist die 'Schrödinger-Gleichung für Photonen'.

• Für ein Atom kann man dies analog durchführen, allerdings tun sich einige Unterschiede auf.

Photon	Atom $(s=0)$
masselos	Masse m
Vektorteilchen	keine inneren Freiheitsgrade
zwei Helizitäten/ Polarisation	
nur Grenzfall	-
Frzeugung von Photonon spielt keine Bolle	

Erzeugung von Photonen spielt keine Rolle

4.1 'Wellenfunktion' für 'Photon'

- Vereinfachung auf nur einen Freiheitsgrad (zirkulare Polarisation)
- Photonen im Vakuum keine Erzeugung und Vernichtung von Photonen, Quantenmechnik für Photon wie Quantenmechnik für ein Teilchen
- Systeme mit veränderlicher Photonenzahl, Emission, Absorption später
- Ziel: Konzepte
- Schnellwiederholung elektromagnetische Wellen

4.1.1 Ebene monochromatische Welle in x-Richtung, zirkular polarisiert

$$E_y = b\cos(\omega t - kx)$$
$$E_z = b\sin(\omega t - kx)$$

4 Motivation der Schrödingergleichung

 ω : Kreisfrequen
z $\omega=2\pi\nu$ k: x-Komponente des Wellenvektors
 $\vec{k},\;k=\frac{2\pi}{\lambda}$ λ : Wellenlänge

Wellengleichung:

$$\frac{1}{c^2}\frac{\partial^2 \vec{E}}{\partial t^2} - \triangle \vec{E} = 0$$

Die Wellengleichung ist erfüllt für

$$\left(-\frac{\omega^2}{c^2} + k^2\right)\vec{E} = 0$$
$$\omega = ck$$

Das elektrische Feld steht senkrecht auf der Ausbreitungsrichtung genau wie das magnetische Feld.

$$\vec{E} \perp \vec{B}$$
 (4.6)

$$\vec{E}^2 = \vec{B}^2 \tag{4.7}$$

Energie pro Volumen

$$\begin{aligned} \frac{\mathcal{E}}{V} &= W \\ &= \frac{1}{2}(\vec{E}^2 + \vec{B}^2) \\ &= \vec{E}^2 \\ &= E_y^2 + E_z^2 \\ &= b^2 \end{aligned}$$

x-Impuls pro Volumen: $\frac{S_x}{c^2}=\frac{W}{c}$, $(\vec{S} \text{ ist der Poyntingvektor})$

$$\frac{\vec{p}}{V} = \frac{1}{c} \frac{\mathcal{E}}{V} \vec{n} \quad (\vec{n}: \text{Einheitsvektor in Ausbreitungsrichung})$$
$$c^2 \vec{p}^2 - \mathcal{E}^2 = 0$$

relativistische Energie- Impuls- Beziehung für masseloses Teilchen \Rightarrow Photon ist masselos, bewegt sich mit Lichtgeschwindigkeit

Poyntingvektor

$$\vec{S} = c\vec{E} \times \vec{B} \tag{4.8}$$

$$\frac{\vec{P}}{V} = \frac{\vec{S}}{c^2} \tag{4.9}$$

4.1.2 Wahrscheinlichkeitsinterpretation (für Spezialfall)

Wähleb,so dass für gegebenes Volumen V: Ein Photon pro Volumen, mit Energie $\hbar\omega$ vorhanden ist.

$$\begin{array}{rcl} \displaystyle \frac{\mathcal{E}}{V} & ! & \frac{\hbar\omega}{V} \\ \displaystyle & = & \overline{V} \\ \displaystyle & = & b^2 \\ \displaystyle & = & \vec{E}^2 \end{array}$$

 $\frac{\vec{E}^2(x,t)}{\hbar\omega}d^3x$: Wahrscheinlichkeit, ein Photon zur Zeit tam Ortxin Volumen d^3x anzutreffen.

Dies gilt in dieser Einfachheit nur für ebene monochromatische Wellen. (Für betrachtete Welle ist diese Wahrscheinlichkiet unabhängig von x und t; kontinuierlicher Photonenstrom; $\frac{\vec{E}^2}{\hbar\omega} \cdot V = 1$; $\frac{\vec{E}^2}{\hbar\omega}$: Wahrscheinlichkeitsdichte)

4.1.3 Komplexe Schreibweise

$$\phi(x,t) = E_y(x,t) - iE_x(x,t)$$

$$\phi^*(x,t)\phi(x,t) = \vec{E}^2(x,t)$$

$$= \frac{\hbar\omega}{V}$$

! Keine Standardnormierung

$$\int_{V} d^{3}x \phi^{*}(x)\phi(x) = \hbar\omega$$

 \vec{E}, ϕ : Energie-normierte Wahrscheinlichkeitsamplituden, Zähler messen Energiequanten (Wahrscheinlichkeitsdichte für Teilchen bei Feldgleichungen mit zwei Zeitableitungen etwas komplizierter). Der Detektor kann kollinieares Photon oder Photon mit $\omega \approx 0$ nicht auflösen.

$$\phi(x,t) = \sqrt{\frac{\hbar\omega}{V}} \exp\left(\imath kx - \imath \omega t\right)$$

bei beliebiger Ausbreitungsrichtung der Welle \vec{k}

$$\phi(\vec{r},t) = \sqrt{\frac{\hbar\omega}{V}} \exp\left(\imath (\vec{k}\vec{r} - \omega t)\right)$$

4.1.4 Impuls und Energieoperator

Es gilt

$$\vec{\nabla}\phi = \imath \vec{k}\phi \\ \frac{\partial}{\partial t}\phi = -\imath \omega \phi$$

4 Motivation der Schrödingergleichung

Erinnerung: Compton- Streuung

$$\vec{p} = \hbar \vec{k}$$

$$\Rightarrow \vec{P} = -i\hbar \vec{\nabla}$$

$$\hat{p}_x = -i\hbar \frac{\partial}{\partial x} \text{ Differential operator}$$

$$\vec{P}\phi = \hbar \vec{k}\phi$$

$$= \hat{\vec{p}}\phi$$

$$\mathcal{E} = \hbar\omega$$

$$\Rightarrow \hat{E} = i\hbar \frac{\partial}{\partial t}$$

$$\hat{E}\phi = \hbar\omega\phi$$

$$= \mathcal{E}\phi$$

Eine ebene Welle ist **Eigenvektor** der Operatorgleichungen

$$\vec{P}\phi = \vec{p}\phi$$

 $\hat{E}\phi = \mathcal{E}\phi$

mit den Eigenwerten \vec{p}, \mathcal{E} Energie
impulsbeziehung für Operatoren

$$(\hat{E}^2 - c^2 \hat{\vec{P}}^2)\phi = 0$$

Dies entspricht der Wellengleichung

$$\begin{aligned} (-\hbar^2 \frac{\partial^2}{\partial t^2} + c^2 \hbar^2 \triangle) \phi &= 0 \\ \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} &= \Delta \phi \end{aligned}$$

Für polarisierte Wellenpakete mit fester Ausbreitungsrichtung, sonst nutzen wir die Maxwellgleichungen! (Für eine monochromatische ebene Welle erscheint die Einführung von Operatoren etwas überflüssig. Sie ist aber extrem nützlich für kompliziertere Wellenfunktionen.)

4.2 Schrödinger-Gleichung

4.2.1 relativistisches Teilchen

masseloses Teilchen mit Spin 0

Wellenfunktion $\phi(\vec{r}, t)$ Wellengleichung

$$(\imath\hbar\frac{\partial}{\partial t})^2\phi = c^2(-\imath\hbar\vec{\nabla})^2\phi \text{ Klein-Gordon-Gleichung}$$
$$\hat{E}^2\phi = c^2\bar{p}^2\phi$$

freies Atom

Teilchen mit Masse

$$E^2 - c^2 \bar{p}^2 = (mc^2)^2$$

Wellengleichung

$$(\imath\hbar\frac{\partial}{\partial t})^2\phi = c^2(-\imath\hbar\vec{\bigtriangledown})^2\phi + c^4m^2\phi$$

 ϕ beschreibt hier wieder Teilchen ohne innere Freiheitsgrade, noch kein Spin! s=0 Die innere Struktur des Atoms ist nicht aufgelöst. Relativistische Quantenmechanik! z.B. π^{\pm} ; oder Ion am LHC.

4.2.2 Nichtrelativiste Näherung

$$\begin{split} |v| \ll c & c^2 \vec{p}^2 \ll m^2 c^4 \\ E^2 &= m^2 c^4 + c^2 \vec{P}^2 \\ E &= \sqrt{m^2 c^4 + c^2 \vec{P}^2} \\ &= \sqrt{m^2 c^4 (1 + \frac{c^2 \vec{P}^2}{c^4 m^2})} \\ &= m c^2 \sqrt{1 + \frac{\vec{P}^2}{c^2 m^2}} \\ &\approx m c^2 (1 + \frac{1}{2} \frac{\vec{P}^2}{c^2 m^2}) \\ E &= m c^2 + \frac{1}{2} \frac{\vec{P}^2}{m} \end{split}$$

Als Operatorgleichung (nichtrelativistische Wellengleichung)

$$i\hbar\frac{\partial}{\partial t}\phi = mc^2\phi + \frac{1}{2m}(-i\hbar\vec{\nabla})^2\phi \tag{4.10}$$

'Wurzel-Ziehen' geht auch für Operatoren (mit Komplikationen), Quadrieren \Rightarrow Klein-Gordon-Gleichung bis auf Korrekturen.

Die Ruhemasse ist immer nur ein konstanter Beitrag zur Energie; irrelevante Phase

$$\begin{aligned}
\phi &= ae^{-i\frac{mc^{2}}{\hbar}t}\psi \\
\frac{\partial}{\partial t}\phi &= -i\frac{mc^{2}}{\hbar}\phi + ae^{-i\frac{mc^{2}}{\hbar}t}\frac{\partial}{\partial t}\psi \\
i\hbar\frac{\partial}{\partial t}\phi &= mc^{2}\phi + ae^{-i\frac{mc^{2}}{\hbar}t}(i\hbar\frac{\partial}{\partial t})\psi \\
&= mc^{2}\phi + ae^{-i\frac{mc^{2}}{\hbar}t}\frac{1}{2m}(-i\hbar\vec{\nabla})^{2}\psi \\
\Rightarrow i\hbar\frac{\partial}{\partial t}\psi &= \frac{1}{2m}(-i\hbar\vec{\nabla})^{2}\psi \\
&= -\frac{\hbar^{2}}{2m}\Delta\psi \\
&i\hbar\frac{\partial}{\partial t}\psi = H\psi
\end{aligned}$$
(4.11)

Schrödinger- Gleichung H: Hamiltonoperator Für freies nichtrelativistisches Teilchen gilt: Normierung von ψ auf Teilchenwahrscheinlichkeit möglich: $a = \frac{1}{\sqrt{mc^2}}$

$$H = -\frac{\hbar^2}{2m} \Delta = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$$
(4.12)

Der Hamiltonoperator ist der Operator für die Energie, ausgedrückt durch den Impuls.

Verallgemeinert für Teilchen mit Wechselwirkung, Teilchen im äußeren Feld z.B. Elektron in statischem elektrischen Feld

$$E = \frac{\vec{p}^2}{2m} + V(\vec{r})$$

$$H = -\frac{\hbar^2}{2m} \bigtriangleup + V(\vec{r}) \ (\vec{r} \text{ entspricht dem Ortsoperator})$$

5 Einfache eindimensionale Probleme

- Wellenpaket
- Reflexion, Transmission an Schwelle
- Tunneln durch Schwelle

5.1 Stationäre Zustände

Eigenzustand zu \hat{H} mit Energi
eE

$$\hat{H}\psi_E(\vec{x}) = E\psi_E(\vec{x})$$

$$\imath\hbar\dot{\psi}(\vec{x},t) = E\psi(\vec{x},t)$$

$$\psi(\vec{x},t) = e^{\frac{-\imath E}{\hbar}t}\psi_E(\vec{x})$$

 $\psi^*\psi$ zeitunabhängig

5.2 Potentialtopf

$$V(x) = V_0 \Theta(|x| - \frac{L}{2}) -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi + V\psi = E\psi$$

Abbildung 5.1: Potentialtopf

Ansatz

$$\psi(x) = a e^{ikx}$$

$$\psi'(x) = ika e^{ikx}$$

$$\psi''(x) = -k^2 a e^{ikx}$$

$$= -k^2 \psi$$

5 Einfache eindimensionale Probleme

$$\begin{pmatrix} \frac{\hbar^2 k^2}{2m} \psi &= E\psi \quad \text{innen} \\ \left(\frac{\hbar^2 k^2}{2m} + V_0\right) \psi &= E\psi \quad \text{außen} \end{cases}$$
gleiches E!

$$E < V_0 \\ k = \pm \left(\frac{2mE}{\hbar^2}\right)^{\frac{1}{2}} \text{ innen} \\ k = \imath \left(\frac{2m(V_0 - E)}{\hbar^2}\right)^{\frac{1}{2}} \text{ außen}$$

allgemeine Lösung:

$$\begin{split} \psi &= b_s \psi_s + b_A \psi_A \\ \psi_S &= \begin{cases} \cos kx & \text{innen} \\ c_S \ e^{-\kappa |x|} & \text{außen} \end{cases} \\ \psi_A &= \begin{cases} \sin kx & \text{innen} \\ c_A \ e^{-\kappa x} & \text{außen rechts } x > \frac{L}{2} \\ -c_A \ e^{\kappa x} & \text{außen links } x < \frac{L}{2} \end{cases} \\ \hbar k &= \sqrt{2mE} \\ \hbar \kappa &= i\sqrt{2m(V_0 - E)} \end{split}$$

Stetigkeit: ψ und $\frac{\partial \psi}{\partial x}$ müssen stetig sein; sonst $\delta(x)$ von \triangle in Schrödingergleichung.

$$\psi_S: \cos \frac{L}{2}k = c_s e^{-\frac{L\kappa}{2}}$$
$$\cos -\frac{L}{2}k = c_s e^{-\frac{L\kappa}{2}} \text{ wie oben}$$
$$\psi'_S: -k\sin \frac{L}{2}k = -c_s \kappa e^{-\frac{L\kappa}{2}}$$
$$-k\sin -\frac{L}{2}k = -c_s \kappa e^{-\frac{L\kappa}{2}} \text{ wie oben}$$

Zwei Gleichungen für einen Unbekannte $c_S!$

$$\cos \frac{L}{2}k = c_S e^{-\frac{L\kappa}{2}}$$
$$\sin \frac{L}{2}k = c_S \frac{\kappa}{k} e^{-\frac{L\kappa}{2}}$$
$$= \frac{\kappa}{k} \cos \frac{L}{2}k$$

Es gibt nicht für jedes beliebige k und κ eine Lösung; k, κ durch E festgelegt \Rightarrow Es gibt nicht für jedes E eine Lösung.

Nur diskrete Werte von E erlaubt!

 \Rightarrow Diskrete Energie-Eigenzustände, diskrete Energiewerte

Im Experiment ist es nur möglich diese erlaubten Energiewerte zu messen! Die Wahrscheinlichkeit für verbotene Energiewerte ist null!

$$\cos \frac{L}{2}k = \frac{k}{\kappa}\sin \frac{L}{2}k$$
 Diese Gleichung legt die erlaubten Energiewerte fest!

einfaches Beispiel

Abbildung 5.2: stehende Welle im Potentialtopf

$$V_0 \rightarrow \infty$$

$$\Rightarrow \kappa \rightarrow \infty$$

$$\Rightarrow \frac{k}{\kappa} \rightarrow 0$$

$$\Rightarrow \cos \frac{L}{2}k = 0$$

(Für eine halbe Periode gilt: Die stehende Welle passt gerade in den Topf!)

$$\frac{Lk}{2} = (2n+1)\frac{\pi}{2}, n \in \mathbf{N} \text{ (einschließlich 0)}$$

$$k = \frac{(2n+1)\pi}{L}$$

$$= \frac{1}{\hbar}\sqrt{2mE}$$

$$2mE = \left(\frac{(2n+1)\pi\hbar}{L}\right)^{2}$$

$$E = \frac{\pi^{2}\hbar^{2}}{2mL^{2}}(2n+1)^{2}$$

⇒ ungerade Quadratzahlen ähnlich für ψ_A :

$$\sin \frac{Lk}{2} = 0$$
$$\frac{Lk}{2} = n\pi$$
$$k = \frac{2n\pi}{L}, n \in \mathbf{N}_{+}$$
$$= \frac{1}{\hbar}\sqrt{2mE}$$
$$2mE = \frac{\pi^{2}\hbar^{2}}{L^{2}}(2n)^{2}$$
$$E = \frac{\pi^{2}\hbar^{2}}{2mL^{2}}(2n)^{2}$$

Gesamtspektrum

$$E = \frac{\pi^2 \hbar^2}{2mL^2} n^2 , n \in \mathbf{N}_+$$
(5.1)

(5.2)

5 Einfache eindimensionale Probleme

 $L \to \infty$: kontinuier
liche Energieniveaus

5.3 Harmonischer Oszillator

Abbildung 5.3: Potential des harmonischen Oszillators (für kleine Auslenkungen)

$$-\frac{\hbar^2}{2m}\psi'' + \frac{m\omega^2}{2}x^2\psi = E\psi$$

Dies entspricht einer Differentialgleichung zweiter Ordnung. Zu ermitteln sind die Lösungen und die diskreten Eigenwerte. (Diese Fragen können beantwortet werden mit Standardmethoden zur Lösung von Differentialgleichungen. Hermite- Polynome)

Anfangswertproblem

$$\psi(x=0) = \psi_0$$

$$\psi'(x=0) = 0$$

hat **lokale** Lösungen für beliebiges E

Normierbarkeit \Rightarrow Diskretes Spektrum für E

Abbildung 5.4: Wellenfunktionen im harmonischen Potential

5.4 Algebraische Methode, Auf- und Asteigeoperatoren

(Verallgemeinerung auf viele Probleme möglich)

$$P = -i\hbar \frac{\partial}{\partial x}$$
(Ableiten)
$$Q = x$$
(mit x-Multiplizieren)

Multiplikation von Operatoren

PQ: Hintereinandereausführen der Operatoren (bisher schon verwendet um z.B. P^2 zu definieren)

$$PQ \psi = -i\hbar \frac{\partial}{\partial x} (x\psi)$$
$$= -i\hbar \psi - i\hbar x \frac{\partial}{\partial x} \psi$$
$$PQ = -i\hbar - i\hbar x \frac{\partial}{\partial x}$$
$$QP \psi = x(-i\hbar \frac{\partial}{\partial x} \psi)$$
$$QP = -i\hbar x \frac{\partial}{\partial x}$$

Multiplikation und Addition von Operatoren ist definiert!

$$[P,Q] \equiv PQ - QP$$
$$[P,Q] = -i\hbar$$

Auf- und Absteige-Operatoren

Definiere folgende Linearkombinationen

Absteige
operator \boldsymbol{a}

$$a = \frac{1}{\sqrt{2\hbar}} (\sqrt{m\omega}Q + \frac{\imath}{\sqrt{m\omega}}P)$$

Aufsteige
operator a^{\dagger}

$$a^{\dagger} = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega} Q - \frac{i}{\sqrt{m\omega}} P \right)$$

Produkte:

$$aa^{\dagger} = \frac{1}{2\hbar} (m\omega Q^2 - iQP + iPQ + \frac{1}{m\omega}P^2)$$

$$= \frac{1}{2\hbar} (m\omega Q^2 + \frac{1}{m\omega}P^2 + i[P,Q])$$

$$= \frac{1}{2\hbar} (m\omega Q^2 + \frac{1}{m\omega}P^2 + \hbar)$$

$$a^{\dagger}a = \frac{1}{2\hbar} (m\omega Q^2 + \frac{1}{m\omega}P^2 - i[P,Q])$$

$$= \frac{1}{2\hbar} (m\omega Q^2 + \frac{1}{m\omega}P^2 - \hbar)$$

$$[a, a^{\dagger}] = \frac{i}{\hbar} [P,Q]$$

$$= 1$$

$$H = \frac{1}{2m}P^2 + \frac{m\omega^2}{2}Q^2$$

$$\hbar\omega a^{\dagger}a = \frac{m\omega^2}{2}Q^2 + \frac{1}{2m}P^2 - \frac{1}{2}\hbar\omega$$

$$\Rightarrow H = \hbar\omega \left(a^{\dagger}a + \frac{1}{2}\right)$$

5.5 Absteigen im Spektrum

Man betrachte den Eigenwert E_λ mit der Eigenfunktion φ_λ

$$H \varphi_{\lambda} = E_{\lambda} \varphi_{\lambda}$$

(Hier wird nur die Existenz einer normierten Lösung der Differentialgleichung für geeignetes E_{λ} (nicht für beliebiges E) vorausgesetzt; keine weiteren Details)

Zu zeigen ist:

entweder	$a\varphi_{\lambda} = 0$	(Null-Funktion!)
oder	$\psi = a\varphi_{\lambda}$	ist ebenfalls eine Lösung der DGL
mit	$H\psi = (E_{\lambda} - \hbar\omega)\psi$	

Beweis

$$H\psi = \hbar\omega \left(a^{\dagger}a + \frac{1}{2}\right)a\varphi_{\lambda}$$

$$= \hbar\omega \left(a^{\dagger}aa + \frac{1}{2}a\right)\varphi_{\lambda}$$

$$= \hbar\omega \left(aa^{\dagger}a + [a^{\dagger}, a]a + \frac{1}{2}a\right)\varphi_{\lambda}$$

$$= \hbar\omega \left(aa^{\dagger}a - \frac{1}{2}a\right)\varphi_{\lambda}$$

$$= a\hbar\omega \left(a^{\dagger}a - \frac{1}{2}\right)\varphi_{\lambda}$$

$$= a (H - \hbar\omega)\varphi_{\lambda}$$

$$= a (E_{\lambda} - \hbar\omega)\varphi_{\lambda}$$

sei $a\varphi_\lambda \neq 0,$ dann

$$H\psi = (E_{\lambda} - \hbar\omega)\psi$$

 $\Rightarrow a\varphi_{\lambda}$ ist ebenfalls Eigenvektor zuH,mit Eigenwert $E_{\lambda}-\hbar\omega.$ q.e.d. Ebenso gilt: Falls $a^{2}\varphi_{\lambda}\neq 0,$ neuer Eigenzustand

 $H(a^2\varphi_{\lambda}) = (E_{\lambda} - 2\hbar\omega)(a^2\varphi_{\lambda})$ äquidistantes Spektrum

Bis jetzt sind aber noch mehrere Serien möglich!

$$a\varphi_{\lambda}$$
 ist normierbar, falls $E_{\lambda} > \frac{1}{2}\hbar\omega$

Beweis

$$\int dx (a\varphi_{\lambda})^{*} (a\varphi_{\lambda}) = \langle a\varphi_{\lambda} | a\varphi_{\lambda} \rangle ; \left(a = \alpha x + \beta \frac{\partial}{\partial x}, a^{\dagger} = \alpha x - \beta \frac{\partial}{\partial x} \right)$$
$$= \int dx \ a\varphi_{\lambda}^{*} a\varphi_{\lambda}$$
$$= \int dx \ \varphi_{\lambda}^{*} a^{\dagger} a\varphi_{\lambda} \text{ partielle Integration}$$
$$= \int dx \ \varphi_{\lambda} \left(\frac{H}{\hbar \omega} - \frac{1}{2} \right) \varphi_{\lambda}$$
$$= \frac{1}{\hbar \omega} \int dx \ \varphi_{\lambda} \left(E_{\lambda} - \frac{1}{2} \hbar \omega \right) \varphi_{\lambda}$$

Dies ist endlich und positiv für $E_{\lambda} > \frac{1}{2}\hbar\omega$ Die Energie des Zustandes $a\varphi_{\lambda}$ ist: $E_{\lambda} - \hbar\omega > -\frac{1}{2}\hbar\omega$

Für den Augenblick: normierbare, aber nicht normierte Eigenzustände von ${\cal H}.$ Normierung kann nachgetragen werden.

Nebenrechnung

$$\langle a\psi_1|\psi_2\rangle = \langle \psi_1|a^{\dagger}\psi_2\rangle$$

für beliebige $\psi_1, \ \psi_2 \ (a^{\dagger}$ ist hermitesch konjugiert zu a)

$$\int dx \ (a\psi)^* \psi = \int dx \ \left[\frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega}x + \frac{\imath}{\sqrt{m\omega}} \left(-\imath\hbar \frac{\partial}{\partial x} \right) \right) \psi \right]^* \psi$$
$$= \int dx \ \psi^* \left[\frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega}x - \frac{\imath}{\sqrt{m\omega}} \left(-\imath\hbar \frac{\partial}{\partial x} \right) \right) \right] \psi$$
$$= \int dx \ \psi^* a^{\dagger} \psi$$

a: Spektrum generierender Operator

Absteigeoperator:

Wie weit gehts nach unten?

Abbildung 5.5: Absteigeoperator

bis $a^p \varphi_{\lambda} = 0$

niederster Eigenwert für $E: E_0$, was ist E_0 ? Es muss stets gelten:

$$E > -\frac{1}{2}\hbar\omega$$
 für Normierung
 $E_0 > -\frac{1}{2}\hbar\omega$

Für $E>\frac{1}{2}\hbar\omega$ gibt es noch einen tiefer liegenden Zustand

$$E_0 \le \frac{1}{2}\hbar\omega$$

5.6 Energie des Grundzustands

Sei n_0 so, dass gelte:

$$E_{\lambda} - n_0 \hbar \omega = E_0$$

$$E_{\lambda} - (n_0 + 1) \hbar \omega \leq -\frac{1}{2} \hbar \omega$$

 $(E_0$ letzter positiver Eigenwert in der Serie) Es gilt:

$$\begin{aligned} a\tilde{\varphi}_0 &= 0\\ H\tilde{\varphi}_0 &= \hbar\omega \left(a^{\dagger}a + \frac{1}{2}\right)\tilde{\varphi}_0\\ &= \frac{1}{2}\hbar\omega\tilde{\varphi}_0\\ \Rightarrow E_0 &= \frac{1}{2}\hbar\omega \end{aligned}$$

Nur Serien mit $E_n = (n + \frac{1}{2})\hbar\omega, n \in \mathbf{N}$

Damit ist das Spektrum möglicher Energie-Eigenwerte bekannt, ohne die Differentialgleichung explizit zu lösen.

Entartung: Es gibt zu gegebenem E_n mehrere Lösungen.

Abbildung 5.6: Entartung der Energien

Nehme an, es gäbe mehrere $\varphi_n^{(m)}$ mit

Entartung

$$\begin{split} H\varphi_n^{(m)} &= \left(n+\frac{1}{2}\right)\hbar\omega\varphi_n^{(m)}\\ \langle \varphi_n^{(m_1)}-\varphi_n^{(m_2)}|\varphi_n^{(m_1)}-\varphi_n^{(m_2)}\rangle &> 0, \text{ für } m_1\neq m_2 \end{split}$$

m ist die Seriennummer/ Entartungszahl

alle $\varphi_n^{(m)}$ Eigenzustände zu $H \Rightarrow \varphi_n^{(m)}$ Eigenzustand zu

Besetz ung szahl operator

$$\hat{n} = a^{\dagger}a \tag{5.3}$$
$$\hat{n}\varphi_n^{(m)} = n\varphi_n^{(m)} \tag{5.4}$$

Betrachte Zustände mit $n \geq 1$:

$$\tilde{\varphi}_{n-1}^{(m)} = a\varphi_n^{(m)}$$

Die Energie ist dabei: $(n - \frac{1}{2})\hbar\omega$, die Besetzungszahl: n - 1Sind $\tilde{\varphi}_{n-1}^{(m_1)}$ und $\tilde{\varphi}_{n-1}^{(m_2)}$ verschieden, falls $\varphi_n^{(m_1)}$ und $\varphi_n^{(m_2)}$ verschieden sind? Ja! Beweis:

$$\begin{split} \langle \tilde{\varphi}_{n-1}^{(m_1)} - \tilde{\varphi}_{n-1}^{(m_2)} | \tilde{\varphi}_{n-1}^{(m_1)} - \tilde{\varphi}_{n-1}^{(m_2)} \rangle &= \langle a \varphi_n^{(m_1)} - a \varphi_n^{(m_2)} | a \varphi_n^{(m_1)} - a \varphi_n^{(m_2)} \rangle \\ &= \langle \varphi_n^{(m_1)} - \varphi_n^{(m_2)} | a^{\dagger} a \varphi_n^{(m_1)} - a^{\dagger} a \varphi_n^{(m_2)} \rangle \\ &= n \langle \varphi_n^{(m_1)} - \varphi_n^{(m_2)} | \varphi_n^{(m_1)} - \varphi_n^{(m_2)} \rangle \\ &> 0 \text{ falls } m_1 \neq m_2 \end{split}$$

 \Rightarrow Der Entartungsgrad kann für kleinere *n* nur zunehmen! Aus obigem folgt:

Es kann keine Entartung geben, falls der Grundzustand eindeutig ist.

5.7 Grundzustand

Eindeutiger Grundzustand φ_0 :

Bis hierher war alles rein algebraisch lösbar, der letzte Schritt gilt nur für unser spezielles System (es gibt auch entartete Systeme!)

Beweis

$$a\varphi_0 = 0$$

$$\left[m\omega x + i\left(-i\hbar\frac{\partial}{\partial x}\right)\right]\varphi_0 = 0$$

$$\left(m\omega x + \hbar\frac{\partial}{\partial x}\right)\varphi_0 = 0$$

$$\varphi'_0 + \frac{m\omega}{\hbar}x\varphi_0 = 0$$

Diese Lösung ist eindeutig bis auf eine Konstante (Normierung).

$$\begin{aligned} \varphi_0(x) &= C_0 \ e^{-\frac{m\omega}{2\hbar}x^2} \\ \varphi_0'(x) &= -C_0 \ \frac{m\omega}{2\hbar} 2x \ e^{-\frac{m\omega}{2\hbar}x^2} \\ &= -\frac{m\omega}{\hbar} x \varphi_0(x) \end{aligned}$$

 $\varphi_0(x)$ ist eine Gaussfunktion (damit sind $\Delta x^2,\ \Delta p^2$ bekannt!) C_0 ist bekannt durch die Normierung

$$\langle \varphi_0 | \varphi_0 \rangle = 1 \tag{5.5}$$

$$C_0^2 = \sqrt{\frac{\pi}{\frac{m\omega}{\hbar}}} = 1 \tag{5.6}$$

$$C_0^2 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{2}} \tag{5.7}$$

$$C_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \tag{5.8}$$

Grundzust and swellen funktion

$$\varphi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2}$$
(5.9)

Unschärfe

Breiten $\Delta x, \Delta p$ (können auch algebraisch berechnet werden)

$$\begin{aligned} \langle x \rangle &= 0 \quad , \quad \langle p \rangle &= 0 \\ \Delta x^2 &= \langle x^2 \rangle \quad , \quad \Delta p^2 &= \langle p^2 \rangle \end{aligned}$$

 $\psi = C_0 \ e^{-\frac{\alpha}{2}x^2}$

$$\int dx \ e^{-\frac{\alpha}{2}x^2} e^{-\frac{\alpha}{2}x^2} = \int_{-\infty}^{\infty} dx \ e^{-\alpha x^2}$$

$$= \sqrt{\frac{\pi}{2}}$$

$$\langle x^2 \rangle = C_0^2 \int dx \ e^{-\frac{\alpha}{2}x^2} x^2 e^{-\frac{\alpha}{2}x^2}$$

$$= C_0^2 \int dx \ x^2 e^{-\alpha x^2}$$

$$= C_0^2 \left(-\frac{\partial}{\partial\alpha}\right) \int dx \ e^{-\alpha x^2}$$

$$= -C_0^2 \frac{\partial}{\partial\alpha} \left(\frac{\sqrt{pi}}{\sqrt{\alpha}}\right)$$

$$= +\frac{1}{2} \sqrt{\frac{\pi}{\alpha^3}}$$
setze $C_0^2 = \sqrt{\frac{\alpha}{\pi}}$

$$\langle x^2 \rangle = \frac{1}{2\alpha}$$

$$= -\frac{\hbar}{2m\omega}$$

$$\langle p^2 \rangle = -\hbar^2 C_0^2 \int dx \ e^{-\frac{\alpha}{2}x^2} \frac{\partial^2}{\partial x^2} e^{-\frac{\alpha}{2}x^2}$$

$$\frac{\partial^2}{\partial x^2} e^{-\frac{\alpha}{2}x^2} = \frac{\partial}{\partial x} \left(e^{-\frac{\alpha}{2}x^2} \cdot (-\alpha x)\right)$$

$$= -\alpha e^{-\frac{\alpha}{2}x^2} + \alpha^2 x^2 e^{-\frac{\alpha}{2}x^2}$$

$$\langle p^2 \rangle = -\hbar^2 (-\alpha + \alpha^2 \langle x^2 \rangle)$$

$$= -\hbar^2 \left(-\frac{m\omega}{\hbar}\right) - \hbar^2 \frac{m^2 \omega^2}{\hbar^2} \frac{\hbar}{2m\omega}$$

$$= m\omega \hbar - \frac{m\omega \hbar}{2}$$

$$\Delta x^2 = \frac{\hbar}{2m\omega}$$
$$\Delta p^2 = \frac{m\omega\hbar}{2}$$

Grundzustandsenergie

$$\langle H \rangle = \frac{1}{2m} \langle p^2 \rangle + \frac{m\omega^2}{2} \langle x^2 \rangle$$

$$= \frac{1}{2m} \Delta p^2 + \frac{m\omega^2}{2} \Delta x^2$$

$$= \frac{\omega\hbar}{4} + \frac{\omega\hbar}{4}$$

$$= \frac{1}{2}\hbar\omega$$

$$\Delta x^2 \Delta p^2 = \frac{\hbar^2}{4}$$

$$(5.10)$$

$$\Delta x \Delta p = \frac{\hbar}{2} \tag{5.11}$$

Minimale Unschärfe!

Casimier-Effekt

 $\Delta x > 0, \ \Delta p > 0$ und verantwortlich für die Grundezustandsenergie $E_0 = \frac{1}{2} \hbar \omega$
 $E_0 \neq 0$ typisch für die Quantenmechnik Messung durch Änderung des Potentials (
 E_0 hängt von ω ab) Energie
änderung entspricht Kraft

Das Vakuum ist nicht leer \rightarrow Qua	antenfeld theorie.
---	--------------------

Zwei neutrale Platten, Grundzustandsenergie hängt von L ab \Rightarrow Casimier-Kraft.

Abbildung 5.7: Versuchsanordnung Casimier-Effekt

Klassischer Grenzfall

$$E \gg \hbar \omega$$
 (5.12)

$$E = (n + \frac{1}{2})\hbar\omega; \ n \gg 1$$
(5.13)

Die Quanteneffekte sind von der Größenordnung von $\mathcal{E}.$ Diskretheit des Spektrums $\sim \hbar \omega$ Grundzustandsenergie $\sim \frac{1}{2} \hbar \omega$ Unschärfe $\frac{\Delta p^2}{2m} \sim \frac{1}{4} \hbar \omega$

5.8 Spektrum, angeregte Zustände

Eigenwerte $E_n=\hbar\omega(n+\frac{1}{2})$, $n\in{\bf N}$ zu je
dem E_n genau eine Eigenfunktion. (eine Lösung)

Konstruktion der Eigenfunktionen, Aufsteigeoperation

$$\varphi_n = C_n (a^{\dagger})^n \varphi_0; \qquad (5.14)$$

$$\varphi_{n+1} = \frac{C_{n+1}}{C_n} a^{\dagger} \varphi_n \tag{5.15}$$

 φ_n und Eigenfunktionen von \hat{n} mit Besetzungszahl n.

induktiver Beweis: zu zeigen: wenn $H\varphi_n=E_n\varphi_n$

$$\Rightarrow H\varphi_{n+1} = (E_n + \hbar\omega)\varphi_{n+1}$$

Beweis:

$$\begin{split} \hbar\omega \left(aa^{\dagger} + \frac{1}{2}\right) \frac{C_{n+1}}{C_n} a^{\dagger}\varphi_n &= \hbar\omega \left(a^{\dagger}a^{\dagger}a + a^{\dagger}[a,a^{\dagger}] + \frac{1}{2}a^{\dagger}\right) \frac{C_{n+1}}{C_n}\varphi_n \\ &= \hbar \frac{C_{n+1}}{C_n} a^{\dagger} \left(a^{\dagger}a + \frac{3}{2}\right)\varphi_n \\ &= \left(n + \frac{3}{2}\right) \hbar\omega \frac{C_{n+1}}{C_n} a^{\dagger}\varphi_n \\ &= \left(n + \frac{3}{2}\right) \hbar\omega\varphi_{n+1} \\ &= (E_n + \hbar\omega) \varphi_{n+1} \quad \text{q.e.d.} \end{split}$$

Normierung

$$\begin{split} \langle \varphi_{n} | \varphi_{n} \rangle &= 1 \\ \langle \varphi_{n} | \varphi_{n} \rangle &= C_{n}^{2} \langle a^{\dagger n} \varphi_{0} | a^{\dagger n} \varphi_{0} \rangle \\ &= \frac{C_{n}^{2}}{C_{n-1}^{2}} \langle a^{\dagger} \varphi_{n-1} | a^{\dagger} \varphi_{n-1} \rangle \\ &= \frac{C_{n}^{2}}{C_{n-1}^{2}} \langle \varphi_{n-1} | aa^{\dagger} \varphi_{n-1} \rangle \\ &= \frac{C_{n}^{2}}{C_{n-1}^{2}} \langle \varphi_{n-1} | (n-1+1) \varphi_{n-1} \rangle \\ &= n \frac{C_{n}^{2}}{C_{n-1}^{2}} \langle \varphi_{n-1} | \varphi_{n-1} \rangle \\ &\Rightarrow 1 &= n \frac{C_{n}^{2}}{C_{n-1}^{2}} \\ C_{n}^{2} &= \frac{1}{n} C_{n-1}^{2} \\ C_{n} &= \frac{1}{\sqrt{n}} C_{n-1} \\ C_{n} &= \frac{1}{\sqrt{n}} C_{n} \\ C_{n} &= \frac{1}{\sqrt{n}} C_{0} \end{split}$$

Aus

$$\begin{aligned} \varphi_0(x) &= \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2} \\ \varphi_n(x) &= \frac{1}{\sqrt{n!}} (a^{\dagger})^n \varphi_0(x) \end{aligned}$$

Die $\varphi_n(x)$ können explizit konstruiert werden: Hermite - Polynome

5.9 Besetzungszahl-Darstellung

 $|n\rangle$ (entspricht $\varphi_n(x)$), $n=0,1,2,\ldots$ $\hat{n}|n\rangle=n|n\rangle$

5 Einfache eindimensionale Probleme

Eigenzustände zum Besetzungszahl-Operator

$$\hat{H}|n\rangle = \left(n + \frac{1}{2}\right)\hbar\omega|n\rangle$$

$$\langle n|n\rangle = 1 \text{ Normierung}$$

$$= \int dx \ \varphi_n^*(x)\varphi_n(x))$$

$$|n\rangle = \frac{1}{\sqrt{n!}}(a^{\dagger})^n|0\rangle$$

$$\langle n| = \frac{1}{\sqrt{n!}}\langle 0|a^n$$

Orthogonalit "at

$$\langle n|m\rangle = \delta_{nm}$$

zu beweisen

 $\langle 0|a^n(a^{\dagger})^m|0
angle=0$ für $n\neq m$

Beispiel

allgemein für hermitesche Operatoren:

Die Eigenfunktionen zu **verschiedenen** Eigenwerten sind orthogonal.

 Sei

$$\begin{aligned} A|\psi_m\rangle &= \lambda_m |\psi_m\rangle;\\ A|\psi_n\rangle &= \lambda_n |\psi_n\rangle; \text{ Es gelte: } A^{\dagger} = A\\ \lambda_m \neq \lambda_n &\Rightarrow \langle \psi_m |\psi_n\rangle = 0 \end{aligned}$$

benutze:

$$\begin{aligned} \langle \psi_m | A &= \lambda_m \langle \psi_m | \\ \mathrm{da} \ (A | \psi_m \rangle)^\dagger &= \langle \psi_m | A^\dagger \\ &= \langle \psi_m | A \\ &= (\lambda_m | \psi_m \rangle)^\dagger \\ &= \lambda_m^* \langle \psi_m | \\ &= \lambda_m \langle \psi_m | \end{aligned}$$

Beweis

$$\begin{split} \langle \psi_m | A | \psi_n \rangle &= \lambda_n \langle \psi_m | \psi_n \rangle \\ &= \lambda_m \langle \psi_m | \psi_n \rangle \\ 0 &= (\lambda_m - \lambda_n) \langle \psi_m | \psi_n \rangle \\ \Rightarrow \langle \psi_m | \psi_n \rangle &= 0 \end{split}$$

Molekül- Schwingungen

lineare Entwicklung

harmonisches Potential $V \sim x^2$ \Rightarrow linearer Energieabstand Der Übergang zwischen Energieniveaus erfolgt durch das Abstrahlen von Photonen mit der Frequenz $\omega, \Delta E = \hbar \omega_M, 2\hbar \omega_M \dots$

Es sind scharfe Linien im Molekülspektrum zu beobachten!

5.10 Funktionenraum

für n = 0, ..., N - 1 mit N endlich $|n\rangle$ bilden eine Orthonormalbasis für N- dimensionalen Vektorraum. Raum aller Funktionen f(x), die als Linearkombination

$$f(x) = \sum_{n=0}^{N-1} \alpha_n \varphi_n(x)$$
(5.16)

geschrieben werden können; $\alpha_n \in \mathbf{C}$

Was passiert für $N \to \infty$?

 $\varphi_n(x)$ und ON-Basis für den Raum der quadratintegrablen Funktionen in einer Dimension

$$\int dx f^*(x) f(x) = c, \ c > 0$$
$$\Rightarrow f(x) = \sum_{n=0}^{\infty} \alpha_n \varphi_n(x)$$

Jede quadratintegrable Funktion kann als Linearkombination von $C_n(x)$ geschrieben werden. $\varphi_n(x)$: vollständiges Funktionensystem!

5 Einfache eindimensionale Probleme

Dies kann man mit den Kugelflächenfunktionen vergleichen:

$$f(\theta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \alpha_{lm} Y_{lm}(\theta,\varphi)$$

Hermitesche Polynome Orthogonalitätsrelationen etc

5.11 Leiteroperatoren im Zwei-Zustands-System

$$[a, a^{\dagger}] = 1 \Rightarrow \text{Leiter-Eigenschaft}$$

$$\hat{n} = a^{\dagger}a$$

$$\hat{n}\psi_n = n\psi_n$$

$$\Rightarrow$$

$$\hat{n}(a\psi_n) = (n-1)(a\psi_n) \text{ oder } a\psi_n = 0$$

Beweis:

$$\begin{aligned} a^{\dagger}aa\psi_n &= [a^{\dagger}, a]a\psi_n + aa^{\dagger}a\psi_n \\ &= -a\psi_n + an\psi_n \text{ q.e.d} \end{aligned}$$

Zwei- Zustands- System:

$$a = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$a^{\dagger} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$a^{\dagger}a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$$

z.B. für $\hat{H}\sim \hat{S}_z:$ äquidistantes Spektrum

$$\hat{S}_z = \hbar \left(a^{\dagger} a - \frac{1}{2} \right)$$

Warum ist a keine Observable?

Die Eigenwerte von a sind reell: $\lambda = 0$, sie haben nur einen Eigenvektor: $\psi = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Mittelwert:

a

a

$$\begin{aligned} \langle \psi | a | \psi \rangle &= (\psi_1^*, \psi_2^*) \begin{pmatrix} 0 \\ \psi_1 \end{pmatrix} \\ &= \psi_2^* \psi_1 \end{aligned}$$

nicht notwendig reell!

6 Bewegung im Zentralpotential, Drehimpuls

6.1 Schrödinger Gleichung für isotrope Systeme

Kugelkoordinaten

$$V(\vec{r}) = V(r), r = |\vec{r}|$$

$$H = -\frac{\hbar^2}{2m}\Delta + V(r)$$

$$\triangle = \frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + \frac{1}{r^2}\frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\varphi^2}$$

$$= \frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} + \frac{1}{r^2}\tilde{\Delta}$$

$$= \Delta_r + \frac{1}{r^2}\tilde{\Delta}$$

stationäre Schrödingergleichung: $H\psi=E\psi$

 ${\bf Produktansatz}$ für Eigenfunktion zuH (nicht alle Eigenfunktionen haben diese Form!). Linerakombination.

$$\psi(\vec{r}) = \psi_r(r)Y(\Theta,\varphi)$$

$$\begin{pmatrix} -\frac{\hbar^2}{2m}(\triangle_r + \frac{1}{r^2}\tilde{\triangle}) + V(r) \end{pmatrix} \psi_r(r)Y(\Theta,\varphi) &= \left(-\frac{\hbar^2}{2m}\,\triangle_r + V(r)\right)\psi_r(r)Y(\Theta,\varphi) - \frac{\hbar^2}{2mr^2}\psi_r(r)\tilde{\triangle}Y(\Theta,\varphi) \\ &= E\psi_r(r)Y(\Theta,\varphi)$$

 $\Rightarrow Y(\Theta, \varphi)$ muss eine Eigenfunktion zu $\tilde{\Delta}$ sein.

$$\tilde{\bigtriangleup} Y_l(\Theta, \varphi) = a_l Y_l(\Theta, \varphi)$$
; Eigenwert a_l

 \Rightarrow Differential gleichung für $\psi_r(r)$

$$\left(-\frac{\hbar^2}{2m}\left(\triangle_r + \frac{a_l}{r^2}\right) + V(r)\right)\psi_r(r) = E\psi_r(r)$$

Zwei Schritte

- 1) Eigenwerte und Eigenfunktionen zu $\tilde{\bigtriangleup}$
- 2) Lösen der Radialgleichung
- * Beitrag $\sim a_l$: Drehimpulsbeitrag

* zu zeigen:

$$Y_l \rightarrow Y_{lm}(\theta, \varphi)$$
: Kugelfunktionen
 $a_l = -l(l+1)$

6.2 Drehimpulsoperator

Rotations symmetrisches Potential: klassische Mechanik \Rightarrow erhaltener Drehimpuls

$$l = \vec{r} \times \vec{p}$$

$$l_i = \sum_{jk} \epsilon_{ijk} r_j p_k$$

$$\epsilon_{123} = 1$$

6 Bewegung im Zentralpotential, Drehimpuls

Quantenmechanik Drehimpul
soperator : $\vec{L}=\vec{Q}\times\vec{P}$

$$L_i = \sum_{jk} \epsilon_{ijk} Q_j P_k$$

(Keine Probleme mit Ordnung von Q_j und P_k da $[Q_j, P_k] = 0$ für $j \neq k, L_i^{\dagger} = L_i$.

Kommutator für den Drehimpuls

$$[L_i, L_j] = \imath \hbar \sum_k \epsilon_{ijk} L_k$$

Gruppentheorie, Lie Gruppen Kommutatorrelation für Generatoren der Drehgruppe S0(3)

Beweis R.S.:

$$L_{k} = \sum_{mn} \epsilon_{kmn} Q_{m} P_{n}$$
$$\sum_{k} \epsilon_{ijk} L_{k} = \sum_{k} \underbrace{\epsilon_{ijk} \epsilon_{mnk}}_{\delta_{im} \delta_{jn} - \delta_{in} \delta_{jm}} Q_{m} P_{n}$$
$$= Q_{i} P_{j} - Q_{j} P_{i}$$

zu zeigen:

$$[L_i, L_j] = i\hbar(Q_iP_j - Q_jP_i)$$

Rechnung

$$L_{i}L_{j} - L_{j}L_{i} = \sum_{k'k} \epsilon_{ik'k}Q_{k'}P_{k} \cdot \sum_{l'l} \epsilon_{jl'l}Q_{l'}P_{l} - \sum_{l'l} \epsilon_{jl'l}Q_{l'}P_{l} \cdot \sum_{k'k} \epsilon_{ik'k}Q_{k'}P_{k}$$
$$= \sum_{k'kl'l} \epsilon_{ik'k}\epsilon_{jl'l}(Q_{k'}P_{k}Q_{l'}P_{l} - Q_{l'}P_{l}Q_{k'}P_{k})$$

benutze

$$\begin{split} [P_i,Q_j] &= -\imath\hbar\delta_{ij} \\ P_iQ_j &= Q_jP_i - \imath\hbar\delta_{ij} \\ Q_{k'}P_kQ_{l'}P_l - Q_{l'}P_lQ_{k'}P_k &= Q_{k'}Q_{l'}P_kP_l - Q_{l'}Q_{k'}P_lP_k - \imath\hbar Q_{k'}\delta_{kl'}P_l + \imath\hbar Q_{l'}\delta_{lk'}P_k \\ [L_i,L_j] &= \imath\hbar\sum_{k'kl'l}\epsilon_{ik'k}\epsilon_{jl'l}(\delta_{lk'}Q_{l'}P_k - \delta_{kl'}Q_{k'}P_l) \\ &= \imath\hbar\left(\sum_{kl'l}\epsilon_{ilk}\epsilon_{jl'l}Q_{l'}P_k - \sum_{kk'l}\epsilon_{ik'k}\epsilon_{jkl}Q_{k'}P_l\right) \\ \sum_k\epsilon_{ijk}\epsilon_{mnk} &= \delta_{im}\delta_{jn} - \delta_{in}\delta_{jm} \end{split}$$

$$\begin{split} [L_i, L_j] &= \imath \hbar \sum_{kk'l} \epsilon_{ik'k} \epsilon_{jlk} Q_{k'} P_l - \imath \hbar \sum_{kl'l} \epsilon_{ikl} \epsilon_{jl'l} Q_{l'} P_k \\ &= \imath \hbar \sum_{k'l} \left(\delta_{ij} \delta_{k'l} - \delta_{il} \delta_{k'j} \right) Q_{k'} P_l - \imath \hbar \sum_{kl'} \left(\delta_{ij} \delta_{kl'} - \delta_{il'} \delta_{kj} \right) Q_{l'} P_k \\ &= \imath \hbar \sum_{kl} \delta_{ij} \delta_{kl} (Q_k P_l - Q_l P_k) + \imath \hbar \sum_{kl} \delta_{il} \delta_{kj} (Q_l P_k - Q_k P_l) \\ &= \imath \hbar (Q_i P_j - Q_j P_i) \\ &= \imath \hbar \sum_k \epsilon_{ijl} L_k \end{split}$$

q.e.d.

Wiederholung Kommutatorrelationen

weitere Kommutatorrelationen

$$\begin{split} & [L_i, P_j] = i\hbar \sum_k \epsilon_{ijk} P_k \\ & [L_i, Q_j] = i\hbar \sum_k \epsilon_{ijk} Q_k \\ & [L_i, L_j] = i\hbar \sum_k \epsilon_{ijk} L_k \\ & [L_i, V_j] = i\hbar \sum_k \epsilon_{ijk} V_k \text{ alle Vektoren } \vec{V} \text{ werden gleich gedreht} \end{split}$$

Skalare: $\vec{P^2}, \vec{Q^2}, \vec{L^2}, S$

$$[L_i, S] = 0$$

(Skalare werden nicht gedreht!) explizit für $\vec{L}^2 = \sum_k L_k L_k$

$$\begin{bmatrix} L_i, \vec{L}^2 \end{bmatrix} = \sum_k \left(L_i L_k L_k - L_k L_k L_i \right)$$

$$= \sum_k \left(L_k L_i L_k + \left[L_i, L_k \right] L_k - L_k L_i L_k - L_k \left[L_k, L_i \right] \right)$$

$$= \sum_k \left(i\hbar \sum_{k'} \epsilon_{ikk'} L_{k'} L_k - L_k i\hbar \sum_{k'} \epsilon_{kik'} L_{k'} \right)$$

$$= i\hbar \sum_k \sum_{k'} \epsilon_{ikk'} \left(L_{k'} L_k + L_k L_{k'} \right)$$

$$= 0$$

q.e.d.

Zentralpotential

$$\begin{bmatrix} \vec{L}, V(|Q|) \end{bmatrix} = 0$$

$$\begin{bmatrix} \vec{L}, H \end{bmatrix} = 0$$
 (Drehimpulserhaltung)

6.3 Erhaltene Größen

$$[A,H] \quad = \quad 0 \; \Rightarrow \; \frac{d}{dt} \langle A \rangle = 0$$

Für jeden Zustand $\psi(t),$ der der Schrödingergleichung genügt:

$$\begin{split} \hbar \frac{d}{dt} \psi &= H\psi \\ \frac{d}{dt} \langle A \rangle &= \frac{d}{dt} \langle \psi | A | \psi \rangle \\ &= \langle \frac{d\psi}{dt} | A | \psi \rangle + \langle \psi | A | \frac{d\psi}{dt} \rangle \\ &= \frac{i}{\hbar} \langle \psi | HA | \psi \rangle - \frac{i}{\hbar} \langle \psi | AH | \psi \rangle \\ &= \frac{i}{\hbar} \langle \psi | [H, A] | \psi \rangle \\ &= 0 \end{split}$$

6.4 Drehimpuls in Kugelkoordinaten

Abbildung 6.1: Polarkoordinaten

$$\begin{array}{lll} z & = & r\cos\theta \\ x & = & r\sin\theta\cos\varphi \\ y & = & r\sin\theta\sin\varphi \end{array}$$

$$\begin{array}{lll} \vec{\nabla} & = & \vec{e_r} \frac{\partial}{\partial r} + \vec{e_\theta} \frac{1}{r} \frac{\partial}{\partial \theta} + \vec{e_\varphi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \\ \\ \triangle & = & \triangle_r + \frac{1}{r^2} \tilde{\triangle} \end{array}$$

$$L_{z} = -i\hbar \frac{\partial}{\partial \varphi}$$

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} \right]$$

$$= -\hbar^{2} \tilde{\Delta}$$

 $L_z:$ Generator von Drehungen um $\varphi,$ ähnlich wie $P_z=-\imath\hbar\frac{\partial}{\partial z}:$ Generator für Translationen in z- Richtung

$$L_{z} = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$$

$$\stackrel{!}{=} -i\hbar \frac{\partial}{\partial \varphi}$$

$$\frac{\partial}{\partial \varphi} = \frac{\partial y}{\partial \varphi} \frac{\partial}{\partial y} + \frac{\partial x}{\partial \varphi} \frac{\partial}{\partial x}$$

$$= r \sin \theta \left(\frac{\partial \sin \varphi}{\partial \varphi} \frac{\partial}{\partial y} - \frac{\partial \cos \varphi}{\partial \varphi} \frac{\partial}{\partial x} \right)$$

$$= r \sin \theta \left(\cos \varphi \frac{\partial}{\partial y} - \sin \varphi \frac{\partial}{\partial x} \right)$$

$$= x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$$

Beweis

$$L^{2} = -\hbar^{2}\tilde{\Delta}$$
$$= -\hbar^{2}r^{2}(\Delta - \Delta_{r})$$

zu zeigen

$$\begin{aligned} \hbar^2 r^2 \triangle_r &= L^2 + \hbar^2 r^2 \triangle \\ \hbar^2 \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} &= \vec{L}^2 - \vec{Q}^2 \vec{P}^2 \end{aligned}$$

es gilt

$$\begin{array}{rcl} \vec{L}^2 &=& \vec{Q}^2 \vec{P}^2 + \imath \hbar \vec{Q} \vec{P} - (\vec{Q} \vec{P}) (\vec{Q} \vec{P}) \\ \vec{Q} &=& r \vec{e_r} \\ \vec{Q} \vec{P} &=& - \imath \hbar r \frac{\partial}{\partial r} \\ (\vec{Q} \vec{P})^2 &=& - \hbar^2 r \frac{\partial}{\partial r} r \frac{\partial}{\partial r} \end{array}$$

 damit

$$\begin{split} \vec{L}^2 - \vec{Q}^2 \vec{P}^2 &= \hbar^2 r \frac{\partial}{\partial r} + \hbar^2 \left(r \frac{\partial}{\partial r} \right)^2 \\ &= \hbar^2 \left(r \frac{\partial}{\partial r} r \frac{\partial}{\partial r} + r \frac{\partial}{\partial r} \right) \\ &= \hbar^2 \left(r^2 \frac{\partial^2}{\partial r^2} + 2r \frac{\partial}{\partial r} \right) \\ &= \hbar^2 \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \end{split}$$

Beweis

$$L^{2} = L_{i}L_{i}$$

$$= \epsilon_{ijk}Q_{j}P_{k} \epsilon_{ij'k'}Q_{j'}P_{k'}$$

$$= (\delta_{jj'}\delta_{kk'} - \delta_{jk'}\delta_{kj'})Q_{j}P_{k}Q_{j'}P_{k'}$$

$$= Q_{j}P_{k}Q_{j}P_{k} - Q_{j}P_{k}Q_{k}P_{j}$$

6 Bewegung im Zentralpotential, Drehimpuls

man muss nun benutzen

$$\begin{split} [P_i,Q_j] &= -\imath\hbar\delta_{ij} \\ &= P_iQ_j - Q_jP_i \\ P_iQ_j &= Q_jP_i - \imath\hbar\delta_{ij} \\ L^2 &= Q_j(Q_jP_k - \imath\hbar\delta_{jk})P_k - Q_jP_k(P_jQ_k + \imath\hbar\delta_{jk}) \\ &= Q^2P^2 - 2\imath\hbar\vec{Q}\vec{P} - (\vec{Q}\vec{P})(\vec{P}\vec{Q}) \\ \vec{P}\vec{Q} &= P_jQ_j \\ &= Q_jP_j - \imath\hbar\delta_{jj} \\ &= \vec{Q}\vec{P} - 3\imath\hbar \\ L^2 &= Q^2P^2 + \imath\hbar\vec{Q}\vec{P} - (\vec{Q}\vec{P})(\vec{Q}\vec{P}) \end{split}$$

q.e.d

 mit

$$H = -\frac{\hbar^2}{2m} \Delta_r + \underbrace{\frac{1}{2mr^2}L^2 + V(r)}_{\text{effektives Potential mit Drehimpulsbarriere}}$$

Eigenfunktionen zu $\tilde{\bigtriangleup}\equiv$ Eigenfunktionen zu L^2

$$L^2 Y_l(\Theta,\varphi) = -\hbar^2 a_l Y_l(\Theta,\varphi)$$

$$L^2 Y_l(\theta,\varphi) = \hbar^2 l(l+1) Y_l(\Theta,\varphi)$$

entweder \Rightarrow Eigenschaften der Kugelflächenfunktionen Y_{lm} oder \Rightarrow algebraisch

6.5 Spektrum des Drehimpulsoperators

(Darstellung der Drehgruppe)

Der allgemeine Drehimpuls, auch der Spin, erfüllt folgende Gleichung:

$$[L_i, L_j] = i\hbar \sum_k \epsilon_{ijk} L_k$$

Alle Eigenschaften des Spektrums folgen aus dieser Relation! (algebraischer Zugang)

Spektrum von L_z

Betrachte die Eigenzustände zu L_z (o.B.d.A.) Se
i $|m\rangle$ ein beliebiger Eigenzustand mit dem Eigenwer
tm

$$L_z|m\rangle = \hbar m |m\rangle , m \in \mathbf{R}$$

m ist hier nicht notwendig ganzzahlig!

Aufsteige-Operator

$$L_+ = L_x + iL_y$$

Absteige-Operator

$$L_{-} = L_{x} - \imath L_{y}$$
$$[L_{z}, L_{+}] = \hbar L_{+}$$
$$[L_{z}, L_{-}] = -\hbar L_{-}$$

Beweis

$$[L_z, L_+] = [L_z, L_x] + i [L_z, L_y]$$
$$= i\hbar L_y + i(-i\hbar L_x)$$
$$= \hbar (L_x + iL_y)$$
$$= \hbar L_+$$

L_+ : Aufsteigen im Spektrum

$$L_z L_+ |m\rangle = \hbar (m+1) L_+ |m\rangle$$

oder $L_+ |m\rangle = 0$

Beweis

$$L_z L_+ |m\rangle = (L_+ L_z + [L_z, L_+]) |m\rangle$$

= $L_+ \hbar m |m\rangle + \hbar L_+ |m\rangle$
= $\hbar (m+1) L_+ |m\rangle$

Damit ist auch $|L_+m\rangle$ ein Eigenzustand zu L_z mit dem Eigenwert $\hbar(m+1).$ oder

$$|L_+m\rangle = 0$$

L_: Absteigen im Spektrum

Ebenso ist $|L_m\rangle$ ein Eigenzustand mit $L_z|L_m\rangle = \hbar(m-1)|L_m\rangle$. oder

$$|L_m\rangle = 0$$

Das Spektrum von L_z ist diskret und äquidistant mit dem Abstand $\hbar.$
 $\hbar m, \hbar (m+1), \hbar (m+2) \ldots$

Vergleich mit harmonischem Oszillator

Es gilt

$$\begin{bmatrix} L_{+}, L_{-} \end{bmatrix} = 2\hbar L_{z} \\ L_{+} = (L_{-})^{\dagger}$$

Die Algebra ist verschieden von $a^{\dagger}, a!$

$$\left[a^{\dagger},a\right] = -1$$

Beweis

$$(L_x + iL_y)(L_x - iL_y) - (L_x - iL_y)(L_x + iL_y) = L_x^2 + i[L_y, L_x] + L_y^2 - (L_x^2 - i[L_y, L_x] + L_y^2)$$

= $-2i[L_x, L_y]$
= $2\hbar L_z$

ebenso der Antikommutator

$$\{L_+, L_-\} = L_+L_- + L_-L_+ = 2(L_x^2 + L_y^2) \vec{L}^2 = L_z^2 + \frac{1}{2}(L_+L_- + L_-L_+)$$

Beschränktheit des Spektrums von \mathcal{L}_z

Für beliebiges ψ mit $\langle \psi | \vec{L}^2 | \psi \rangle$ endlich

$$\begin{split} \langle \psi | \vec{L}^2 | \psi \rangle &= \langle \psi | L_z^2 | \psi \rangle + \langle \psi | (L_x^2 + L_y^2) | \psi \rangle \\ &\geq \langle \psi | L_z^2 | \psi \rangle \end{split}$$

Eigenzustand $|m\rangle$

$$\hbar^2 m^2 \le \langle \psi | \vec{L}^2 | \psi \rangle$$

Das Spektrum ist nach oben und unten beschränkt.

 ${\bf Zwei-Zustands-System}$

$$L_x = \frac{\hbar}{2}\tau_1$$

$$L_y = \frac{\hbar}{2}\tau_2$$

$$L_+ = L_x + iL_y$$

$$= \frac{\hbar}{\hbar} \left[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right]$$

$$\tau_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$L_+ = \hbar\tau_+$$

$$L_- = L_x - iL_y$$

$$= \hbar\tau_-$$

$$\tau_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$= (\tau_+)^{\dagger}$$

Warum ist τ_{-} keine Observable?

Die Eigenwerte von τ_- sind reell: $\lambda=0$ nur **ein** Eigenvektor $\psi=\binom{0}{1}$ Der Mittelwert

$$\begin{aligned} \langle \psi | \tau_- | \psi \rangle &= (\psi_1^*, \psi_2^*) \begin{pmatrix} 0 \\ \psi_1 \end{pmatrix} \\ &= \psi_2^* \psi_1 \end{aligned}$$

Dieser ist nicht notwendig reell
! τ_- ist nicht hermitesch. Es existier
t $m_-\in {\bf R},\ m_+\in {\bf R}$ mit

 $\begin{array}{cccc} m_{-} \leq m \leq m_{+} \\ \\ L_{+} | m_{+} \rangle &= 0 \\ \\ L_{-} | m_{-} \rangle &= 0 \end{array}$

 $|m_{+}\rangle,\;|m_{-}\rangle$ und Eigenzustände zu \vec{L}^{2} Beweis

$$\vec{L}^{2} = L_{z}^{2} + L_{+}L_{-} + \frac{1}{2}[L_{-}, L_{+}] \quad (B)$$

$$= L^{2} + L_{-}L_{+} + \frac{1}{2}[L_{+}, L_{-}] \quad (A)$$

$$\vec{L}^{2} = L_{z}^{2} + L_{-}L_{+} + \frac{1}{2}[L_{+}, L_{-}] \quad (A)$$

$$\vec{L}^{2} = L_{z}^{2} + L_{+}L_{-} - \hbar L_{z} \quad (B)$$

$$= L_{z}^{2} + L_{-}L_{+} + \hbar L_{z}$$
 (A)

$$\begin{aligned} L^{2}|m_{+}\rangle &= (\hbar^{2}m_{+}^{2} + \hbar^{2}m_{+})|m_{+}\rangle \\ &= \hbar^{2}m_{+}(m_{+} + 1)|m_{+}\rangle \\ \vec{L}^{2}|m_{-}\rangle &= (\hbar^{2}m_{-}^{2} - \hbar^{2}m_{-})|m_{-}\rangle \end{aligned}$$
 (A)

$$= \hbar^2 m_-(m_- - 1) |m_-\rangle = \hbar^2 (-m_-)(-m_- + 1) |m_-\rangle$$
(B)

Zustände mit festem Eigenwert von \vec{L}^2 und L_z

$$|lm\rangle \quad \text{wobei } l = m_+$$

$$\vec{L}^2 |lm\rangle = \hbar^2 l(l+1) |lm\rangle$$

$$L_z |lm\rangle = \hbar m |lm\rangle$$

$$\vec{L}^2 |lm_-\rangle = \hbar^2 l(l+1) |lm_-\rangle$$

$$= \hbar^2 (-m_-)(-m_-+1) |lm_-\rangle$$

$$\Rightarrow m_- = -l$$

$$= -m_+$$

Zu jedem $m_+ = l$ gibt es eine Serie von Eigenzuständen zu L_z und \vec{L}^2 wenn

Abbildung 6.2: Serie von Eigenzuständen zu ${\cal L}_z$ und ${\cal L}^2$

$$L^2|l,m_+\rangle = \hbar^2 l(l+1)|lm_+\rangle$$

dann auch

$$L^{2}|l, m_{+} - 1\rangle = \hbar^{2}l(l+1)|l, m_{+} - 1\rangle$$

6 Bewegung im Zentralpotential, Drehimpuls

Beweis

$$\begin{bmatrix} L^2, L_- \end{bmatrix} = 0$$

$$L^2 L_- |\psi\rangle = L_- L^2 |\psi\rangle$$

$$= \hbar^2 l(l+1)L_- |\psi\rangle$$

$$m_+ = -m_- = l$$

$$m_+ - m_- = 2l : \text{ganzzahlig}$$

$$\Rightarrow l = 0, \frac{1}{2}, 1, \frac{3}{2} \dots \text{ möglich}$$

(Es ist zu zeigen, dass $|m_{-}\rangle$ aus $|m_{+}\rangle$ durch wiederholtes Anwenden von L_{-} erhalten werden kann.)

Drehimpuls ist quantisiert!

l = 0:

$$\vec{L}^2 |0,0\rangle = 0 L_z |0,0\rangle = 0$$

 $l = \frac{1}{2}$:

$$\vec{L}^{2} \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{3}{4}\hbar^{2}$$

$$\vec{L}^{2} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle = \frac{3}{4}\hbar^{2}$$

$$L_{z} \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{1}{2}\hbar$$

$$L_{z} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle = -\frac{1}{2}\hbar$$

$$\left| \frac{1}{2}, \frac{1}{2} \right\rangle = |\uparrow\rangle$$

$$\left| \frac{1}{2}, -\frac{1}{2} \right\rangle = |\downarrow\rangle$$

l = 1:

Diese Relationen findet man auch in der Atomphysik, zum Beispiel in den Rotationsspektren von Molekülen. Makroskopische Objekte haben allerdings im Allgeimeinen ein sehr hohes l!

$$\begin{split} \triangle L &= \sqrt{\Delta L_x^2 + \Delta L_y^2 + \Delta L_z^2} \\ \frac{\Delta L}{L} &\sim \frac{1}{\sqrt{l}} \ \text{für große } l \end{split}$$

 $|lm\rangle$ für gegebenes l:
N- Zustandssystem, N=2l+1
 $L_x,L_y,L_z\colon N\times N$ - Matrizen

$$l = 1$$

$$L_{i} : 3 \times 3 \text{ Matrizen}$$

$$L_{z} = \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$L_{\pm}, L_{x,y} ???$$

6.6 Bahndrehimpuls in Kugelkoordinaten, Kugelfunktionen

$$L_x = i\hbar \left(\sin \varphi \frac{\partial}{\partial \theta} + \cos \varphi \cot \theta \frac{\partial}{\partial \varphi} \right)$$

$$L_y = -i\hbar \left(\cos \varphi \frac{\partial}{\partial \theta} - \sin \varphi \cot \theta \frac{\partial}{\partial \varphi} \right)$$

$$L_z = -i\hbar \frac{\partial}{\partial \varphi}$$

$$\vec{L}^2 = -\hbar^2 \left(\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} \right)$$

$$Y_{lm}(\theta, \varphi) = \hbar^2 l(l+1) Y_{lm}(\theta, \varphi)$$

$$Y_{lm}(\theta, \varphi) = \hbar m Y_{lm}(\theta, \varphi)$$

$$|l,m\rangle \equiv Y_{lm}(\theta,\varphi)$$

Also: Der Bahndrehimpuls bedingt nur ganzzahlige l und m!

 \vec{L}^2

$$\left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} - \frac{m^2}{\sin^2\theta} + l(l+1)\right)Y_{lm}(\theta,\varphi) = 0$$

 $Y_{lm}(\theta, \varphi)$: Kugelflächenfunktionen!

Orthogonalität:

$$\int_0^{\pi} d\theta \sin \theta \int_0^{2\pi} d\varphi \ Y_{l,m}^*(\theta,\varphi) Y_{l',m'}(\theta,\varphi) = \delta_{ll'} \delta_{mm'}$$
$$= \langle l,m|l',m' \rangle$$

Vollständigkeit:

$$\sum_{l=0}^{\infty} \sum_{m=-l}^{l} Y_{lm}^{*}(\theta,\varphi) Y_{lm}(\theta',\varphi') = \frac{1}{\sin\theta} \delta(\theta-\theta') \delta(\varphi-\varphi')$$

Jede beliebige Funktion auf einer Kugeloberfläche lässt sich darstellen als

$$\psi(\theta,\varphi) = \sum_{l,m} a_{lm} Y_{lm}(\theta,\varphi)$$
$$Y_{l,-m}(\theta,\varphi) = (-1)^m Y_{lm}^*(\theta,\varphi)$$

6 Bewegung im Zentralpotential, Drehimpuls

Beispiele

$$Y_{00} = \frac{1}{\sqrt{4\pi}}$$

$$Y_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta$$

$$Y_{11} = -\sqrt{\frac{3}{8\pi}} \sin \theta e^{i\varphi}$$

Orbitale

 $a(\theta) = |Y_{lm}(\theta, \varphi)|^2$ (unabhängig von φ : rotationssymmetrisch um z-Achse) Es sollte hierbei nicht zu einer Verwechslung mit der räumlichen Verteilung der Wellenfunktion $\psi(r, \theta, \varphi)$ kommen!

Abbildung 6.3: Orbitale, Bemerkung: die Orbitale sind rotationssymmetrisch um die z-Achse

6.7 Bindungszustände

6.7.1 Radialgleichung

$$\left\{-\frac{\hbar^2}{2m}\underbrace{\left(\frac{\partial^2}{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}\right)}_{\Delta r}+\underbrace{\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}}_{\text{Drehimpuls}}+V(r)\right\}\psi_{nl}(r) = E_{nl}\ \psi_{nl}(r)$$

Bestimme das Spektrum von erlaubten $E_{nl}!$ Eigenfunktion $\psi_{nl}(r)!$

Beispiel: Wasserstoff-Atom

$$V(r) = -\frac{e^2}{4\pi r}$$

allgemeiner

$$\lim_{r \to \infty} V(r) = 0$$

Effektives Potential

$$V_{eff}(r) = V(r) + \frac{\hbar^2 l(l+1)}{2mr^2}$$

letzteres stellt dabei die Drehimpulsbarriere dar.

Abbildung 6.4: Effektives Potential

6.7.2 Eindimensionale Schrödingergleichung

Ansatz für die Radialfunktion

$$\psi_{nl}(r) = \frac{u_{nl}(r)}{r}$$

 \rightarrow Vereinfachung der Ableitungsterme

$$\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right)\psi_{nl}(r) = \frac{1}{r}\frac{\partial^2}{\partial r^2}u_{nl}(r)$$

 dann

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2} + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2} + V(r) - E_{nl}\right)u_{nl}(r) = 0$$

Eindimensionale Schrödingergleichung mit $V_{eff}(r)$! Bereich $0 \le r < \infty$

Beweis

$$\begin{pmatrix} \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \end{pmatrix} \psi = \left(\frac{\partial}{\partial r} + \frac{2}{r} \right) \frac{\partial}{\partial r} \frac{u}{r}$$

$$= \left(\frac{\partial}{\partial r} + \frac{2}{r} \right) \left(\frac{u'}{r} - \frac{u}{r^2} \right)$$

$$= \frac{u''}{r} - \frac{u'}{r^2} - \frac{u'}{r^2} + \frac{2u}{r^3} + \frac{2u'}{r^2} - \frac{2u}{r^3}$$

$$= \frac{u''}{r}$$

6.7.3 Normierung

$$\int d^3x \ \psi^*(\vec{x}) \ \psi(\vec{x}) = 1 \qquad ; \ \psi = \frac{u_{nl}(r)}{r} Y_{lm}(\theta,\varphi)$$
$$\int_0^\infty dr \ r^2 \frac{u^*(r)}{r} \frac{u(r)}{r} = 1 \qquad ; \ \int d^3x = \int dr \ r^2 \int d\varphi \ d\theta \ \sin\theta$$

Man benutzt hier die Normierung der $Y_{lm}(\theta, \varphi)$!

$$\int_0^\infty dr \ |u(r)|^2 = 1$$

Dies ist eine eindimensionale Wellenfunktion!

6.7.4 Anfangswertproblem

Lineare Differentialgleichung zweiter Ordnung! 'Reelle DGL': Man bestimme die reellen Lösungen! Die allgemeine Lösung ist durch eine Linearkombination mit komplexen Koeffizienten zu erreichen.

Anfangswertproblem mit 2 'Integrationskonstanten' $u(r_0) = \bar{u}, \ u'(r_0) = \gamma$ Eine Integrationskonstante ist trivial: Normierung (\bar{u})

 ψ Lösung
 $\Rightarrow~\alpha\psi$ Lösung

6.7.5 Verhalten für $r \rightarrow 0$

Sei $V(r) \neq c\delta^3(\vec{x})$ für r nahe 0: Es muss gelten: u(r=0)=0

oder $u(r \to 0) \to \pm \infty$

Beweis durch Widerspruch

Sei $u(r \to 0) = u_0 \neq 0 \Rightarrow \psi(r \to 0) = \frac{u_0}{r}$ Schrödingergleichung für $\psi(\vec{x})$

$$\bigtriangleup \psi = \bigtriangleup \frac{u_0}{|\vec{x}|} \sim \delta^3(\vec{x})$$

kann durch $V(r)\psi$ oder $E\psi$ nicht ausgeglichen werden! Sei $V_{eff}(r\to 0)\sim r^{-\beta}\,,\beta>0$ typisch:

$$\beta = 2 \quad \text{für } l \neq 0$$
$$(\beta = 1 \quad \text{für } l = 0)$$

Lösung im Grenzfall $r \to 0$ für $r \to 0$ kann E vernachlässigt werden Betrachete $l \neq 0$

$$-u'' + c\frac{u}{r^2} = 0 , \ c = l(l+1)$$

Ansatz

$$\begin{array}{rcl} u & = & d \ r^h \\ u' & = & dh \ r^{h-1} \\ u'' & = & dh(h-1) \ r^{h-2} \\ \Rightarrow -u'' + cr^{-2}u & = & -dh(h-1) \ r^{h-2} + dc \ r^{h-2} \\ & = & 0 \\ \Rightarrow h(h-1) & = & c \\ c & = & l(l+1) \\ \Rightarrow h = -l \ \text{oder} \ h = l+1 \\ u & = & d \ r^{l+1} + e \ r^{-l} \\ \end{array}$$
Normierbarkeit $\Rightarrow e & = & 0 \\ \text{für } l & \neq & 0 \\ u(r \rightarrow 0) & = & d \ r^{l+1} \end{array}$

6.7.6 Numerische Lösung: 'Schießen'

festes r_0 , festes \bar{u}

festes l,festes E

Man betrachte die Lösungsschar in Abhängigkeit von γ . Es zeigt sich, dass nur bestimmte diskrete γ mit $u \sim r^{l+1}$ verträglich sind ! Sonst $u \sim r^{-l}$!

Abbildung 6.5: Numerisches Lösen

6.7.7 Lösung für $r \to \infty$

Vernachlässige $V_{eff}(r)$

$$\begin{aligned} -\frac{\hbar^2}{2m}u'' &= Eu , E < 0 \text{ Bindungszustände} \\ u &= f e^{-\kappa r} + g e^{\kappa r} \\ u'' &= \kappa^2 u \\ -\frac{\hbar^2}{2m}\kappa^2 &= E \\ \kappa^2 &= -\frac{2mE}{\hbar^2} \\ \kappa &= \frac{1}{\hbar}\sqrt{-2mE} \end{aligned}$$

Normierbarkeit: g = 0

! Problem: γ ist schon abgestimmt, damit $u \sim r^{l+1}$ für kleine r. Im Allgeimeinen $u \sim g e^{\kappa r}$, $g \neq 0$ für $r \to \infty$.

Ändern von γ um auf die Lösung $u \sim e^{-\kappa r}$ zu 'schießen' \rightarrow dann aber r^{-l} für $r \rightarrow 0$. Es sei denn:

Man wähle E, so dass es gerade auf beiden Seiten klappt; diskrete E!

'Feinabstimmung' von E und γ nötig, damit u normierbar für $r\to 0$ und $r\to\infty$ \Rightarrow Diskretes Spektrum

6.8 Wasserstoff-Atom

Coulomb potential $V(r) = -\frac{e^2}{4\pi r}$

6.8.1 Wichtige Größen in der Atomphysik

Feinstrukturkonstante

$$\alpha = \frac{e^2}{4\pi\hbar c}$$
$$= \frac{1}{137,037\dots}$$

- dimensionslos, 'Stärke der Wechselwirkung'

Bohr'scher Radius:

$$a_0 = \frac{4\pi\hbar^2}{e^2 m_e}$$
$$= \frac{\hbar}{\alpha m_e c}$$
$$= 0,529 \cdot 10^{-10} m$$
$$= 0,529 \mathring{A}$$

charakteristische Lösungsskala Rydberg-Einheit:

$$R_y = \frac{e^2}{8\pi a_0}$$
$$= \frac{m_e e^4}{32\pi^2 \hbar^2}$$
$$= \frac{\alpha^2}{2} m_e c^2$$

charakteristische Energie
einheit $= 13,55~{\rm eV}$ Dimensionslose Variable

$$\begin{aligned} x &= \frac{r}{a_0} \\ \mathcal{E}_{nl} &= -\frac{E_{nl}}{R_y} \end{aligned}$$

 x, \mathcal{E} : dimensionslos!

6.8.2 Dimensionslose Radialgleichung

$$r = a_0 x, \ \frac{\partial}{\partial r} = \frac{1}{a_0} \frac{\partial}{\partial x}$$
$$\left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2} - \frac{e^2}{4\pi r} - E_{nl}\right) u_{nl}(r) = 0$$

$$\left(-\frac{\partial^2}{\partial x^2} + \frac{l(l+1)}{x^2} - \frac{2}{x} + \mathcal{E}_{nl}\right) u_{nl}(x) = 0$$

Beweis

$$\begin{cases} \frac{1}{a_0} \frac{\hbar^2}{2m} \left(-\frac{\partial^2}{\partial x^2} + \frac{l(l+1)}{x^2} \right) - \frac{e^2}{4\pi a_o} \frac{1}{x} + \mathcal{E}_{nl} \underbrace{\frac{e^2}{8\pi a_0}}_{Ry} \end{cases} u(x) = 0 \\ a_0 = \frac{4\pi \hbar^2}{e^2 m} \Rightarrow \frac{\hbar^2}{m a_0} = \frac{e^2}{4\pi} \end{cases}$$

klammer
e $\frac{e^2}{8\pi a_0}$ aus: q.e.d Allgemeine Technik: Skalieren der Dimensions-behafteten Variablen: 'Der Computer kennt keine Einheiten!'

 \Rightarrow Dimensions lose Gleichung für dimensions lose Variablen.

6.8.3 Verhalten für $r \to \infty$

$$u \sim e^{-\kappa r}, \ \kappa = \frac{1}{\hbar}\sqrt{-2mE}$$
$$\kappa^{2} = -\frac{2mE}{\hbar^{2}}$$
$$= \frac{2m}{\hbar^{2}}\mathcal{E}R_{y}$$
$$= \frac{m\mathcal{E}}{\hbar^{2}}\frac{e^{2}}{4\pi a_{0}}$$
$$= \frac{\mathcal{E}}{a_{0}^{2}}$$
$$\kappa = \frac{\sqrt{\mathcal{E}}}{a_{0}}$$
$$\kappa r = \sqrt{\mathcal{E}}x$$

 $u\sim e^{-\sqrt{\mathcal{E}}x}\sim e^{-\sqrt{\mathcal{E}}\frac{r}{a_0}} \sqrt{\mathcal{E}}$: hat die Größenordnung $1\Rightarrow a_0\sim$ Atom
radius

6.8.4 Reskalieren der Ortsvariablen

Für das praktische Rechnen sollte man xUmskalieren. $e^{-\sqrt{\mathcal{E}}x} \to e^{-\rho}$

$$x = \frac{1}{\sqrt{\mathcal{E}}}\rho$$
$$\frac{\partial}{\partial x} = \sqrt{\mathcal{E}}\frac{\partial}{\partial \rho}$$

$$\left(-\frac{\partial^2}{\partial\rho^2} + \frac{l(l+1)}{\rho^2} - \frac{\rho_0}{\rho} + 1\right)u(\rho) = 0$$

$$\rho_0 = \frac{2}{\mathcal{E}} \cdot \sqrt{\mathcal{E}}$$
$$= \frac{2}{\sqrt{\mathcal{E}}}$$

$$\begin{split} \rho_0^2 &= & \frac{4Z^2}{|E|} \frac{e^2}{8\pi a_0} \\ &= & \frac{Z^2 e^2}{2\pi a_0} \frac{1}{|E|} \\ &= & \frac{Z^2 m_e e^4}{8\pi^2 \hbar^2 |E|} \\ \rho_0 &= & \sqrt{\frac{2m}{E}} \frac{Z e^2}{4\pi \hbar} \ ; \ \frac{V}{|E|} = -\frac{\rho_0}{\rho} \end{split}$$

6.8.5 Ansatz unter Berücksichtigung des Grenzverhaltens

$$u(\rho) = \rho^{l+1} e^{-\rho} w(\rho)$$
$$w(\rho \to 0) = w_0 \text{ Konstante!}$$

6.8.6 Taylorentwicklung

(Diese funktioniert in den Bereichen, in denen die Lösung analytisch ist.)

$$w(\rho) = \sum_{k=0}^{\infty} a_k \rho^k$$
$$\frac{\partial w}{\partial \rho} = \sum_{k=0}^{\infty} k a_k \rho^{k-1}$$
$$\frac{\partial^2 w}{\partial \rho^2} = \sum_{k=0}^{\infty} k (k-1) a_k \rho^{k-2}$$
$$\Rightarrow$$

$$\sum_{k=0}^{\infty} \left\{ k(k-1)a_k \rho^{k-1} + 2(l+1)ka_k \rho^{k-1} - 2ka_k \rho^k + (\rho_0 - 2(l+1)a_k \rho^k) \right\} = 0$$

 \rightarrow Koeffizientenvergleich

$$\sum_{k=0}^{\infty} (k(k-1)a_k + 2(l+1)ka_k)\rho^{k-1} = \sum_{k=1}^{\infty} (k(k-1) + 2(l+1)k)a_k\rho^{k-1}; \ k = k'+1$$
$$= \sum_{k=0}^{\infty} (k'+1)k' + 2(l+1)(k'+1)a_{k'+1}\rho^{k'}$$

Koeffizientenvergleich (Potenzen von ρ^k) ρ_k - ausklammern, Koeffizient für jedes k muss verschwinden

$$(k+1)ka_{k+1} + 2(l+1)(k+1)a_{k+1} - 2ka_k + (\rho_0 - 2(l+1))a_k = 0$$

6.8.7 Rekursionsformel

$$b_k a_{k+1} = c_k a_k$$

$$a_{k+1} = \frac{c_k}{b_k} a_k$$

$$a_{k+1} = \frac{2(k+l+1) - \rho_0}{(k+1)(k+2l+2)} a_k$$

Aus der Rekursionsformel folgen alle weiteren Werte, wenn a_0 gegeben ist. Was ist a_0 ? $u(\rho \to 0) = a_0 \rho^{l+1}$. Es bestimmt das Verhalten der Wellenfunktion am Ursprung. Aus dem Ansatz der Taylorentwicklung um $\rho = 0$ wird deutlich, dass die Diskretheit des Spektrums auch gleichzeitig eine Einschränkung des Verhaltens bei $\rho \to \infty$ zur Folge hat. $\rho \to \infty$: Verhalten der a_k für große k.

Aus dieser Erkenntnis kann man schon einen großen Teil der Chemie nachvollziehen:

- Pauli-Prinzip (nur ein Elektron darf in jedem Zustand sein)
- Spin
- Elektron-Elektron-Wechselwirkung (Ladungsabschirmung)

6.8.8 Verhalten für große k

Alternative

- i) Reihe bricht ab bei irgendeinem $k_0,\,a_{k_0}=0;\,\mathrm{dann}\ a_k=0$ für $k\geq k_0$
- ii) Reihe bricht nicht ab

 $\mathrm{dann}\, \lim_{k\to\infty} \frac{a_{k+1}}{a_k}\to \frac{2}{k} \text{ und damit } w(\rho\to\infty)\sim e^{2\rho}.$

Beweis

$$e^{2\rho} = \sum_{k=0}^{\infty} \frac{1}{k!} (2\rho)^k$$
$$= \sum_{k=0}^{\infty} \frac{2^k}{k!} \rho^k$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{(k+1)!} \frac{k!}{2^k}$$
$$= \frac{2}{k+1}$$
$$\rightarrow \frac{2}{k}$$

wenn $w \sim e^{2\rho} \Rightarrow u \sim e^{\rho} \sim e^{\kappa r}$: Wiederspruch zur Normierbarkeit! Alternative ii) ausgelassen!

6.8.9 Abbruch der Taylor-Entwicklung

Normierbarkeit für $\rho \to \infty \Rightarrow$ **Reihe bricht ab!** bei $k_0 = N + 1$ $\Rightarrow w(\rho)$ ist Polynom der Ordnung $N, a_0, a_1, \dots, a_N \neq 0$; $a_{N+1} = a_{N+2} = \dots = 0$ Die Bedingung für das Abbrechen ist $a_{N+1} = 0$ $2(N+l+1) - \rho_0 = 0$; Lösung für geeignetes $\rho_0! \rho_0 \in \mathbf{N}$

6.9 Diskretes Spektrum

verschiedene Lösungen für N=0,1,2 mit entsprechenden ρ_0,N Zur Erinnerung

$$\rho_0 = \frac{2}{\sqrt{\mathcal{E}}}$$
$$\mathcal{E} = -\frac{E}{R_y}$$

N: radiale Quantenzahl

Damit liegt für gegebenes N,~lfest; $\rho_0(N,l)$

$$\rho_0 = 2(N+l+1)$$

Dies hängt nur ab von der Kombination

$$n = N + l + 1$$
: Hauptquantenzahl

$$\rho_0 = 2n \\
= \frac{2}{\sqrt{\mathcal{E}}}$$

$$\mathcal{E}_{nl} = rac{1}{n^2}$$

$$E_{nl} = -\frac{1}{n^2}R_y$$
$$= -\frac{1}{n^2}(13,55)eV$$

Abbildung 6.6: Diskrete Energieniveaus

Diskrete Energieniveus $\sim \frac{1}{n^2}$

⇒ Beobachtung! Spektrum der Atomübergänge: $\Delta E = \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) R_y$. Bindungszustände werden immer dichter für $n \to \infty$ (für positives E: kontinuierliche Streuzustände) **Entartung**

$$n = N + l + 1$$

für gegebenes n gibt es mehrere mögliche
 $l~(N\geq 0!)$ n=1:~l=0;~n=2:~l=0,1;~n=3:~l=0,1,2

Tabelle 6.1: Zuordnung N und l

6.10 Spin und Gesamtdrehimpuls

Spin

Und wozu braucht man halbzahlige l?'Innerer Drehimpuls' der Teilchen: Spin $\vec{S}:$

$$\begin{split} [S_i, S_j] &= i\hbar \sum_k \epsilon_{ijk} S_k \\ [S_i, L_j] &= 0 \\ [S_i, P_j] &= 0 \\ [S_i, Q_j] &= 0 \end{split}$$

Abbildung 6.7: Entartung

zusätzliche kommutierende Operatoren \vec{S}^2 , S_z zusätzliche Quantenzahlen

$$\begin{split} \vec{S}^2 |\psi\rangle &= \hbar^2 s(s+1)\psi \\ S_z |\psi\rangle &= \hbar m_s \psi \\ m_s &= -s, -s+1, \dots, s \end{split}$$

s: Spin des Teilchens Elektron: $s = \frac{1}{2}$ p, n : $s = \frac{1}{2}$ π -Meson: $\overline{s} = 0$ ρ -Meson: s = 1

Gesamtdrehimpuls eines Elektrons

$$egin{array}{rcl} ec{J}&=&ec{L}+ec{S}\ [J_i,J_j]&=&\imath\hbar\sum_k\epsilon_{ijk}J_k \end{array}$$

 \vec{J}^2 : hat die Eigenwerte $\hbar^2 j(j+1)$

Die Quantenzahl j ist dabei ganzzahlig, wenn s ganzzahlig ist und halbzahlig, wenn s halbzahlig ist. $[\vec{J}, H] = 0$ für zentralsymmetrische Probleme, gleichzeitig sind nicht notwendiger Weise $[\vec{L}, H] = 0$ Der Gesamtdrehimpuls des Atom berechnet sich aus:

$$\vec{J}_{Atom} = \vec{J}_{Kern} + \underbrace{\sum_{i} \vec{J}_{i, Elektron}}_{\text{Elektronenhülle}}$$

6.11 Schalenmodell

Zur Erinnerung: Die radiale Wellenfunktion hängt getrennt von N und l ab,(nicht nur von n).

$$n = 1 \qquad l = 0 n = 2 \qquad l = 0, 1 n = 3 \qquad l = 0, 1, 2$$

Zustände zu gegebenen $l: \underbrace{2}_{Spin} \underbrace{(2l+1)}_{Bahndrehimpuls}$

n = 1	l = 0	2	2	s-Orbital
n = 2	l = 0	2	8	s-Orbital
	l = 1	6		p-Orbital
n=3	l=0	2	18	s-Orbital
	l=1	6		p-Orbital
	l=2	10		d-Orbital

Tabelle 6.2: Das Schalenmodell des Atoms

Schalenmodell des Atoms!

Experimentelle Beobachtung: Übergänge zwischen zwei Niveaus: elektromagnetische Strahlung wird freigesetzt: $m \to n$

$$\hbar \omega = E_m - E_n
= \left(\frac{1}{n^2} - \frac{1}{m^2}\right) R_y \text{ (Wasserstoff)}$$

Lyman: $n = 1, p \to s$ (UV) Balmer: $n = 2, s \to p$ (sichtbares Licht) 400 – 600nm

Lymann
$$(1 - \frac{1}{4}, 1 - \frac{1}{9}, ...)R_y$$

 $\hbar \omega = \frac{3}{4}R_y, \frac{8}{9}R_y, \frac{15}{16}R_y$

Kernladung Z:

$$E_n = -\frac{Z^2 R_y}{n^2} (e^2 \to Z e^2, R_y \sim e^4)$$

Die Quantenmechanik erklärt

• Diskrete Spektralserien (Kombinationsprinzip Ritz 1905)

- Stabilität der Atome
- Identität der Atome

6.12 Wellenfunktion $\psi_{nl}(r)$

 ρ_0 bekannt: Rekursions
relation kann für gegebenes Ngelöst werden Laguere
- Polynome

$$\psi_{nl}(r) = \left(\frac{(n-l-1)!\kappa^3}{2n((n+l)!)^3}\right)^{\frac{1}{2}} (2\kappa r)^l e^{-\kappa r} \underbrace{L_{n+l}^{2l+1}}_{\text{Laguere Polynome}} (2\kappa r)$$

Grad n - (l+1) hat n - (l+1) Nullstellen

$$\begin{split} \kappa^2 &= -\frac{2mE}{\hbar^2} \\ &= \frac{2m}{\hbar^2} \frac{R_y Z^2}{n^2} \\ &= \frac{Z^2}{n^2} \frac{2m}{\hbar^2} \frac{me^4}{32\pi^2 \hbar^2} \\ &= \frac{Z^2 m^2 e^4}{16\pi^2 \hbar^4 n^2} \\ \kappa &= \frac{m_e Z e^2}{4\pi \hbar^2 n} \\ &= \frac{Z}{na_0} \\ \psi_{10} &= 2\left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{-\frac{Zr}{a_0}} \\ \psi_{20} &= 2\left(\frac{Z}{2a_0}\right)^{\frac{3}{2}} \left(1 - \frac{Zr}{2a_0}\right) e^{-\frac{Zr}{2a_0}} \\ \psi_{21} &= \frac{1}{\sqrt{3}} \left(\frac{Z}{2a_0}\right)^{\frac{3}{2}} \frac{Zr}{a_0} e^{-\frac{Zr}{a_0}} \end{split}$$

6.13 Vollständiges Funktionensystem

$$\begin{aligned} f(\theta,\varphi) &= \sum_{lm} a_{lm} Y_{lm}(\theta,\phi) \\ Y_{lm} &\equiv |l,m\rangle \\ L_z|l,m\rangle &= m\hbar|l,m\rangle \\ L^2|l,m\rangle &= l(l+1)\hbar^2|l,m\rangle \\ \langle l',m'|l,m\rangle &= \delta_{l'l}\delta_{m'm} \\ \psi(r,\theta,\varphi) &= \sum_{nlm} b_{nlm} \ \psi_{nl}(r)Y_{lm}(\theta,\varphi) \\ &\equiv |n,l,m\rangle \\ H|n,l,m\rangle &= -\frac{E_0}{n^2}|n,l,m\rangle \end{aligned}$$

 $|n,l,m\rangle$ vollständige O(N) - Basis der quadratintegrablen Funktionen Spin $S\equiv s_z=\pm\frac{\hbar}{2}$

Ein-Elektron-Zustände im Atom

$$\begin{aligned} |\psi\rangle &= \sum c_{nlm,m_s} |n,l,m,m_s\rangle \\ \langle n',l',m',m'_s |n,l,m,m_s\rangle &= \delta_{nn'} \, \delta_{l'l} \, \delta_{m'm} \, \delta_{m'_s m_s} \end{aligned}$$

6.14 Bewegung im elektromagnetischen Feld

Wie kann man den Spin sehen?: Bewegung im Magnetfeld Elektromagnetisches Feld hier klassisch: keine Photon-Wellenfunktion!

Potential φ , Vektorpotential \vec{A} :

$$\vec{E} = \frac{1}{c} \frac{\partial}{\partial t} \vec{A} - \vec{\nabla} \varphi$$
$$\vec{B} = \vec{\nabla} \times \vec{A}$$

klassische Hamiltonfunktion

$$H = \frac{1}{2m}(\vec{p} - \frac{e}{c}\vec{A}(x,t))^2 + e\varphi(x,t)$$

Schrödingergleichung für Teilchen ohne Spin $\left(s=0\right)$

$$i\hbar \frac{\partial}{\partial t}\psi = \underbrace{\left[\frac{1}{2m}\left(\frac{\hbar}{i}\overrightarrow{\bigtriangledown} - \frac{e}{c}\overrightarrow{A}\right)^2 + e\varphi\right]}_{H}\psi$$

vernachlässige $\vec{A^2}$ Term; Coulomb- Eichung $\vec{\bigtriangledown}\vec{A}=0$ oder besser $(div~\vec{A})=0$

$$H = \frac{1}{2m}\vec{P}^2 - \frac{e}{2mc}(\vec{A}\vec{P} + \vec{A}\vec{P}) + e\varphi$$
$$H = -\frac{\hbar^2}{2m}\triangle + e\varphi + \frac{i\hbar e}{mc}\vec{A}\vec{\bigtriangledown}$$

konstantes Magnetfeld \vec{B} :

$$\vec{A} = -\frac{1}{2}\vec{r} \times \vec{B}$$

 \vec{A} gibt keinen Beitrag zu \vec{E}

$$A_{i} = -\frac{1}{2} \sum_{jk} \epsilon_{ijk} x_{j} B_{k}$$

$$B_{i} = \sum_{jk} \epsilon_{ijk} \nabla_{j} A_{k}$$

$$= \sum_{jk} \epsilon_{ijk} \nabla_{j} \left(-\frac{1}{2}\right) \sum_{lm} \epsilon_{klm} x_{l} B_{m}$$

$$= -\frac{1}{2} \sum_{jklm} \epsilon_{ijk} \epsilon_{klm} \delta_{jl} B_{m}$$

$$= -\frac{1}{2} \sum_{klm} \epsilon_{ilk} \epsilon_{klm} B_{m}$$

$$= \sum_{m} \delta_{im} B_{m}$$

$$= B_{i}$$

q.e.d.

 damit

$$\vec{A} \vec{\bigtriangledown} = -\frac{1}{2} (\vec{r} \times \vec{B}) \vec{\bigtriangledown}$$
$$= \frac{1}{2} (\vec{r} \times \vec{\bigtriangledown}) \vec{B}$$
$$H_B = \frac{i\hbar e}{mc} \vec{A} \vec{\bigtriangledown}$$
$$= \frac{e}{2mc} (\vec{r} \times i\hbar \vec{\bigtriangledown}) \vec{B}$$
$$= -\frac{e}{2mc} \vec{L} \vec{B}$$

 $\frac{e|B|}{2mc}$: Lamorfrequenz

6.15 Magnetisches Moment des Elektron, Zeeman-Effekt

$$\begin{split} H_B &= -\vec{\mu}\vec{B} \\ \vec{\mu} &= \frac{e}{2m_ec}\vec{L} + g\frac{e}{2m_ec}\vec{S} \\ g &= 2,0023193\dots \text{ Quantenfeldtheorie} \\ \vec{B} &= B_z , B_z \text{ constant} \\ H_B &= -\left(\frac{e}{2m_ec}L_z + g\frac{e}{2m_ec}S_z\right)B_z \\ H_B|l,m,s,m_s\rangle &= -\frac{\hbar eB_z}{2m_ec}(m+gm_s)|l,m,s,m_s\rangle \end{split}$$

Zeeman-Effekt, starkes Magnetfeld

Z = 1

$$H|n,l,m,m_s\rangle = -\frac{R_y}{n^2} - \frac{\hbar eB}{2m_e c}(m+gm_s)$$

Aufspaltung der entarteten Energienive
aus $g=2 \label{eq:g}$

Abbildung 6.9: Aufspaltung der entarteten Energieniveaus

6 Bewegung im Zentralpotential, Drehimpuls

$$l = 0 m = 0 m + 2m_s = \pm 1$$

$$l = 1 m = \pm 1, 0 m + 2m_s = \pm 2, \pm 1, 0$$

Wenn der Spin außer Acht gelassen werden würde, so wäre keine Aufspalting für l = 0 erkennbar und ach für l = 1 wären nur 3 Unterniveaus sichtbar.

Das **Stern- Gerlach- Experiment** hat große Ähnlichkeit mit diesem Phänomen, hier kommt es zur Strahlaufspaltung im inhomogenen Magnetfeld.

$$B_z(\vec{x})$$
$$\vec{F} = \vec{\bigtriangledown}(\vec{\mu}\vec{B})$$

6.16 Dreidimensionaler harmonischer Oszillator Moleküle

Im folgenden werden wir das ${\rm He}^2$ -Molekül betrachten,
es ist zu bedenken, dass diese Rechnung nur Näherungsweise stimmt.

$$V = \frac{m}{2}\omega^2 r^2$$

$$H = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + \frac{m}{2}\omega^2 (x^2 + y^2 + z^2)$$

Ansatz

$$\psi(\vec{x}) = \psi_1(x) \ \psi_2(y) \ \psi_3(z)$$

 $H = H_1 + H_2 + H_3$

 $H_i:$ harmonischer Oszillator in $i\mathchar`-Richtung Eigenfunktion$

$$H_1\psi_{1,n_1} = \hbar\omega\left(n_1 + \frac{1}{2}\right)\psi_{1,n_1}$$
$$H_1|n_1\rangle = \hbar\omega\left(n_1 + \frac{1}{2}\right)|n_1\rangle$$
$$\psi_{1,n_1}(x)\psi_{2,n_2}(y)\psi_{3,n_3}(z) \equiv |n_1, n_2, n_3\rangle$$

- \

$$H|n_1, n_2, n_3\rangle = \left(n_1 + n_2 + n_3 + \frac{3}{2}\right)\hbar\omega$$

Abbildung 6.10: Spektrum

 $|n_1,n_2,n_3\rangle$ bilden vollständiges Funktionensystem

$$\psi(\vec{x}) = \sum_{n_1, n_2, n_3} c_{n_1, n_2, n_3} |n_1, n_2, n_3\rangle$$
$$\langle m_1, m_2, m_3 | n_1, n_2, n_3 \rangle = \delta_{m_1 n_1} \delta_{m_2 n_2} \delta_{m_3 n_3}$$

Damit sind auch die $\psi_{\vec{n}l}(r)Y_{lm}(\theta,\varphi)$ ein vollständiges Funktionensystem!

$$|n_1, n_2, n_3\rangle = \alpha_{n_1, n_2, n_3, s, l, m} \psi_{\vec{n}l}(r) Y_{lm}(\theta, \varphi) |\vec{n}, l, m\rangle$$

Die Grundzustandswellenfunktion ist proportional zu $e^{-\frac{m\omega}{2\hbar}r^2}$

Bewegung im Zentralpotential, Drehimpuls

7 Mathematischer Formalismus der Quantenmechanik

7.1 Hilbertraum

i) \mathscr{H} : Vektorraum mit Elementen $|\varphi\rangle$, $|\psi\rangle$

$$|\varphi\rangle + |\psi\rangle; \quad \lambda |\varphi\rangle; \quad 0 \in \mathscr{H}$$

ii) Dualer Vektorraum \mathscr{H}^*

$$\begin{aligned} |\varphi\rangle \in \mathscr{H} \to \langle \varphi| \in \mathscr{H}^* \\ \lambda |\varphi\rangle \to \lambda^* \langle \varphi| \end{aligned}$$

iii) Skalarprodukt:

e.g. $\int dx \ \psi^*(x)\varphi(x)$ Norm: $\|\varphi\| = \sqrt{\langle \varphi | \varphi \rangle}, \ \|\varphi\| < \infty$

iv) \mathscr{H} ist **vollständig**:

Sei $|\varphi_n\rangle$ eine Cauchy-Folge, $|\varphi_n\rangle \in \mathscr{H}$. Dann existiert für jedes $\epsilon \in \mathbf{R}_+$ ein n_0 , so dass für alle $m, n > n_0$ gilt $\|\varphi_m - \varphi_n\| < \epsilon$. Vollständigkeit: Es existiert $|\varphi\rangle \in \mathscr{H}$ mit $\lim_{m\to\infty} \|\varphi_m - \varphi\| \to 0$; 'Grenzwert einer Cauchy-Folge' **in** \mathscr{H} ' Endlich-dimensionale Vektorräume sind immer vollständig!

v) \mathscr{H} ist seperabel

Es existiert eine abzählbare ON-Basis (Dies gilt immer für endlich-dimensionale Vektorräume.) ON-Basis $|\varphi_n\rangle$

$$egin{array}{rcl} \langle arphi_n | arphi_m
angle &=& \delta_{nm} \ | \psi
angle &=& \sum_n lpha_n | arphi_n
angle \end{array}$$

Beispiele

- $\begin{array}{l} \alpha) \quad M \mbox{-dimensionaler Zustandsraum} \\ |\psi\rangle : \quad M \mbox{-komponentiger komplexer Vektor} \\ (M = 2: \mbox{Zwei-Zustands-System}) \end{array}$
- β) quadratintegrable Funktionen in einer Dimension

7 Mathematischer Formalismus der Quantenmechanik

f(x); Basis $|n\rangle$ (Eigenzustände $a^{\dagger}a$)

$$|f\rangle = f(x) = \sum_{n=0}^{\infty} \alpha_n |n\rangle$$
$$= \sum_{n=0}^{\infty} \alpha_n \varphi_n(x)$$
$$= \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \vdots \end{pmatrix}$$
$$\langle g|f\rangle = \int_{-\infty}^{\infty} dx \ g^*(x) f(x)$$
$$= \sum_n \beta_n^* \alpha_n$$

 $\gamma)$ Funktionen auf der Kugeloberfläche; Basis $Y_{lm}(\theta,\varphi)$

$$\begin{aligned} |f\rangle &= f(\theta,\varphi) = \sum_{lm} \alpha_{lm} Y_{lm}(\theta,\varphi) \\ &= \sum_{lm} \alpha_{lm} |l,m\rangle \\ \langle g|f\rangle &= \dots \sum_{lm} \beta_{lm}^* \alpha_{lm} \\ &= \int d\varphi \ d\theta \ \sin \theta g^*(\theta,\varphi) f(\theta,\varphi) \end{aligned}$$

- $δ) Quadratintegrable Funktionen in drei Dimensionen Basis (1): |n, l, m \rangle = \psi_{nl}Y_{lm}(\theta, \varphi) Basis (2): |n_1, n_2, n_3 \rangle = |n_1\rangle |n_2\rangle |n_3\rangle$
- ϵ) periodische Funktionen Periode: L Beschränkung auf: $-\frac{L}{2} \leq x \leq \frac{L}{2}$ Basis: $\varphi_n(x) = \frac{1}{\sqrt{L}} \exp\left(\frac{2\pi i n x}{L}\right)$ (Funktionen auf Torus) Bemerkung: Ebene Wellen können als Grenzprozess $L \to \infty$ betrachtet werden: $\psi_p(x) = e^{i p x}$ bzw. $\frac{1}{\sqrt{L}} \exp i \vec{p} \vec{x}$

Axiom 6 Die möglichen Quantenzustände eines Systems werden durch Vektoren im Hilbertraum beschrieben.

 $Quantenzustand \equiv Wahrscheinlichkeitsamplitude$

Sie sind normiert: $\langle \psi | \psi \rangle = 1$

Es ist allerdings zu beachten, dass nicht jeder Vektor in \mathcal{H} ein Quantenzustand ist! (Nur die, die auf 1 normiert sind!)

$0 \in \mathcal{H}$, aber kein Quantenzustand

Allgemeine Eigenschaften von $|\varphi\rangle, |\psi\rangle \in \mathscr{H}$:

$$\begin{split} \|\varphi\| \in \mathbf{R}_{+} \text{ falls } |\varphi\rangle \neq 0 \\ \|0\| &= 0 \\ \|\varphi + \psi\| \leq \|\varphi\| + \|\psi\| \\ |\langle \psi|\varphi\rangle| \leq \|\varphi\| \cdot \|\psi\| \end{split}$$

7.2 Basis-Wechsel

 $\begin{array}{ll} \text{ON-Basis (1): } |n\rangle, & |\psi\rangle = \sum_n \alpha_n |n\rangle \\ \text{ON-Basis (2): } |M\rangle, & |\psi\rangle = \sum_M \beta_M |M\rangle \end{array}$

Beispiel

$$\begin{array}{ll} |n\rangle & \equiv & |\bar{n}lm\rangle \\ |M\rangle & \equiv & |n_1 \ n_2 \ n_3\rangle \end{array}$$

Wenn nun α_n bekannt ist, was sind dann die β_M ? Dazu benötigt man : $|n\rangle = \sum_M U_{Mn} |M\rangle$ dann folgt

$$\begin{aligned} |\psi\rangle &= \sum_{n} \alpha_{n} |n\rangle \\ &= \sum_{n.M} \alpha_{n} U_{Mn} |M\rangle \\ &= \sum_{M} \beta_{M} |M\rangle \\ \beta_{M} &= \sum_{n} U_{Mn} \alpha_{n} \quad ; \qquad (\vec{\beta} = U\vec{\alpha}) \end{aligned}$$

Übergangsmatrix

 $U_{Mn} = \langle M | n \rangle$

Beweis

$$\langle M|n\rangle = \langle M|\sum_{M'} U_{M'n}|M'\rangle$$

$$= \sum_{M'} U_{M'n}\langle M|M'\rangle$$

$$= \sum_{M'} U_{M'n}\delta_{M'M}$$

$$= U_{Mn}$$

also

$$|n
angle ~=~ \sum_{M} |M
angle \langle M|n
angle$$

Das Einschieben von Zwischenzuständen ist eine beliebte Methode $\sum_M |M\rangle \langle M| = 1$

 U_{Mn} : Matrixelemente einer **unitären** Matrix

$$\begin{array}{rcl} UU^{\dagger} &=& 1\\ U_{Mn}U^{\dagger}_{nM'} &=& \delta_{MM'}\\ U_{Mn}U^{\ast}_{M'n} &=& \delta_{MM'} \end{array}$$

7 Mathematischer Formalismus der Quantenmechanik

Beweis 1 Unitäre Transformationen erhalten die Norm
, $|n\rangle,~|M\rangle$ sind normiert. direkter Beweis

$$U_{Mn} = \langle M | n \rangle$$

$$U_{M'n}^* = \langle n | M' \rangle$$

$$= U_{nM'}^{\dagger}$$

Beweis 2

$$U_{Mn}U_{M'n}^* = \sum_n \langle M|n\rangle \langle n|M'\rangle$$

= $\langle M|\sum_n |n\rangle \langle n|M'\rangle$
= $\langle M|M'\rangle$
= $\delta_{MM'}$

Entwicklungskoeffizienten

$$|\psi\rangle = \sum_{n} \alpha_{n}| \underbrace{e_{n}}_{\text{Basis-vektoren}} \rangle = \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \end{pmatrix}$$
$$\alpha_{n} = \langle e_{n} | \psi \rangle$$

Beweis

$$\begin{array}{lll} \langle e_n | \psi \rangle & = & \sum_m \langle e_n | \alpha_m e_m \rangle \\ & = & \sum_m \alpha_m \langle e_n | e_m \rangle \\ & = & \alpha_n \end{array}$$

Wiederholung

Hilbertraum, ON-Basis $|n\rangle$; $\psi = \sum_{n} \alpha_{n} |n\rangle$; $\alpha_{n} = \langle n | \psi \rangle$ alternative ON-Basis $|M\rangle$ Basiswechsel $|n\rangle = \sum_{M} |M\rangle \langle M | n\rangle$ Entwicklungskoeffizienten $U_{Mn} = \langle M | n \rangle$ einer unitären Matrix $U^{\dagger}U = \mathbf{1}$

7.3 Lineare Operatoren

7.3.1 Defintion, Linearität

 $\begin{array}{l} A \ (\text{oder} \ \hat{A}) \\ \text{Definitions bereich von} \ A : \ \mathscr{H}_A \subset \mathscr{H} \end{array}$

 $\mathscr{H}_A \xrightarrow{A} \mathscr{H}$: lineare Abbildung

$$\begin{aligned} |\psi\rangle & \longrightarrow A|\psi\rangle &= |A\psi\rangle \in \mathscr{H} \\ A(|\psi\rangle + |\varphi\rangle) &= A|\psi\rangle + A|\varphi\rangle \\ A|\lambda\psi\rangle &= \lambda A|\psi\rangle = (\lambda A)|\psi\rangle \end{aligned}$$

 $A + B, \lambda A$ seien definiert

Beispiele

- $\alpha)$ A: komplexe $M\times M$ -Matrizen
- $\begin{array}{l} \beta) \ |\varphi\rangle = f(x); \, \text{quadratintegrabel} \\ A = \frac{\partial}{\partial x} \\ \mathscr{H}_A: \, \text{differenzierbare quadratintegrable Funktionen} \end{array}$

7.3.2 adjungierter Operator A^{\dagger}

$$\langle \psi | \xrightarrow{A'} \langle A^{\dagger} \psi |$$
 Abbildung in \mathscr{H}^*

Definition 1

$$\begin{array}{lll} \langle A^{\dagger}\psi|\varphi\rangle &=& \langle\psi|A\varphi\rangle\\ (A^{\dagger}_{mn}\psi_{n})^{*}\varphi_{m} &=& \varphi_{n}^{*}A_{nm}\varphi_{m} \end{array}$$

Beispiel

 $\alpha)~A^{\dagger}$ ist hermitesch konjugiert zu $A,~A^{\dagger}=(A^{T})^{*}$ Summe, Multiplikation mit Skalar

$$(\alpha A + \beta B)^{\dagger} = \alpha^* A^{\dagger} + \beta^* B^{\dagger}$$

7.3.3 Operator-Multiplikation

 $AB \equiv \underbrace{A \cdot B}_{\text{Matrixmultiplikation}} \equiv \underbrace{A \circ B}_{\text{Hintereinanderausführen der Abbildungen}}$

$$\begin{split} \mathscr{H}_B \xrightarrow{B} \mathscr{A} \xrightarrow{A} \mathscr{H} &= \mathscr{B} \xrightarrow{AB} \mathscr{H} \\ AB|\psi\rangle &= A|B\psi\rangle &= |AB\psi\rangle \\ \mathrm{Im} \ \mathrm{Allgemeinen} \quad AB|\psi\rangle &= BA|\psi\rangle! \end{split}$$

Bei Drehungen gilt die letzte Aussage. Das Operator-Produkt ist assoziativ, nicht kommutativ.

7.4 Selbstadjungierte Operatoren (hermitesche Operatoren)

$$A^{\dagger} = A$$

Es gilt für $A^{\dagger} = A$:

 $\begin{array}{lll} \langle A\psi|\varphi\rangle & = & \langle\psi|A\varphi\rangle\\ & = & \langle A^{\dagger}\psi|\varphi\rangle \end{array}$

für alle A (auch $A \neq A^{\dagger}$)

$$\langle A\psi|\varphi\rangle = \langle \varphi|A\psi\rangle^* \quad (\text{also für } A^{\dagger} = A \text{ auch }) \Rightarrow$$

 $\langle \psi | A | \varphi \rangle = \langle \varphi | A | \psi \rangle^*$ falls $A^{\dagger} = A$

7 Mathematischer Formalismus der Quantenmechanik

damit $(\varphi = \psi) \Rightarrow$

$$\langle \psi | A | \psi \rangle = \langle \psi | A | \psi \rangle^*$$

Damit ist gezeigt, dass die Erwartungswerte hermitescher Operatoren reell sind.

Beispiel

$$P = P^{\dagger}$$

$$\langle P\varphi | \psi \rangle = \int_{-\infty}^{\infty} dx \left(-i\hbar \frac{\partial}{\partial x} \varphi(x) \right)^{*} \psi(x)$$

$$= i\hbar \int dx \frac{\partial \varphi^{*}}{\partial x} \psi(x)$$

$$= -i\hbar \int dx \varphi^{*} \frac{\partial \psi}{\partial x}$$

$$= \langle \varphi | P\psi \rangle$$

Einfache Eigenschaften:

Sei *B* ein beliebiger Operator: $(B^{\dagger})^{\dagger} = B$; *BB*^{\dagger} und *B*^{\dagger}*B* sind selbstadjungiert, (aber im Allgemeinen nicht identisch)

Beweis

$$(BB^{\dagger})^{\dagger} = (B^{\dagger})^{\dagger} \cdot B^{\dagger}$$
$$= BB^{\dagger}$$
$$(B^{\dagger}B)^{\dagger} = B^{\dagger}(B^{\dagger})^{\dagger}$$
$$= B^{\dagger}B$$

Axiom 7 Physikalisch beobachtbare Größen (Observablen) sind lineare selbstadjungierte Operatoren zugeordnet.

Nicht jeder Operator ist selbstadjungiert $A \neq A^{\dagger}$.

Axiom 8 Ein normierter Zustand ψ beschreibt eine Wahrscheinlichkeitsamplitude. Dies erlaubt Aussagen über die statistische Verteilung von Messergebnissen für Ensemble (viele unabhängige gleichpräparierte Systeme). Der Erwartungswert einer Observablen ist der Mittelwert über viele Messungen im Ensemble. Er ist gegeben durch

$$\begin{array}{lll} \langle A \rangle & = & \langle \psi | A \psi \rangle \\ Erwartungswert & Skalarprodukt \\ & \equiv & \langle \psi | A | \psi \rangle \\ & = & \langle \psi A \psi \rangle \end{array}$$

 $\langle A \rangle$ wird auch oft Erwartungswert des Operators genannt.

7.5 Spektrum von Operatoren

• Das Spektrum von A entspricht der Menge aller Eigenwerte von A.

$$spec(A) = \{a_n\}$$
$$A \ \psi_n = a_n \psi_n$$

• diskretes Spektrum:

Ein diskretes Spektrum ist eine abzählbare Menge von diskreten Eigenwerten. Die Eigenvektoren zu verschiedenen Eigenwerten hermitescher Operatoren sind orthogonal.

$$\begin{aligned} A\psi_n &= a_n\psi_n\\ A\psi_{n'} &= a_{n'}\psi_{n'}\\ A &= A^{\dagger}\\ a_n &\neq a_{n'} \Rightarrow \langle \psi_n | \psi_{n'} \rangle = 0 \end{aligned}$$

Beweis

$$\begin{split} \langle \psi_n | A | \psi_{n'} \rangle &= a_{n'} \langle \psi_n | \psi_{n'} \rangle \\ &= \langle \psi_{n'} | A | \psi_n \rangle^* \\ &= (a_n \langle \psi_{n'} | \psi_n \rangle)^* \\ &= a_n \langle \psi_n | \psi_{n'} \rangle \\ \Rightarrow (a_n - a_{n'}) \langle \psi_n | \psi_{n'} \rangle &= 0 \end{split}$$

q.e.d.

- entartetes Spektrum: Bei einem entarteten Spektrum hat mindestens ein Eigenwert mehr als einen linear unabhngigen Eigenvektor.
- kontinuierliches Spektrum:
 Es gibt Bereiche, in denen Eigenwerte als kontinuierliche Funktion einer (oder mehrerer Variablen) geschrieben werden können.
 → Dies ist der Grenzfall von diskreten Spektren, wenn der Abstand zwischen den Eigenwerten gegen Null geht.
 (Beispiel: kontinuierliches Impulsspektrum, aber die Eigenfunktionen sind nicht normierbar)
- Eigenvektoren sind normierbar (Definition von Eigenvektor in $\mathscr{H})$

7.6 ON-Basis

Für einen beliebigen selbstadjungierten Operator A mit diskretem Spektrum existiert eine vollständige orthonormierte Basis von Eigenzuständen.

Beweis

i) Das Spektrum ist nicht entartet \Rightarrow Eigenzustände orthogonal \rightarrow Normierung \rightarrow ON-Basis

ii) Entartung:

Zum Eigenwert a_n existieren $l^{(n)}$ linear unabhängige Eigenvektoren. Die Eigenvektoren zum Eigenwert a_n bilden wieder einen Vektorraum (Unterraum von \mathscr{H}) der Dimension $l^{(n)}$. Man wählt nun eine ON-Basis in diesem Raum.

Zu jedem hermiteschen Operator (mit diskretem Spektrum) gibt es (mindestens) eine vollständige ON-Basis bestehend aus den Eigenvektoren. (\mathscr{H} vollständig und seperabel) (Hermitesche Matrizen $A = A^{\dagger}$ können durch geeignete unitäre Transformationen $(A' = UAU^{-1}, U^{\dagger}U = 1)$ diagonalisiert werden) Beispiel: harmonischer Oszillator, $|n\rangle$, Eigenvektoren zu H beziehungsweise \hat{n} . 7 Mathematischer Formalismus der Quantenmechanik

Wahrscheinlichkeits-Interpretation der Entwicklungskoeeffizienten Sei $\{\psi_n\}$ $(\psi_n \equiv |\psi_n\rangle)$ eine vollständige ON-Basis zu $A(A = A^{\dagger})$ mit $A\psi_n = a_n\psi_n$. Ein beliebiger normierter Zustand ist

$$\psi = \sum_{n} \alpha_n \psi_n$$

Falls das Spektrum nicht entartet ist gilt:

 $w_n = |\alpha_n|^2$ = Wahrscheinlichkeit, dass bei einer Messung der Eigenwert a_n gefunden wird $\langle A \rangle = \sum_n |\alpha_n|^2 a_n$ = $\sum_n w_n a_n$ $\sum_n w_n = 1$

Einfach Verallgemeinerung für entartete Spektren

$$w_n = \sum_l |\alpha_n^{(l)}|^2$$

Axiom 9 Nach Messung einer Observablen A mit Messergebnis a_n befindet sich das System in einem Eigenzustand von A mit Eigenwert a_n

$$A\psi_n = a_n\psi_n$$

 a_n gemessen \Rightarrow Wahrscheinlichkeit für Messwert $a_{n'} \neq a_n$ ist null! Die Messung verändert den Zustand! Nicht nur unser Wissen darüber!

7.7 Darstellung von Operatoren

Darstellung von A

Wiederholung: $A = A^{\dagger}$: Existieren einer vollständigen ON-Basis von Eigenzuständen ON-Basis zu A: $|e_n\rangle$ mit $A|e_n\rangle = a_n|e_n\rangle$, $a_n \in \mathbf{R}$

$$A = \sum_n |e_n\rangle a_n \langle a_n|$$

(Dies ergibt eine diagonale Matrix mit den Eigenwerten a_n !)

$$\begin{aligned} A|e_n\rangle &= \sum_n |e_n\rangle a_n \langle e_n|e_m\rangle \\ &= \sum_n |e_n\rangle a_n \delta_{nm} \\ &= a_m |e_m\rangle \\ \langle e_m|A &= a_m \langle e_m| \end{aligned}$$

Einheitsmatrix

$$\mathbf{1} = \sum_{n} |e_n\rangle \langle e_n|$$

Das 'Einschieben von Zwischenzuständen ' entspricht dabei einer Multiplikation mit der Einheitsmatrix.

$$f(A) = \sum_{n} |e_n\rangle f(a_n) \langle e_n|$$

Man betrachte einen beliebigen Operator ${\cal B}$ in ON-Basis zu ${\cal A}$

$$B = |e_m\rangle B_{mn} \langle e_n| \quad \text{mit Einsteinscher Summenkonvention}$$
$$\equiv \sum_{m,n} |e_m\rangle B_{mn} \langle e_n|$$
$$B|e_{n'}\rangle = |e_m\rangle B_{mn} \langle e_n|e_{n'}\rangle$$
$$= |e_m\rangle B_{mn'} \quad \text{nicht: } B_{n'm}|e_m\rangle$$

 $\langle e_m | B | e_n \rangle = \underbrace{B_{mn}}$

Matrixelement von
$$B$$

Beweis

Wirkung von B auf beliebige $|\psi\rangle = \alpha_n |e_n\rangle$:

7.8 Kommutator

$$[A,B] = AB - BA$$

für $[A, B] \neq 0$:

Ein Zustands ψ kann nicht simultan Eigenzustand zu A und zu B sein, falls $[A, B]\psi \neq 0!$

Beweis Sei

$$\begin{array}{rcl} A\psi &=& a\psi \\ B\psi &=& b\psi \\ \Rightarrow \\ AB\psi &=& ab\psi \\ BA\psi &=& ba\psi = ab\psi \\ [A,B]\psi &=& 0 & {\rm Widerspruch} \end{array}$$

scharfer Messwert von A (Eigenzustand zu A) \Rightarrow kein scharfer Messwert von B sondern eine Verteilung! Erinnerung: $[P,Q] = -i\hbar$ Kein Zustand kann gleichzeitig scharfen Wert von Ort und Impuls haben!

Für [A, B] = 0: Es gibt eine vollständige ON-Basis von Vektoren, die simultan Eigenvektoren zu A und zu B sind!

Beweis

ON-Basis für $A, Ae_n = a_n e_n$ $\Rightarrow ABe_n = BAe_n = a_n Be_n$ $\Rightarrow Be_n$ ist Eigenvektor von A mit dem Eigenwert a_n entweder: a_n ist nicht entartet $\Rightarrow Be_n = b_n e_n, \ b_n = \langle e_n | B | e_n \rangle$ oder: a_n ist entartet $\Rightarrow B$ ist Operator im Unterraum mit den Eigenwerten a_n . Man wähle nun eine ON-Basis zu B in diesem Unterraum

q.e.d.

Beispiel

$$[P_x, P_y] = 0$$
$$[P_x, Q_y] = 0$$

Vollständiger Satz von kommutierenden Operatoren

ON-Basis von Eigenzuständen zu A, B, C, \ldots

$$\begin{array}{lll} A|e_n\rangle &=& a_n|e_n\rangle \\ B|e_n\rangle &=& b_n|e_n\rangle, & \dots \end{array}$$

so dass jedes Basiselement eindeutig durch Eigenwerte $(a_n, b_n, c_n, ...)$ charakterisiert ist. (keine weitere Entartung)

Beispiel: Wasserstoff- Atom

 $H(n), L^2(l), L_z(m), S_z(m_z)$

Eine bessere Bezeichnung wäre: vollständiger Satz von Quantenzahlen. Eigentlich genügen, wenn die Entartung aufgehoben ist, die Eigenwerte von H, dennoch ist es praktisch die $n \ l \ m \ m_z$ -Basis zu kennen.

7.9 Heisenberg'sche Unschärferelation

A, B selbstadjungierte Operatoren

$$\Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2} \\ = \sqrt{\langle (A - \langle A \rangle)^2 \rangle}$$

Unschärferelation

$$\Delta A \Delta B \geq \frac{1}{2} |\langle [A,B] \rangle|$$

Man muss hier beachten, dass $\Delta A, \Delta B, \langle [A, B] \rangle$ im Allgemeinen Eigenschaften eines Zustands sind!

Beweis mit Schwarzscher Ungleichung

$$\begin{array}{rcl} \langle A^2 \rangle \langle B^2 \rangle & \geq & |\langle AB \rangle|^2 \Leftrightarrow \\ \langle A\psi | A\psi \rangle \langle B\psi | B\psi \rangle & \geq & |\langle A\psi | B\psi \rangle|^2 \Leftrightarrow \\ \|A\psi\| \ \|B\psi\| & \geq & |\langle A\psi | B\psi \rangle|^2 \end{array}$$

$$\begin{aligned} \Delta A \Delta B &= \sqrt{\langle (A - \langle A \rangle)^2 \rangle \langle (B - \langle B \rangle)^2 \rangle} \\ &\geq |\langle (A - \langle A \rangle) (B - \langle B \rangle) \rangle| \\ &= \left| \left\langle \frac{1}{2} \left\{ (A - \langle A \rangle), (B - \langle B \rangle) \right\} + \frac{1}{2} [(A - \langle A \rangle), (B - \langle B \rangle)] \right\rangle \right| \end{aligned}$$

verwende

$$[(A - \langle A \rangle), (B - \langle B \rangle)] = AB - \langle A \rangle B - \langle B \rangle A + \langle A \rangle \langle B \rangle$$
$$-BA + \langle B \rangle A + \langle A \rangle B - \langle B \rangle \langle A \rangle$$
$$= [A, B]$$

damit ist

$$\Delta A \Delta B \geq \frac{1}{2} |\langle \{ (A - \langle A \rangle), (B - \langle B \rangle) \} \rangle + \langle [A, B] \rangle$$

verwende

$$c_1 = \{A - \langle A \rangle, B - \langle B \rangle\}: \text{ reell} \\ c_2 = \langle [A, B] \rangle: \text{ rein imaginär}$$

 dann

$$\frac{|c_1 + c_2| = \sqrt{c_1^2 + c_2^2} \ge \sqrt{c_2^2} = |c_2|}{\Delta A \Delta B \ge \frac{1}{2} |\langle [A, B] \rangle|}$$

Beweis (allgemein für A, B hermitesch)

1) AB + BA ist hermitesch

$$(AB + BA)^{\dagger} = B^{\dagger}A^{\dagger} + A^{\dagger}B^{\dagger}$$
$$= BA + AB$$

 $\{A,B\}$ hat reelle Erwartungswerte

2) AB - BA ist antihermetisch

$$[A, B]^{\dagger} = B^{\dagger}A^{\dagger} - A^{\dagger}B^{\dagger}$$
$$= BA - AB$$
$$= -[A, B]$$

- [A, B] hat rein imaginäre Erwartungswerte
- 3) antihermetische Operatoren (
 $C=-C^\dagger)$ haben rein imaginäre Eigenwerte $\imath C$ ist hermitesch

$$(iC)^{\dagger} = -iC^{\dagger}$$
$$= iC$$

iC: reelle Eigenwerte λ_n C: imaginäre Eigenwerte $-i\lambda_n$

Beispiele für die Unschärferelation

 $A = P, \ B = Q, [P,Q] = -i\hbar$ $\Delta P \ \Delta Q \ge \frac{\hbar}{2}$

Was wir allerding bereits in den Übungen am Wellenpaket sehen konnten!

Aber:
$$[P_x, Q_y] = 0$$
 $\Delta P_x \ \Delta Q_y \ge 0$

Allgemein: $\Delta P_i \ \Delta Q_j \geq \frac{\hbar}{2} \delta_{ij}$

keine klassischen Bahnen!

7.10 Darstellungstheorie

Sei $|a_n\rangle$ ON-Basis zu Operator A $(A = A^{\dagger})$ und $|b_m\rangle$ ON-Basis zu Operator B $(B = B^{\dagger})$

beliebiger Zustand

$$\begin{aligned} |\varphi\rangle &= \sum_{n} |a_{n}\rangle \underbrace{\langle a_{n} | \varphi \rangle}_{A - \text{ Darstellung}} \\ &= \sum_{m} |b_{m}\rangle \underbrace{\langle b_{m} | \varphi \rangle}_{B - \\ \text{Darstellung}} \end{aligned}$$

Operator C

$$C = |a_n\rangle C_{nn'}^{(a)} \langle a_{n'}| \qquad C_{nn'}^{(a)} A - \text{Darstellung von } C$$
$$= |b_m\rangle C_{mm'}^{(b)} \langle b_{m'}| \qquad C_{mm'}^{(b)} B - \text{Darstellung von } C$$

Wie rechnet man die A-Darstellung in die B-Darstellung um?

$$\begin{aligned} |\varphi\rangle &= |b_m\rangle \langle b_m |\varphi\rangle \\ &= |b_m\rangle \langle b_m \underbrace{|a_n\rangle \langle a_n|}_{\mathbf{1}} \varphi\rangle \\ \Rightarrow \langle b_m |\varphi\rangle &= \sum_n U_{mn} \langle a_n |\varphi\rangle \\ U_{mn} &= \langle b_m |a_n\rangle \\ &= \langle a_n |b_m\rangle^* \end{aligned}$$

Es ist zu zeigen, dass U unitär ist.

$$\begin{split} |\varphi\rangle &= |a_{n'}\rangle\langle a_{n'}|b_{m}\rangle\langle b_{m}|a_{n}\rangle\langle a_{n}|\varphi\rangle\\ &= \sum_{n} |a_{n}\rangle\langle a_{n}|\varphi\rangle\\ \Rightarrow\rangle a_{n'}|b_{m}\rangle\langle b_{m}|a_{n}\rangle &= \delta_{n'n}\\ U_{mn'}^{*}U_{mn} &= \delta_{n'n}\\ U^{\dagger}U &= \mathbf{1} \end{split}$$

Operatoren werden entsprechend transformiert

$$C^{(b)} = UC^{(a)}U^{\dagger}$$

Skalarprodukt

$$\begin{split} \langle \tilde{a} | C^{(a)} | a \rangle &= \langle \underbrace{\vec{a} | C^{(a)}}_{\text{Vektor-produkt}} \vec{a} \rangle \\ &= \sum_{m,n} \tilde{a}_m^* C_{mn}^{(a)} a_n \\ &= \langle \vec{a} U^{\dagger} | U C^{(a)} U^{\dagger} | U \vec{a} \rangle \\ &= \langle \vec{b} | C^{(b)} | \vec{b} \rangle \end{split}$$

unitäre Transformationen: lineare Transformationen, die $\|\varphi\|$ invariant lassen.

7.11 Verallgemeinerung: Orts- und Impulsdarstellung

Operatoren mit kontinuierlichem Spektrum (Impuls in unendlichen Volumen, Ort (nicht auf Gitter))

Impulsoperator \vec{P} Eigenzustand $|\vec{p}\rangle$ $\vec{P}|\vec{p}
angle = \vec{p}|\vec{p}
angle$

 $|\vec{p}\rangle$ ist nicht normierbar!

(kein Hilbertraum!)

•

•

$$\langle \vec{p} | \vec{p'} \rangle = (2\pi)^d \delta^d (\vec{p} - \vec{p'})$$

(Kontinuumsnormierung)

$$ert arphi
angle = \int rac{dp}{2\pi} ert p
angle \underbrace{\langle p ert arphi
angle}_{arphi(p)};$$

 $\int rac{dp}{2\pi} arphi * (p) arphi(p) = 1$

Ortsoperator \vec{Q} Eigenzustand $|\vec{x}\rangle$

•

 $ec{Q}ec{x}
angle = ec{x}ec{x}
angle$

• Normierung

$$\langle \vec{x}' | \vec{x} \rangle = \delta^d (\vec{x} - \vec{x}')$$

Ortsdarstellung

•

.

$$\underbrace{|\varphi\rangle}_{\substack{\text{abstrakter}\\ \text{Vektor}}} = \int dx |x\rangle \underbrace{\langle x|\varphi\rangle}_{\substack{\text{Wellen-}\\ \text{funktion }\varphi(x)}}$$

oft: feste Basis (Ortsdarstellung), Identifikation von $|\varphi\rangle$ mit $\varphi(x)$

$$\begin{aligned} \langle \psi | \varphi \rangle &= \int d^d x \ \psi^*(x) \varphi(x) \\ \langle \psi | A(x) \varphi \rangle &= \int dx' \ dx \ \langle \psi | x' \rangle \langle x' | A | x \rangle \langle x | \varphi \rangle \\ &= \int dx' \ dx \ \psi(x')^* \varphi(x) A(x) \delta(x - x') \\ &= \int dx \ \psi^*(x) \varphi(x) A(x) \end{aligned}$$

• $|x'\rangle$ in Ortsdarstellung: $\varphi_{x'}(x)$?

$$\begin{aligned} |x'\rangle &= \int dx \ |x\rangle \underbrace{\langle x|x'\rangle}_{\varphi_{x'}(x)} \\ \varphi_{x'}(x) &= \delta(x-x') \end{aligned}$$

 \Rightarrow Wellen funktion als Distribution

7 Mathematischer Formalismus der Quantenmechanik

• $|p\rangle$ in Ortsdarstellung?

$$|p\rangle = \int dx |x\rangle \underbrace{\langle x|p \rangle}_{\substack{\varphi_p(x) \\ \text{Ortsdarstellung} \\ \text{von } |p \rangle}}$$
$$\varphi_p(x) = \langle x|p \rangle = e^{\frac{i}{\hbar}px}$$

Zu zeigen ist die Übereinstimmung mit

$$P|p\rangle = p|p\rangle$$

$$-i\hbar \frac{\partial}{\partial x}\varphi_{p}(x) = p\varphi_{p}(x)$$

$$P|p\rangle = \int dx' \, dx \, |x'\rangle \underbrace{\langle x'|P|x\rangle}_{-i\hbar\delta(x'-x)\frac{\partial}{\partial x}} \underbrace{\langle x|p\rangle}_{e^{\frac{1}{\hbar}px}}$$

$$= \int dx \, |x\rangle \left(-i\hbar \frac{\partial}{\partial x}\right) e^{\frac{1}{\hbar}px}$$

$$= \int dx \, |x\rangle p\langle x|p\rangle$$

$$= p|p\rangle$$

Fouriertransformation $\hbar = 1$ (bzw $p \rightarrow k = \frac{p}{\hbar}$)

$$\begin{split} \varphi(x) &= \langle x | \varphi \rangle \\ &= \int \frac{d^d p}{(2\pi)^d} \langle x | p \rangle \langle p | \varphi \rangle \\ &= \int \frac{d^d p}{(2\pi)^d} e^{i p x} \varphi(p) \end{split}$$

invariante Beschreibung/ Darstellung

 $\varphi(p)$: Fouriertransformierte von $\varphi(x)$

in gegebener Basis: $|\psi\rangle$ kann mit $\varphi(x)$ assoziert werden, unsere Schreibweise, wie $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$.

Innere Fourier-Transformation

$$|x\rangle = \int \frac{d^d p}{(2\pi)^d} |p\rangle \langle p|x\rangle$$

 $\begin{array}{l} \langle p|x\rangle \text{: Impuls$ $darstellung von } |x\rangle \\ \langle p|x\rangle = \langle x|p\rangle^* = e^{-\frac{i}{\hbar}px} \\ \text{Wie sieht der Orts$ operator in der Impuls $darstellung aus? \\ (Impuls$ $darstellung: statt <math display="inline">\psi(x)$ jetzt $\varphi(p)$ (Fourier transformierte)) [P,Q] in Impuls darstellung

Wahl der Basis

im Prinzip beliebig in der Praxis: dem Problem angepasst Ortsraum für Bindungszustände, oder E_n -Eigenzustände im Impulsraum für Streuprobleme.

Maximaler Satz kommutierender Operatoren, simultane Eigenzustände.

8 Stationäre Störungsrechnung und Näherungsverfahren für gebundene Zustände

Nur wenige Problem der Quantenmechanik lassen sich exakt lösen, dazu gehören der harmonische Oszillator, das Coulombpotential, das Kastenpotential, die sich gut dazu eignen die Grundlagen zu studieren. In den meisten praktischen Anwendungen sind die Probleme nicht exakt lösbar. Deshalb wenden wir Näherungsverfahren an, z.b. die Störungstheorie. Diese eignet sich für Probleme, die einem exakt lösbaren Problem in gewisser Weise ähnlich sind. Dazu muss die exakte Lösung bekannt sein!

$$H = \underbrace{H_0}_{\text{exakte Lösung}} + \lambda \underbrace{W}_{\text{Störung}}$$

bekannt
$$H_0 |\varphi_n\rangle = E_n^{(0)} |\varphi_n\rangle$$

gesucht $H |\varphi_n\rangle = E_n(\lambda) |\psi_n(\lambda)\rangle$
 $E_n(0) = E_n^{(0)}$, $E_n(1) = E_n$

Beispiel

$$H_0 = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2$$

$$W = \gamma x^4$$

$$H_0|n\rangle = E_n^{(0)}|n\rangle$$

$$E_n^{(0)} = \hbar\omega\left(n + \frac{1}{2}\right)$$

$$H|\psi_n\rangle = E_n|\psi_n\rangle$$

$$|\psi_n\rangle = ?$$

$$E_n = ?$$

Beispiel: Wasserstoffatom Heuristische Begründung für die 'Feinstrukturkorrekturen'

1) Relativistische Energie- Impuls- Beziehung

$$E = \sqrt{\vec{p}^2 c^2 + m^2 c^4}$$

= $mc^2 + \frac{\vec{p}^2}{2m} - \underbrace{\frac{1}{8} \frac{(\vec{p}^2)^2}{m^3 c^2}}_{W_p} + \dots$

2) Spin- Bahn- Kopplung

$$W = \frac{Ze^2}{2m_e^2} \frac{1}{r^3} \vec{S} \cdot \vec{L}$$

Elektron 'sieht' elektrisches Feld:

$$ec{E} = -ec{
abla}\phi$$

 $= -rac{ec{r}}{r}\partial_r\phi$

 \Rightarrow Im Ruhesystem des Elektrons

$$\vec{B} = -\frac{1}{c}\vec{v}\times\vec{E}$$

Wechselwirkung mit Spin

$$\begin{aligned} -\frac{e}{m_e c} \vec{B} \cdot \vec{S} &= -\frac{e}{m_e c} \frac{1}{c} \left[\frac{\vec{p}}{m_e} \times \vec{r} \right] \cdot \vec{S} \frac{1}{r} \partial_r \phi \\ &= \frac{1}{m_e^2 c^2} \vec{L} \cdot \vec{S} \frac{1}{r} \partial_r V \end{aligned}$$

System des Elektrons \Rightarrow kein Inertialsystem \Rightarrow Thomas-Präzession \rightarrow Faktor $\frac{1}{2}$ Wasserstoffatom Spin-Bahn-Kopplung:

$$H = H_0 + W$$

$$H_0 = \frac{\vec{p}^2}{2m} - \frac{Ze^2}{r}$$

$$= \frac{p_r^2}{2m} + \frac{\vec{L}^2}{2mr^2} - \frac{Ze^2}{r}$$

$$W = \underbrace{\frac{Ze^2}{2m_e^2c^2} \frac{1}{r^3} \vec{S} \cdot \vec{L}}_{\text{Spin-Bahn-Kopplung}} - \underbrace{\frac{1}{8} \frac{(\vec{p}^2)^2}{m_e^3c^2}}_{\text{relativistische kinetische Energie}}$$

 $W \Rightarrow$ folgt aus relativistischer Wellengleichung für das Elektron: Dirac- Gleichung in einer Entwicklung nach $\left(\frac{v}{c}\right)^2 \sim (Z\alpha)^2$, $\alpha^2 \sim 10^{-4}$

Eigenwerte von H? Eigenwerte von H_0 bekannt: $E_n^{(0)}$. Man betrachte W als Störung. Wie ändert sich das Spektrum, wenn W 'eingeschaltet' wird? **stationäre Störungstheorie** $\Rightarrow H_0$ und W sind nicht explizit zeitabhängig!

Annahme: H_0 habe diskretes Energiespektrum.

8.1 Störungstheorie ohne Entartung

Es seien die Eigenwerte $E_n^{(0)}$ von H_0 nicht entartet. Ausgangslage:

$$H = H_0 + \lambda W$$

$$H_0 |\varphi_n\rangle = E_n^{(0)} |\varphi_n\rangle$$

$$\sum_n |\varphi_n\rangle \langle \varphi_n| = 1$$

$$\langle \varphi_n |\varphi_m\rangle = \delta_{nm}$$

$$H|\psi_n(\lambda)\rangle = E_n(\lambda)|\psi_n(\lambda)\rangle$$

Entwicklung von E_n und $|\psi_n\rangle$ nach Potenzen von λ . Die $E_n(\lambda)$ sollen analytisch von λ abhängen.

$$E_n(\lambda) = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots$$

$$|\psi_n(\lambda)\rangle = |\varphi_n\rangle + \lambda |\psi_n^{(1)}\rangle + \lambda^2 |\psi_n^{(2)}\rangle + \dots$$

Dies setzt man in die oben aufgeführte Gleichung ein und führt einen Koeffizientenvergleich durch. $\lambda^s,\,s=0,1,2\ldots$

 $\lambda^0 \colon$

$$H_0 |\varphi_n\rangle = E_n^{(0)} |\varphi_n\rangle$$
$$(H_0 - E_n^{(0)}) |\varphi_n\rangle = 0$$

 $\lambda^1:$

$$H_0|\psi_n^{(1)}\rangle + W|\varphi_n\rangle = E_n^{(1)}|\varphi_n\rangle + E_n^{(0)}|\psi_n^{(1)}\rangle$$

$$(H_0 - E_n^{(0)}) |\psi_n^{(1)}\rangle = (E_n^{(1)} - W) |\varphi_n\rangle$$

 $\lambda^2:$

$$H_0|\psi_n^{(2)}\rangle + W|\psi_n^{(1)}\rangle = E_n^{(0)}|\psi_n^{(2)}\rangle + E_n^{(1)}|\psi_n^{(1)}\rangle + E_n^{(2)}|\varphi_n\rangle$$

$$(H_0 - E_n^{(0)})|\psi_n^{(2)}\rangle = (E_n^{(1)} - W)|\psi_n^{(1)}\rangle + E_n^{(2)}|\varphi_n\rangle$$

 $\lambda^s:$

$$(H_0 - E_n^{(0)})|\psi_n^{(s)}\rangle = (E_n^{(1)} - W)|\psi_n^{(s-1)}\rangle + E_n^{(2)}|\psi_n^{(s-2)}\rangle + E_n^{(3)}|\psi_n^{(s-3)}|\psi_n^{(s-3)}\rangle + \dots + E_n^{(s)}|\varphi_n\rangle$$

Etwas ungewöhnliche Normierung

$$\begin{aligned} \langle \varphi_n | \psi_n(\lambda) \rangle &= 1 \\ 1 &= \langle \varphi_n | \psi_n(\lambda) \rangle \\ &= \underbrace{\langle \varphi_n | \varphi_n \rangle}_{=1} + \lambda \langle \varphi_n | \psi_n^{(1)} \rangle + \lambda^2 \langle \varphi_n | \psi_n^{(2)} \rangle + \dots \\ \Rightarrow \langle \varphi_n | \psi_n^{(s)} \rangle &= 0 \quad \forall s > 0 \end{aligned}$$

Dass dies möglich ist, werden wir weiter unten zeigen.

$$\lambda^{1} \colon (H_{0} - E_{n}^{(0)}) |\psi_{n}^{(1)}\rangle = (E_{n}^{(1)} - W) |\varphi_{n}\rangle$$

i) Entwicklung von $|\psi_n^{(1)}\rangle$ in der Basis $\{|\varphi_n\rangle\}$

$$\begin{split} |\psi_n^{(1)}\rangle &= C_{nn}^{(1)}|\varphi_n\rangle + \sum_{l\neq n} C_{nl}^{(1)}|\varphi_l\rangle \\ C_{nn}^{(1)} &= 0 \qquad , \quad \mathrm{da} \qquad \langle \varphi_n |\psi_n^{(1)}\rangle = 0 \end{split}$$

8 Stationäre Störungsrechnung und Näherungsverfahren für gebundene Zustände

$$\Rightarrow (H_0 - E_n^{(0)}) \sum_{l \neq n} C_{nl}^{(1)} |\varphi_l\rangle = (E_n^{(1)} - W) |\varphi_n\rangle$$

ii) von links mit $\langle \varphi_n |$:

$$\Rightarrow 0 = E_n^{(1)} - \langle \varphi_n | W | \varphi_n \rangle$$

$$W_{nn} := \langle \varphi_n | W | \varphi_n \rangle = E_n^{(1)}$$

Die Formel für Energieverschiebung in 1. Ordnung

$$E_n^{(1)} = W_{nn} := \langle \varphi_n | W | \varphi_n \rangle$$

ist sehr wichtig. Die Energieverschiebung eines gegebenen Zustands in erster Näherung ist gerade der Erwartungswert der Störung in diesem Zustand.

iii) von links mit $\left< \varphi_m \right|, m \neq n$

$$(E_m^{(0)} - E_n^{(0)})C_{nm}^{(1)} = -\langle \varphi_m | W | \varphi_n \rangle =: -W_{mn}$$

$$C_{nm}^{(1)} = \frac{W_{mn}}{E_n^{(0)} - E_m^{(0)}}$$

mit $W_{mn} := \langle \varphi_m | W | \varphi_n \rangle$

Also:

$$|\psi_n^{(1)}\rangle = \sum_{l \neq n} \frac{W_{ln}}{E_n^{(0)} - E_l^{(0)}} |\varphi_l\rangle$$

Nicht entartete Störungstheorie!

$$\lambda^2 \colon (H_0 - E_n^{(0)}) |\psi_n^{(2)}\rangle = (E_n^{(1)} - W) |\psi_n^{(1)}\rangle + E_n^{(2)} |\varphi_n\rangle$$

i) Entwicklung von $|\psi_n^{(2)}\rangle$ in der Basis $\{|\varphi_n\rangle\}$:

$$\begin{split} |\psi_n^{(2)}\rangle &= C_{nn}^{(2)} |\varphi_n\rangle + \sum_{l \neq n} C_{nl}^{(2)} |\varphi_l\rangle \\ C_{nn}^{(2)} &= 0, \quad \text{da } \langle \varphi_n |\psi_n^{(2)}\rangle = 0 \end{split}$$

$$(H_0 - E_n^{(0)}) \sum_{l \neq n} C_{nl}^{(2)} |\varphi_l\rangle = (E_n^{(1)} - W) \sum_{l \neq n} \frac{W_{ln}}{E_n^{(0)} - E_l^{(0)}} |\varphi_l\rangle + E_n^{(2)} |\varphi_n\rangle$$

ii) von links mit $\langle \varphi_n |$

$$0 = E_n^{(2)} - \sum_{l \neq n} \frac{W_{ln} \langle \varphi_n | W | \varphi_l \rangle}{E_n^{(0)} - E_l^{(0)}}$$
$$E_n^{(2)} = \sum_{l \neq n} \frac{W_{nl} W_{ln}}{E_n^{(0)} - E_l^{(0)}}$$
$$= \sum_{l \neq n} \frac{|W_{nl}|^2}{E_n^{(0)} - E_l^{(0)}}$$

iii) von links mit $\langle \varphi_m |, \qquad m \neq n$

$$(E_m^{(0)} - E_n^{(0)})C_{nm}^{(2)} = E_n^{(1)} \frac{W_{mn}}{E_n^{(0)} - E_m^{(0)}} - \sum_{l \neq n} \frac{W_{ml}W_{ln}}{E_n^{(0)} - E_l^{(0)}}$$

$$C_{nm}^{(2)} = \sum_{l \neq n} \frac{W_{ml} W_{ln}}{(E_n^{(0)} - E_l^{(0)})(E_n^{(0)} - E_m^{(0)})} - \frac{W_{mn} W_{nn}}{(E_n^{(0)} - E_m^{(0)})^2}$$

 $\lambda^{s} \colon (H_{0} - E_{n}^{(0)})|\psi_{n}^{(s)}\rangle = (E_{n}^{(1)} - W)|\psi_{n}^{(s-1)}\rangle + E_{n}^{(2)}|\psi_{n}^{(s-2)}\rangle + \ldots + E_{n}^{(s)}|\varphi_{n}\rangle$

 $\begin{array}{ll} \text{von links mit } \langle \varphi_n | : \\ \text{beachte: } \langle \varphi_n | \psi_n^{(s)} \rangle = 0 \qquad \forall s > 0 \end{array}$

$$0 = \langle \varphi_n | E_n^{(1)} - W | \psi_n^{(s-1)} \rangle + E_n^{(2)} \underbrace{\langle \varphi_n | \psi_n^{(s-2)} \rangle}_{=0} + \dots + E_n^{(s)} \langle \varphi_n | \varphi_n \rangle$$
$$= -\langle \varphi_n | W | \psi_n^{(s-1)} \rangle + E_n^{(s)} \underbrace{\langle \varphi_n | \varphi_n \rangle}_{=1}$$

$$E_n^{(s)} = \langle \varphi_n | W | \psi_n^{(s-1)} \rangle$$

Um E_n in s'ter- Ordnung zu berechnen, muss man 'nur' $|\psi_n\rangle$ in (s-1)'ter Ordnung kennen.

Anmerkungen zur Normierung Da $(H_0 - E_n^{(0)})|\varphi_n\rangle = 0$, kann man zu jedem $|\psi_n^{(s)}\rangle$ ein Vielfaches von $|\varphi_n\rangle$ hinzuaddieren ohne den Wert der linken Seite zu verändern. Also wird sich auch die Abhängigkeit des Zustandes $|\psi_n^{(s)}\rangle$ von den Zuständen niedriger Ordnung nicht ändern:

$$\begin{split} |\psi_n^{(s)}\rangle &= |\varphi_n\rangle C_{nn}^{(s)} + \sum_{l\neq n} C_{nl}^{(s)} |\varphi_l\rangle \\ \Rightarrow |\tilde{\psi}_n^{(s)}\rangle &:= |\psi_n^{(s)}\rangle - C_{nn}^{(s)} |\varphi_n\rangle \\ &= \sum_{l\neq n} C_{nl}^{(s)} |\varphi_l\rangle \\ \Rightarrow \langle \varphi_n |\tilde{\psi}_n^{(s)}\rangle &= 0 \quad \forall s > 0 \end{split}$$

Dies kann man also stets erreichen.

=

Anmerkungen:

$$|\psi_n^{(1)}\rangle = \sum_{l \neq n} \underbrace{\frac{W_{ln}}{\underbrace{E_n^{(0)} - E_l^{(0)}}_{C_{nl}^1}}}_{C_{nl}^1} |\varphi_l\rangle$$

8 Stationäre Störungsrechnung und Näherungsverfahren für gebundene Zustände

a) Wegen des Energienenners genügt es häufig, nur jene $C_{nl}^{(1)}$ zu berücksichtigen, deren *l*- Werte zu Energien $E_l^{(0)}$ gehören, die dem betrachteten Energiewert $E_n^{(0)}$ benachbart sind.

b)

$$E_n^{(2)} = \sum_{l \neq n} \frac{W_{nl} W_{ln}}{E_n^{(0)} - E_l^{(0)}} = \sum_{l \neq n} \frac{|W_{nl}|^2}{E_n^{(0)} - E_l^{(0)}}$$

 \Rightarrow Für den Grundzustand E_0 ist die Verschiebung zweiter Ordnung $E_0^{(2)} < 0$ (also negativ).

- c) Falls die Matrixelemente von W von vergleichbarer Größe sind, liefern benachbarte Niveaus einen größeren Beitrag in der 2. Ordnung Störungstheorie als entfernte.
- d) Falls ein wichtiges (großes Matrixelement, kleiner Abstand) Niveau $E_m^{(0)}$ oberhalb von $E_n^{(0)}$ liegt, so wird E_n nach unten und E_m nach oben gedrückt; die Niveaus stoßen sich in der 2. Ordnung ab.
- e) Wenn es sich bei der Störung um ein *Potential* handelt, $W = W(\vec{x})$, so hat die Energieverschiebung in erster Ordnung *dasselbe Vorzeichen* wie die Störung. Es ist dann

$$E_n^{(1)} = \int dx^3 \varphi_n^*(\vec{x}) W(\vec{x}) \varphi_n(\vec{x})$$

 \Rightarrow große Energieverschiebung nur dann, wenn Störung und Wahrscheinlichkeitsdichte am selben Ort groß sind.

f) Aus (3)

$$E_n^{(2)} = \sum_{l \neq n} \frac{|W_{nl}|^2}{E_n^{(0)} - E_l^{(0)}}$$

sieht man: Für Konvergenz der Störungsreihe müssen auch die Nichtdiagonalelemente von W (viel) kleiner sein als die Energiedifferenz im Nenner.

g) Da nach Annahme das Niveau n nicht entartet ist, sind die auftretenden Energienenner von Null verschieden. Dies bleibt der Fall, auch wenn eins der *anderen* Niveaus k entartet ist.

Achtung!: Die $|\psi_n^{(s)}\rangle$ sind im Allgemeinen *nicht* automatisch normiert!

8.2 Entartete Störungsrechnung

 H_0 habe entartete Energieniveaus: Dies tritt häufig auf, meist auf Grund einer zusätzlichen Symmetrie, die dann durch die W ganz oder teilweise aufgehoben werden kann. Im Falle der Entartung ergibt sich ein Problem mit den Nennern.

$$W_{mn} = \langle \varphi_m | W | \varphi_n \rangle$$

= $C_{nm}^{(1)} (E_n^{(0)} - E_m^{(0)}); \qquad m \neq n$

Für $E_n^{(0)} = E_m^{(0)}, W_{mn} \neq 0 \Rightarrow$ Widerspruch!

$$H_0|\varphi_n^{\alpha}\rangle = E_n^{(0)}|\varphi_n^{\alpha}\rangle, \qquad \alpha = 1, \dots, g_n$$

 g_n entartete Energieniveaus

 $|\varphi_n^{\alpha}\rangle$ sei ein dazugehöriger Satz von Basisvektoren

$$W_n^{\alpha\beta} = \langle \varphi_n^{\alpha} | W | \varphi_n^{\beta} \rangle \qquad g_n \times g_n \text{ Matrix}$$

Wir werden sehen:

Wählt man eine neue Basis, so dass $W_n^{\alpha\beta} = w_n^{\alpha}\delta_{\alpha\beta}$ so gibt es obiges Problem nicht mehr. \Rightarrow Dann kann der gleiche Formalismus wie bei der nicht entarteter Störungstheorie angewendet werden. **Entartete Störungsrechnung**:

$$H_0|\varphi_n^{\alpha}\rangle = E_n^{(0)}|\varphi_n^{\alpha}\rangle, \qquad \alpha = 1, \dots, g_n$$

 g_n - fach entartete Energieniveaus

Linearkombinationen der $|\varphi_n^{\alpha}\rangle$, $\alpha = 1, \ldots, g_n$ sind wieder Eigenzustände zu H_0 zum Eigenwert $E_n^{(0)}$. Sei weiterhin:

$$\langle \varphi_m^{\alpha} | \varphi_n^{\beta} \rangle = \delta_{mn} \delta_{\alpha\beta}$$

 $|\varphi_n^{\alpha}\rangle$, $\alpha = 1, \ldots, g_n$ linear unabhängige Eigenvektoren, die den g_n - dimensionalen Eigenraum U_{g_n} von $E_n^{(0)}$ aufspannen. Diese sind nur bis auf eine unitäre Transformation in U_{g_n} bestimmt.

Ziel: Bestimme die Eigenwerte und Eigenvektoren des gestörten Hamilton Operators

$$H = H_0 + \lambda W$$

$$H|\psi_n^{\alpha}(\lambda)\rangle = E_n^{\alpha}|\psi_n^{\alpha}(\lambda)\rangle$$

näherungsweise aus denen des ungestörten Problems.

Beachte: Die Entartung wird im Allgemeinen durch die Störung W aufgehoben \Rightarrow Eigenvektoren von H müssen den Index α erhalten.

Zentrale Annahme der Störungstheorie war, dass die Eigenzustände von H analytisch aus denen von H_0 hervorgehen (\rightarrow Entwicklung in Potenzreihe, s.o.)

Aber oft: Aufhebung der Entartung der Störung

- \rightarrow Nicht jeder Eigenzustand von H_0 kann analytisch mit einem Eigenzustand von Hzusammenhängen.
- → Wir müssen solche Linearkombinationen der $|\varphi_n^{\alpha}\rangle$ finden, aus denen exakte Eigenzustände $|\psi_n^{\alpha}(\lambda)\rangle$ bei Einschalten der Störung hervorgehen.

$$\lim_{\lambda \to 0} |\psi_n^{\alpha}(\lambda)\rangle = |\tilde{\varphi}_n^{\alpha}\rangle = \sum_{\beta=1}^{g_n} A_n^{\alpha\beta} |\varphi_n^{\beta}\rangle$$

 $|\tilde{\varphi}_n^\alpha\rangle=$ für die Störung geeignete Eigenvektoren im Eigenraum U_{g_n} ('der Störung Wangepasste' Eigenvektoren)

Aber: Finde diejenigen Linearkombinationen der $|\varphi_n^{\beta}\rangle$, die sich aus Eigenzuständen $|\psi_n^{\alpha}(\lambda)\rangle$ von H im Grenzwert $\lambda \to 0$ ergeben. Wir werden sehen: Dies sind solche, in denen W diagonal ist!

Annahme: Wir hätten die $|\psi_n^{\alpha}(\lambda)\rangle$ bereits gefunden, dann sollte gelten.

$$\lim_{\lambda \to 0} |\psi_n^{\alpha}(\lambda)\rangle = |\tilde{\varphi}_n^{\alpha}\rangle$$

Weiteres Vorgehen: ähnlich wie bei der nichtentarteten Störungsrechnung.

$$\begin{aligned} E_n^{\alpha} &= E_n^{(0)} + \lambda E_n^{\alpha(1)} + \lambda^2 E_n^{\alpha(2)} + \lambda^3 E_n^{\alpha(3)} + \dots \\ |\psi_n^{\alpha}\rangle &= |\tilde{\varphi}_n^{\alpha}\rangle + \lambda |\psi_n^{\alpha(1)}\rangle + \lambda^2 |\psi_n^{\alpha(2)}\rangle + \dots \end{aligned}$$

8 Stationäre Störungsrechnung und Näherungsverfahren für gebundene Zustände

Einsetzen in

$$(H_0 + \lambda W) |\psi_n^{\alpha}\rangle = E_n^{\alpha} |\psi_n^{\alpha}\rangle (H_0 + \lambda W) (|\tilde{\varphi}_n^{\alpha}\rangle + \lambda |\psi_n^{\alpha(1)}\rangle + \ldots) = (E_n^{(0)} + \lambda E_n^{\alpha(1)} + \ldots) (|\tilde{\varphi}_n^{\alpha}\rangle + \lambda |\psi_n^{\alpha(1)}\rangle + \ldots)$$

Ko effizient en vergleich

$$\lambda^{0}: \qquad (H_{0} - E_{n}^{(0)})|\tilde{\varphi}_{n}^{\alpha}\rangle = E_{n}^{(0)}|\tilde{\varphi}_{n}^{\alpha}\rangle$$
$$\lambda^{1}: \qquad (H_{0} - E_{n}^{(0)})|\psi_{n}^{\alpha(1)}\rangle = (E_{n}^{\alpha(1)} - W)|\tilde{\varphi}_{n}^{\alpha}\rangle$$
$$\vdots$$

i) Entwicklung der $|\tilde{\varphi}_n^{\alpha}\rangle$ nach orthonormierten Eigenvektoren $|\varphi_n^{\beta}\rangle$ des Eigenraumes U_{g_n}

$$|\tilde{\varphi}_{n}^{\alpha}\rangle=\sum_{\beta=1}^{g_{n}}A_{n}^{\alpha\beta}|\varphi_{n}^{\beta}\rangle$$

ii) Entwicklung von $|\psi_n^{\alpha(1)}\rangle$ nach vollständigem, orthonormierten System aller Eigenvektoren $|\varphi_l^{\beta}\rangle$, $\beta = 1, \ldots, g_l$

$$|\psi_n^{\alpha(1)}\rangle = \sum_l \sum_{\beta=1}^{g_l} C_{nl}^{\beta\alpha} |\varphi_l^\beta\rangle$$

 λ^1 :

$$(H_0 - E_n^{(0)}) |\psi_n^{\alpha(1)}\rangle = (E_n^{\alpha(1)} - W) |\tilde{\varphi}_n^{\alpha}\rangle$$

$$(H_0 - E_n^{(0)}) \sum_l \sum_{\beta=1}^{g_l} C_{nl}^{\beta\alpha} |\varphi_l^{\beta}\rangle = (E_n^{\alpha(1)} - W) \sum_{\beta=1}^{g_n} A_n^{\alpha\beta} |\varphi_n^{\beta}\rangle, \qquad \alpha = 1, \dots, g_n$$

$$\sum_l \sum_{\beta=1}^{g_l} C_{nl}^{\beta\alpha} (E_l^{(0)} - E_n^{(0)}) |\varphi_l^{\beta}\rangle = \sum_{\beta=1}^{g_n} (E_n^{\alpha(1)} - W) A_n^{\alpha\beta} |\varphi_n^{\beta}\rangle$$

iii) von links mit $\langle \varphi_n^{\kappa} |, \kappa = 1, \dots, g_n$

$$0 = \sum_{\beta=1}^{g_n} \left(\langle \varphi_n^{\kappa} | W | \varphi_n^{\beta} \rangle - E_n^{\alpha(1)} \delta_{\kappa\beta} \right) A_n^{\alpha\beta}$$

 $\kappa=1,\ldots g_n,\,\alpha=1,\ldots,g_n,$
 $n\times n$ Gleichungen für $n\times n$ Koeffiziente
n $A_n^{\alpha\beta}$

$$det(\langle \varphi_n^{\kappa} | W | \varphi_n^{\beta} \rangle - E_n^{\alpha(1)} \delta_{\kappa\beta}) = 0$$

für nicht triviale Lösungen.

$$\sum_{\beta=1}^{g_n} \underbrace{\langle \varphi_n^{\kappa} | W | \varphi_n^{\beta} \rangle}_{=:W_n^{\kappa\beta}} A_n^{\alpha\beta} = E_n^{\alpha(1)} A_n^{\alpha\kappa}$$
$$\sum_{\beta=1}^{g_n} W_n^{\kappa\beta} A^{\alpha\beta} = E_n^{\alpha} A^{\alpha\kappa}, \qquad \underline{A}^{\alpha} = \begin{pmatrix} A^{\alpha 1} \\ \vdots \\ A^{\alpha g_n} \end{pmatrix}$$

$$\mathbf{W}_n \cdot \underline{A}^{\alpha} = E_n^{\alpha} \underline{A}^{\alpha}$$
 Eigenwertgleichung.

Die 'Vektoren' \underline{A}^{α} sind die Eigenvektoren zu **W** zum Eigenwert E_n^{α} .

 $\alpha \Rightarrow$ numeriert die Eigenwerte $(E_n^{\alpha(1)})$ und Eigenvektoren von **W**

Sekulardeterminante zur Bestimmung der Eigenwerte $E_n^{\alpha(1)}$:

$$\det (W_n - E_n^{\alpha(1)}) \mathbf{1}) = 0$$

$$\Rightarrow \det (W_n^{\kappa\beta} - E_n^{\alpha(1)} \delta_{\kappa\beta}) = 0$$

Lösung $\Rightarrow E_n^{\alpha(1)}$, $\alpha = 1, \dots, g_n$, Aufspaltung der entarteten Energie E_n^0 in erster Ordnung der Störungsrechnung

$$E_n^{\alpha} = E_n^{(0)} + \lambda E_n^{\alpha(1)}, \qquad \alpha = 1, \dots g_n$$

Die Energiekorrekturen zu $E_n^{(0)}$ ergeben sich als Eigenwerte der Matrix von W im Eigenraum zu E_n^0 , welcher von den $|\varphi_n^{\alpha}\rangle$, $\beta = 1, \ldots, g_n$ aufgespannt wird. (U_{g_n}) . Die der Störung angepassten $|\tilde{\varphi}_n^{\alpha}\rangle$ ergeben sich aus der entsprechenden Diagonalisierung von W in dem Eigenraum U_{g_n}

$$|\tilde{\varphi}_{n}^{\alpha}\rangle = \sum_{\beta=1}^{g_{n}} |\varphi_{n}^{\beta}\rangle A_{n}^{\alpha\beta}$$

Die Koeffizienten $A_n^{\alpha\beta}$ ergeben sich aus der Diagonalisierung!

8 Stationäre Störungsrechnung und Näherungsverfahren für gebundene Zustände

Probleme: Übergänge in Atom in zeitabhängigen elektromagnetischen Feldern, Photonenbewegung, Streuung

$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = H(t)|\psi(t)\rangle$$

9.1 'Bewegung' und Zeitabhängigkeit

Sei H unabhängig von t

i) Stationäre Lösungen

$$H|\psi_n\rangle = E_n|\psi_n\rangle$$
$$i\hbar \frac{\partial}{\partial t}|\psi_n(t)\rangle = E_n|\psi_n(t)\rangle$$
$$|\psi_n(t)\rangle = e^{-i\frac{E_n}{\hbar}t}|\psi_n(0)\rangle$$
$$= e^{-i\frac{E_n}{\hbar}t}|\psi_n\rangle$$

Zeitabhängiger Phasenfaktor fällt bei den Mittelwerten heraus: Diese Gleichung trifft nur **statistische** Aussagen, führt allerdings dennoch zu einer Bewegung im klassischen Sinn, zum Beispiel $\vec{L}^2 \neq 0! \sqrt{\langle v^2 \rangle} \approx 1500 \frac{km}{s}$. Folglich kann die Streuung durch eine stationäre Lösung beschrieben werden!

ii) Nicht-stationäre Lösungen Anfangszustand zur Zeit t = 0

$$\begin{aligned} |\psi(0)\rangle &= \sum_{n} C_{n} |\psi_{n}\rangle \\ \Rightarrow |\psi(t)\rangle &= \sum_{n} C_{n} e^{-\frac{iE_{n}t}{\hbar}} |\psi_{n}\rangle \end{aligned}$$

Beweis

$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = \sum_{n} C_{n}E_{n}e^{-\frac{iE_{n}t}{\hbar}}|\psi_{n}\rangle$$
$$= H\sum_{n} C_{n}e^{-\frac{iE_{n}t}{\hbar}}|\psi_{n}\rangle$$
$$= H|\psi(t)\rangle$$

Linearkombinationen zweier stationärer Zustände ist kein stationärer Zustand! Erinnerung: Spinpräzession; Übungen Doppelmuldenpotential

Wahrscheinlichkeit, dass sich ein System zur Zeit tim Zustand $|\psi_m\rangle$ befindet ist zeitunabhängig.

$$w_m = |\langle \psi_m | \psi(t) \rangle|^2$$

= $|\sum_n C_n e^{-\frac{iE_n t}{\hbar}} \langle \psi_m | \psi_n \rangle|^2$
= $|C_m e^{-\frac{iE_m t}{\hbar}}|^2$
= $|C_m|^2$
= const.

entsprechend

$$\begin{aligned} \langle E \rangle &= \langle \psi(t) | H | \psi(t) \rangle \\ &= \sum_{nm} C_n^* e^{\frac{iE_n t}{\hbar}} C_m e^{-\frac{iE_m t}{\hbar}} \underbrace{\langle \psi_n | H | \psi_m \rangle}_{E_m \delta_{mn}} \\ &= \sum_m |C_m|^2 E_m \\ &= \text{ const} \end{aligned}$$

allgemeiner Operator A, nicht zeitabhängig:

$$\frac{d}{dt}\langle A\rangle = \frac{i}{\hbar}\langle [H,A]\rangle$$
$$[H,A] = 0 \Rightarrow \frac{d}{dt}\langle A\rangle = 0$$
$$\Rightarrow \langle A\rangle = \text{const}$$

(Dies wurde beim Drehimpuls bereits gezeigt.)

Beispiel: freies Teilchen, $H = \frac{p^2}{2m}$ $\langle p \rangle$ ist unabhängig von t, ebenso gilt die für $\langle p^2 \rangle$ usw., diese haben aber dennoch bewegte Wellenpakete als Lösung! $\langle x \rangle$ ist zeitabhängig!

9.2 Zeitentwicklungsoperator H = H(t)

Formale Beschreibung der Zeitentwicklung als 'Drehung im Hilbertraum'

$$\begin{aligned} \frac{d}{dt} \langle \psi(t) | \psi(t) \rangle &= \left\langle \frac{d}{dt} \psi(t) | \psi(t) \right\rangle + \left\langle \psi(t) | \frac{d}{dt} \psi(t) \right\rangle \\ &= \left\langle -\frac{\imath}{\hbar} H \psi | \psi \right\rangle + \left\langle \psi | -\frac{\imath}{\hbar} H \psi \right\rangle \\ &= \frac{\imath}{\hbar} (\langle H \psi | \psi \rangle - \langle \psi | H \psi \rangle) \\ &= 0 \end{aligned}$$

 $(H = H^{\dagger}, \text{ aber } H \text{ kann zeitabhängig sein!})$ Die Norm $\langle \psi(t) | \psi(t) \rangle$ ist zeitlich konstant!

Anfangswertproblem: $|\psi(t_0)\rangle$ sei gegeben, was ist $|\psi(t)\rangle$? $|\psi_n\rangle$ ist eine beliebige vollständige ON-Basis.

$$\begin{aligned} |\psi(t_0)\rangle &= \sum_n C_n(t_0) |\psi_n\rangle \\ |\psi(t)\rangle &= \sum_n C_n(t) |\psi_n\rangle \\ C_n(t) &= \sum_m U_{nm}(t,t_0) C_m(t_0) \\ \vec{c}(t) &= U(t,t_0) \ \vec{c}(t_0) \end{aligned}$$

Behauptung (schon gezeigt)

$$U^{\dagger}U = \mathbf{1}$$

$$\sum_{n} (U^{\dagger})_{pn}U_{nm} = \sum_{n} U_{np}^{*}U_{nm}$$

$$= \delta_{pm}$$

U: unitäre Matrix Warum?

 $|\psi(t_0)\rangle,|\psi(t)\rangle$ entsprechen beide komplexen Vektoren mit der Norm 1. U:'Drehung' im komplexen Vektorraum Überprüfung:

$$U^{\dagger}U = 1 \implies \text{Norm bleibt erhalten}$$

$$\langle \psi(t) | \psi(t) \rangle = \sum_{nm} \langle C_m(t) \psi_m | C_n(t) \psi_n \rangle$$

$$= \sum_{nm} C_m^*(t) C_n(t) \langle \psi_m | \psi_n \rangle$$

$$= \sum_n C_n^*(t) C_n(t)$$

$$= \sum_{nm'm} U_{nm'}^*(t, t_0) C_{m'}^*(t_0) U_{nm}(t, t_0) C_m(t_0)$$

$$= \sum_{m'm} C_{m'}^*(t_0) C_m(t_0) \underbrace{\sum_n U_{nm'}^*(t, t_0) U_{nm}(t, t_0)}_{\delta_{m'm}}$$

$$= \sum_m C_m^*(t_0) C_m(t_0)$$

Die Umkehrung folgt daraus, dass dies für beliebiges $|\psi(t_0)\rangle$ gelten muss. offensichtlich: $U(t_0,t_0)=1$

Zusammenfassung

$$\begin{split} |\psi(t)\rangle &= \underbrace{U(t,t_0)}_{\text{Zeitent-wicklungs-operator}} & |\psi(t_0)\rangle \\ U^{\dagger}(t,t_0)U(t,t_0) &= 1 \\ U(t_0,t_0) &= 1 \end{split}$$

mit $\langle A\psi | = \langle \psi | A^{\dagger}$: Definition adjungierter Operator

$$\begin{aligned} \langle \psi(t) | \psi(t) \rangle &= \langle \psi(t_0) | U^{\dagger}(t, t_0) U(t, t_0) | \psi(t_0) \rangle \\ &= \langle \psi(t_0) | \psi(t_0) \rangle \end{aligned}$$

für alle $\psi(t_0) \Rightarrow U^{\dagger}U = 1$

Zeitumkehr (inverse Drehung)

Schrödingergleichung auch gültig falls $t < t_0!$

$$\begin{aligned} |\psi(t_0)\rangle &= U^{-1}(t,t_0)|\psi(t)\rangle \\ &= U(t_0,t)|\psi(t)\rangle \\ U(t_0,t) &= U^{-1}(t,t_0) \\ &= U^{\dagger}(t,t_0) \end{aligned}$$

Schrödingergleichung für Zeitentwicklungsoperator

$$i\hbar\frac{\partial}{\partial t}U(t,t_0)|\psi(t_0)\rangle = H(t)U(t,t_0)|\psi(t_0)\rangle$$

$$\frac{\partial}{\partial t}U(t,t_0) = -\frac{i}{\hbar}H(t)U(t,t_0)$$

Spezialfall H zeitunabhängig:

$$U(t, t_0) = \exp\left(-\frac{i}{\hbar}H(t - t_0)\right)$$
$$U^{\dagger}(t, t_0) = \exp\left(\frac{i}{\hbar}H(t - t_0)\right)$$

In der Basis mit den Eigenzuständen zu ${\cal H}$

Diagonalmatrix

Wichtige allgemeine Eigenschaften von U

$$U(t, t_1)U(t_1, t_0) = U(t, t_0)$$

 $U(t_1, t_0)$ ist Lösung eines Anfangswert-Problems. Falls bekannt, kann auch $|\psi(t_1)\rangle$ als neuer Anfangswert für $t > t_1$ genommen werden.

$$\begin{aligned} |\psi(t)\rangle &= U(t,t_1)|\psi(t_1)\rangle \\ &= U(t,t_1)U(t_1,t_0)|\psi(t_0)\rangle \\ &= U(t,t_0)|\psi(t_0)\rangle \end{aligned}$$

• Darstellung als Produkt von infinitesimalen Zeitentwicklungsoperatoren (Pfadintegral; wichtig falls H(t))

$$U(t+dt,t) = 1 - \frac{i}{\hbar}H(t)dt$$
$$= e^{-\frac{i}{\hbar}H(t)dt}$$

(Schrödingergleichung für U)

$$U(t,t_0) = \lim_{n \to \infty} \left\{ e^{-\frac{i}{\hbar}H(t_0 + (n-1)\Delta)\Delta} \dots e^{-\frac{i}{\hbar}H(t_0)\Delta} \right\}, \qquad \Delta = \frac{t - t_0}{n}$$

(Hieraus ist die Unitarität sofort ersichtlich) kompakte Schreibweise

$$U(t,t_0) = T \exp\left\{-\frac{i}{\hbar} \int_{t_0}^t dt' \ H(t')\right\}$$

T: Zeitordnungsoperator

$$T(H(t_i)H(t_j)\ldots H(t_k)) = H(t_1)H(t_2)\ldots H(t_n) \quad \text{mit } t_1 > t_2 > \ldots > t_n$$

notwendig, da $[H(t_1), H(t_2)] \neq 0$ möglich!

- Sei $|e_n\rangle$ eine vollständige ON Basis $\Rightarrow |e_n(t)\rangle = U(t, t_0)|e_n\rangle$ ist ebenso eine vollständige ON-Basis (U ist unitär).
- $U(t, t_0)$ ist bekannt:

Damit ist die Zeitentwicklung eines beliebigen Anfangszustands bekannt!

Im Allgemeinen existiert eine exakte Lösung nur bei sehr einfachen Problemen, in allen anderen Fällen sind Näherungsverfahren erforderlich. $U(t, t_0)$ ist für allgemeine Überlegungen sehr nützlich!

Wiederholung

$$\begin{aligned} |\psi(t)\rangle &= U(t,t_0)|\psi(t_0)\rangle \\ \imath\hbar\frac{\partial}{\partial t}U(t,t_0) &= H U(t,t_0) \\ \frac{\partial}{\partial t}U &= -\frac{\imath}{\hbar}H U \end{aligned}$$

9.3 Schröginger und Heisenberg Bild

Betrachtet man die bisher ermittelten Gleichungen, so stellt sich die Frage, wo die einfachen Gesetze der klassichen Mechanik zu finden sind.

$$\vec{Q} = \frac{1}{m} \vec{P}$$

$$m \ddot{\vec{Q}} = -\vec{\nabla} V(\vec{Q})$$

Ist die Planetenbewegung mit der Quantenmechanik zu beschreiben? Bisher haben wir nur das Schrödinger-Bild betrachtet, in ihm ist der Zustand zeitabhängig, während die Operatoren oft zeitunabhängig sind. Einen anderen Zugang liefert das Heisenberg-Bild, hier ist der Zustand zeitunabhängig, während die Operatoren zeitabhängig sind. Beide Bilder sind **äquivalent**!

$$\begin{aligned} \langle A(t) \rangle &= \langle \psi_S(t) | A_S | \psi_S(t) \rangle \\ &= \langle U(t, t_0) \psi(t_0) | A_S | U(t, t_0) \psi(t_0) \rangle \\ &= \langle \psi(t_0) | \underbrace{U^{\dagger}(t, t_0) A_S U(t, t_0)}_{A_H(t)} | \underbrace{\psi(t_0)}_{\psi_H} \rangle \end{aligned}$$

 $\begin{array}{lll} \langle A(t) \rangle &=& \langle \psi_H | A_H(t) | \psi_H \rangle \\ | \psi_H \rangle &=& U^{\dagger}(t,t_0) | \psi(t) \rangle_S = | \psi(t_0) \rangle & \mbox{zeitunabhängig} \\ A_H(t) &=& U^{\dagger}(t,t_0) A \ U(t,t_0) & \mbox{im Allgemeinen zeitabhängig} \end{array}$

 $H_H = H_S$ falls $\frac{\partial H_S}{\partial t} = 0$

Beweis

$$H_H(t) = U^{\dagger}(t, t_0) H_S(t) U(t, t_0)$$

falls H_S zeitunabhängig ist : $U(t, t_0) = e^{-\frac{i}{\hbar}H_S(t-t_0)} \Rightarrow H_H(t) = H_S$

 $A_H(t)$ erfüllen die gleichen Kommutatorrelationen wie $A_S!$ Allgemein:

$$C_S = A_S B_S \iff C_H = A_H B_H$$
$$C_H = U^{\dagger} C_S U = U^{\dagger} A_S B_S U$$
$$= U^{\dagger} A_S U U^{\dagger} B_S U$$
$$= A_H B_H$$

Die ganze Zeitentwicklung steckt jetzt in der Zeitentwicklung der Operatoren $A_H(t)!$

$$\begin{array}{lll} \langle \dot{A} \rangle & = & \displaystyle \frac{d}{dt} \langle A \rangle \\ & = & \displaystyle \langle \psi_H | \displaystyle \frac{d}{dt} A_H | \psi_H \rangle \end{array}$$

Zeitentwicklung von A_H

$$\frac{dA_H}{dt} = \left(\frac{d}{dt}U^{\dagger}\right)A_SU + U^{\dagger}A_s\left(\frac{d}{dt}U\right) + U^{\dagger}\frac{\partial}{\partial t}A_sU$$
$$= \frac{i}{\hbar}U^{\dagger}H_SA_SU - \frac{i}{\hbar}U^{\dagger}A_SH_SU + U^{\dagger}\frac{\partial}{\partial t}A_SU$$
$$= \frac{i}{\hbar}U^{\dagger}[H_S, A_S]U + U^{\dagger}\frac{\partial}{\partial t}A_SU$$

$$\frac{dA_H}{dt} = \frac{\imath}{\hbar} [H_H, A_H] + \frac{\partial}{\partial t} A_H$$

Analogie mit klassischer Mechanik, Hamilton Formalismus

$$[A, B]_{QM} \Leftrightarrow \{A, B\}_{\text{Poisson}}$$

'explizite' Zeitabhängigkeit

$$\frac{\partial}{\partial t}A_H \equiv U^{\dagger}\frac{\partial}{\partial t}A_SU
A_S = A(Q_S, P_S, \dots; t)
A_H = A(Q_H, P_H, \dots; t)$$

 $\frac{\partial}{\partial t}A_{H} \colon Q_{H}, P_{H}$ etc. werden festgehalten. Se
i A_{S} unabhängig von $t \colon$

$$\Rightarrow \frac{dA_H}{dt} = \frac{i}{\hbar} [H_H, A_H] \\ = \frac{i}{\hbar} U^{\dagger} [H_S, A_S] U$$

falls $[H_S,A_S]=0$ (erhaltene Größen!) $\Rightarrow [H_H,A_H]=0$
 $\Rightarrow A_H$ unabhängig von $t\Rightarrow A_H=A_S$

9.4 Korrespondenz mit Klassischer Mechanik

$$H = \frac{\vec{p}^2}{2m} + V(\vec{Q})$$

Heisenberg-Bild: \vec{P}_H, \vec{Q}_H

$$\dot{\vec{Q}} = \frac{i}{\hbar}[H,Q]$$
$$= \frac{i}{\hbar}\frac{1}{2m}[\vec{P}^2,\vec{Q}]$$
$$\dot{\vec{Q}} = \frac{1}{m}\vec{P}$$

Beweis

$$[\vec{P}^2, \vec{Q}] = P_j P_j Q_k - Q_k P_j P_j$$

= $P_j [P_j, Q_k] + P_j Q_k P_j - Q_k P_j P_j$
= $P_j (-i\hbar\delta_{jk}) + [P_j, Q_k] P_j$
= $-2i\hbar P_k$

q.e.d.

$$\dot{\vec{P}} = \frac{i}{\hbar} [H, \vec{P}]$$

$$= \frac{i}{\hbar} [V(Q), \vec{P}]$$

$$= -i\hbar[\vec{P}, V]$$

$$\dot{\vec{P}}_{k} = -\frac{\partial V}{\partial Q_{k}}$$

$$\dot{\vec{P}} = -\vec{\nabla} V(Q)$$

Beweis

$$P_{k} = -i\hbar \frac{\partial}{\partial Q_{k}} \quad (\text{Ortsdarstellung})$$
$$[P_{k}, V(Q)] = -i\hbar \left(\frac{\partial}{\partial Q_{k}}V\right) - i\hbar V \frac{\partial}{\partial Q_{k}} + i\hbar V \frac{\partial}{\partial Q_{k}}$$
$$= -i\hbar \frac{\partial V}{\partial Q_{k}}$$

q.e.d.

Planetenbewegung in der Quantenmechnik \equiv Wasserstoff-Atom

Hierbei ist zu beachten, dass M größer und gleichzeitig aber die Zentralkraft 'schwächer' ist. Drehimpulseigenzustand: Winkel φ unbestimmt $\langle \vec{Q} \rangle = 0$. relevante Zustände: φ fast scharf, L_z fast scharf

$$\Delta \varphi \Delta L \sim \hbar \ll |L|, \qquad \langle \vec{Q}(t) \rangle \neq 0$$

Damit folgen aus dem Heisenbergbild die Newtonschen Gleichungen für $\langle \vec{Q}(t) \rangle$ Bemerkung: Diese Zustände gibt es auch im Atom; meist sind sie allerding nicht wichtig. Sie sind manchmal bei den äußeren Elektronen zu beobachten.

Korrespondenzprinzip zwischen Quantenmechanik und klassischer Mechanik

$$\begin{array}{lll} \langle \dot{P} \rangle &=& - \left\langle \frac{\partial V}{\partial Q} \right\rangle \\ & \neq & - \frac{\partial}{\partial \langle Q \rangle} V(\langle Q \rangle) \end{array}$$

Beispiel

$$\begin{array}{rcl} V & = & \displaystyle \frac{1}{2}Q^2 + \frac{1}{4}Q^4 \\ \\ \displaystyle \frac{\partial V}{\partial Q} & = & \displaystyle Q + Q^3 \\ \displaystyle \langle Q^3 \rangle & \neq & \displaystyle \langle Q \rangle^3 \end{array}$$

9.5 Übergangswahrscheinlichkeit

Problem: Man betrachte ein Atom mit einer elektrischen Welle für $t > t_0$. Mit welcher Wahrscheinlichkeit findet man zur Zeit t einen angeregten Zustand?

Im folgenden werden wir die zeitunabhängige Basis $|n\rangle$ verwenden.

$$H(t) = H_0 + W(t)$$
$$H_0|n\rangle = E_n|n\rangle$$

Sei das System zum Zeitpunkt t_0 im Zustand $|m\rangle$. Was ist die Wahrscheinlichkeit, dass es sich zu einem späteren Zeitpunkt t im Zustand $|n\rangle$ befindet:

 $P_{nm}(t)$: Übergangswahrscheinlichkeit von $|m\rangle$ nach $|n\rangle$.

$$\begin{aligned} |\psi(t)\rangle &= U(t,t_0)|m\rangle \\ P_{nm}(t) &= |\langle n|\psi(t)\rangle|^2 \\ &= |\langle n|U(t,t_0)|m\rangle|^2 \\ &= |U_{nm}(t,t_0)|^2 \end{aligned}$$

mit $U_{nm}(t,t_0) = \langle n|U(t,t_0)|m\rangle$: n-m Matrixelemente des Zeitentwicklungsoperators U in der festen Basis $|n\rangle$; Übergangsamplitude. Im weiteren: Methoden zur Berechnung von $U_{nm}(t,t_0)$

9.6 Zeitabhängige Störungsrechnung

$$H(t) = H_0 + W(t)$$

 $W(t)\colon$ Störung; Beispiel: eintreffende elektromagnetische Welle. Sei

 $U_0(t,t_0) = e^{-\frac{i}{\hbar}(t-t_0)H_0}$ Zeitentwicklungsoperator zu H_0

9.6.1 Formale Lösung der Zeitentwicklungsgleichung

$$U(t,t_0) = U_0(t,t_0) + \frac{1}{i\hbar} \int_{t_0}^t dt_1 \ U_0(t,t_1) W(t_1) U(t_1,t_0)$$

Zu zeigen: Schrödingergleichung

$$\frac{\partial}{\partial t}U(t,t_0) = \frac{1}{i\hbar}(H_0+W)U(t,t_0) \quad \text{ist für Ansatz erfüllt}$$

Beweis

$$\begin{split} \frac{\partial}{\partial t} U(t,t_0) &= \frac{\partial}{\partial t} U_0(t,t_0) + \frac{1}{i\hbar} \underbrace{\bigcup_{i=1}^{0} W(t)U(t,t_0) + \frac{1}{i\hbar} \int_{t_0}^t dt_1 \ \frac{\partial}{\partial t} U_0(t,t_1)W(t_1)U(t_1,t_0)}_{= 1} \\ &= \frac{1}{i\hbar} H_0 U_0(t,t_0) + \frac{1}{i\hbar} W(t)U(t,t_0) + \frac{1}{(i\hbar)^2} \int_{t_0}^t dt_1 \ H_0 U_0(t,t_1)W(t_1)U(t_1,t_0) \\ &= \frac{1}{i\hbar} \left\{ W(t)U(t,t_0) + H_0 \underbrace{\left[U_0(t,t_0) + \frac{1}{i\hbar} \int_{t_0}^t dt_1 \ U_0(t,t_1)W(t_1)U(t_1,t_0) \right]}_{U(t,t_0)} \right\} \\ &= \frac{1}{i\hbar} (H_0 + W)U(t,t_0) \end{split}$$

q.e.d.

Anfangsbedingung

$$U(t_0, t_0) = U_0(t_0, t_0) + 0 = 1$$

9.6.2 Iterative Lösung

Störungstheorie \equiv iterative Lösung \equiv Entwicklung von Potenzen von W

$$U(t,t_0) = U_0(t,t_0) + \frac{1}{i\hbar} \int_{t_0}^t dt_1 \ U_0(t,t_1) W(t_1) \underbrace{U_0(t_1,t_0)}_{U(t_1,t_0)} + \frac{1}{(i\hbar)^2} \int_{t_0}^t dt_1 U_0(t,t_1) W(t_1) \underbrace{\int_{t_0}^{t_1} dt_2 \ U_0(t_1,t_2) W(t_2) U(t_2,t_0)}_{U(t_1,t_0)}$$

Man bricht bei der 2. Ordnung ab. $U \to U_0;$ Umordnen der Zeiten $(t_1 \leftrightarrow t_2)$

$$\begin{aligned} U(t,t_0) &= U_0(t,t_0) + \frac{1}{i\hbar} \int_{t_0}^t dt_1 U_0(t,t_1) W(t_1) U_0(t_1,t_0) \\ &+ \frac{1}{(i\hbar)^2} \int_{t_0}^t dt_2 \int_{t_0}^{t_2} dt_1 \ U_0(t,t_2) W(t_2) U_0(t_2,t_1) W(t_1) U_0(t_1,t_0) \end{aligned}$$

für $t > t_0$: $t_2 \ge t_1$ Entwicklung in Potongon eine

Entwicklung in Potenzen einer kleinen Störung $\frac{W}{i\hbar}$

9.6.3 Basis von Eigenzuständen zu ${\it H}_0$

$$H_0|n\rangle = E_n|n\rangle$$

$$W_{nm} = \langle n|W|m\rangle$$

$$w_n = \frac{E_n}{\hbar}$$

$$w_{nm} = \frac{1}{\hbar}(E_n - E_m)$$

$$= w_n - w_m$$

Störungstheorie in erster Ordung

$$U_{nm}(t,t_0) = \underbrace{e^{-\imath w_n(t-t_0)\delta_{nm}}}_{U_0} + \frac{1}{\imath\hbar} \int_{t_0}^t dt_1 \ e^{-\imath w_n(t-t_1)} W_{nm}(t_1) e^{-\imath w_m(t_1-t_0)}$$

9.6.4 Reduzierte Übergangsamplitude

$$U_{nm}(t,t_0) = e^{-\imath w_n (t-t_0)} \tilde{U}_{nm}(t,t_0)$$

$$\tilde{U}_{nm}(t,t_0) = \delta_{nm} + \frac{1}{i\hbar} \int_{t_0}^t dt_1 \ W_{nm}(t_1) e^{iw_{nm}(t_1-t_0)}$$

$$P_{nm}(t) = |\tilde{U}_{nm}(t,t_0)|^2$$

9.7 Fermis Goldene Regel (Pauli 1928)

Berechnung von Übergängen bei kleinen Störungen Beispiel: Wasserstoff-Atom unter Einstrahlung elektromagnetischer Wellen Störungstheorie erster Ordnung $n \neq m$, $|m\rangle$: Grundzustand , $|n\rangle$ angeregter Zustand

$$P_{nm}(t) = \frac{1}{\hbar^2} \int_{t_0}^t dt' \ e^{\imath w_{nm}(t'-t_0)} W_{nm}(t') \cdot \int_{t_0}^t dt'' \ e^{-\imath w_{nm}(t''-t_0)} W_{nm}^*(t'')$$

Spezialfall: Periodische Störung

$$W_{nm}(t) = W_{nm}e^{-i\Omega t}$$

$$P_{nm} = \frac{1}{\hbar^2}|W_{nm}|^2 \int_{t_0}^t dt' \ e^{i(w_{nm}-\Omega)t'} \int_{t_0}^t dt'' e^{-i(w_{nm}-\Omega)t''}$$

$$P_{nm} = \frac{4}{\hbar^2} \frac{|W_{nm}|^2}{(w_{nm} - \Omega)^2} \sin^2 \left\{ \frac{1}{2} (w_{nm} - \Omega)(t - t_0) \right\}$$

Verhalten für große Zahlen

- a) $t t_0 \gg (w_{nm} \Omega)^{-1}$ P_{nm} oszilliert mit t
- b) Resonanzverhalten $|w_{nm} - \Omega| \ll \frac{1}{t-t_0}$ dominant!

Beweis

1)

$$\int_{t_0}^t dt' e^{i(w_{nm} - \Omega)t'} = \frac{1}{i(w_{nm} - \Omega)} \left(e^{i(w_{nm} - \Omega)t} - e^{i(w_{nm} - \Omega)t_0} \right)$$
$$= \frac{1}{i} e^{i(w_{nm} - \Omega)t_0} \frac{1}{w_{nm} - \Omega} \left(e^{i(w_{nm} - \Omega)(t - t_0)} - 1 \right)$$

2)

$$P_{nm} = \frac{1}{\hbar^2} |W_{nm}|^2 \frac{1}{(w_{nm} - \Omega)^2} \left(e^{i(w_{nm} - \Omega)(t - t_0)} - 1 \right) \left(e^{-i(w_{nm} - \Omega)(t - t_0)} - 1 \right)$$

$$= \frac{1}{\hbar^2} |W_{nm}|^2 \frac{1}{(w_{nm} - \Omega)^2} \left\{ 1 - e^{i(w_{nm} - \Omega)(t - t_0)} - e^{-i(w_{nm} - \Omega)(t - t_0)} + 1 \right\}$$

$$= \frac{1}{\hbar^2} |W_{nm}|^2 \frac{1}{(w_{nm} - \Omega)^2} \left\{ 2 - 2\cos[(w_{nm} - \Omega)(t - t_0)] \right\}$$

$$= \frac{1}{\hbar^2} |W_{nm}|^2 \frac{1}{(w_{nm} - \Omega)^2} 4\sin^2 \frac{(w_{nm} - \Omega)(t - t_0)}{2}$$