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1 Introduction

a) From Microphysics to Macrophysics

Fundamental laws of interaction do not explain everything.
Examle: specifications of a makroscopic objects, consisting of many subparticles (ex.: solids, fluids,

gases).
A typical number of particles is the Avogadro number : NAv w 6 � 1023. It denotes the number of

molecules per mol, ex. number of water molecules in 18g water.
Typical questions:

• connections between pressure (p), volume (V), and temperature (T) of gases (constitutive equa-
tion)

• specific heat capacity of a material

• conductivity of a solid, colour of a fluid

• connection between magnetization and magnetic field

• melting of ice

• how does a refrigerator work?

• how does a supernova explode?

• energy budget of the Earth’s atmosphere

Typical area of application:

• systems with many degrees of freedom ⇐⇒macroscopic objects

Examples:

• we consider an isolated system - a gas with volume V and number of particles N . A classical
mechanical description states 6N initial conditions ⇔6N degrees of freedom. If 6N > 2×
number of the motion constants, the system is not integratable.

• the distance between two trajectories, which initially did lay close to each other, grows expo-
nentially with time.

• description of a water droplet for one second. One needs more information than it can be saved
in the universe.

The goal of the statistical physics is to develop laws for the macro states by deriving them from the
micro physics with the help of statistical methods.

2



1 Introduction

b) New macroscopic laws

• qualitatively new laws

• new terms - e.g. entropy

• statistic laws are very exact, relative fluctuations v 1√
N

• predictive power only for systems with many degrees of freedom; uncertainty about the behaviour
of the single atoms (quantum physics), but prediction about the whole system

• thermodynamics

• material properties

• non-equilibrium processes

Scales for macroscopic systems:

• L�mean distance between particles in fluids and solids ' 10−7cm, N � 1

• t�timescale of the microscopic motions:

motion of an atom: 10−13sec

motion of an electron (in solids): 10−15sec

c) Micro physical laws and their probabilistic nature

Fundamental laws are of probabilistic nature

The role of the statistical physics in the house of physics: foundation of the modern physics!
Two ways in physics:

Abstraction

Fundamental

laws

Understanding

of the complexity

(1) (2)

(2) The role of statistics is obvious
(1) Fundamental theory: system with many (infinite) degrees of freedom; QFT, String theory (and

for scattering of two particles) are formulated as statistical theories

• Calculating the predictions, which follow from the fundamental theory: methods of statistical
physics just like in this lecture

Basic laws of physics are statistical in nature!

they make statements about:

– probability, that when measuring an observable A once, one gets the value Ai

– conditional probability for two measurements. If one measures a value Ai for an observable
A, what is the probability that one measures value Bj for a second observable B.

3



1 Introduction

Remarks:

1. From micro-physics to micro-physics and from Planck’s scale (1019 GeV) to energy scale of LHC
(1000 GeV) - 16 orders of magnitude.

2. Universality: one does not consider all the details of the microscopic laws ⇒ predictive power
of the QFT!

3. Conceptional revolution due to the statistical physics. Modern physics : Plank, Boltzmann,
Einstein

4. (((((((
Determinism→probabilistic theory→predictive power

4



2 Basic concepts of statistical physics

a) Probability distribution and expectation values

i) States (Microstates)

We will denote states with τ and the number of states with Ω, whereas in the beginning we will
examine only finite nubmer of states Ω <∞.

ii) Probability distribution

Every state τ is associated with a probability pτ , which is the probability that this state is realized.

τ → pτ

For pτ the following holds:

pτ > 0 positivity (2.1)∑
τ

pτ = 1 normalization (2.2)

⇒ 0 ≤ pτ ≤ 1 (2.3)

The probability distribution is {pτ} = {p1, p2, p3, . . . }, which is an ordered sequence of Ω numbers. In
the general case pi and pj are independant.

iii) Observables

Capital roman letters are used for observables, e.g. A.

classical observable: A has a fixed value Aτ in every state τ .

τ → Aτ ∈ SpecA (2.4)

SpecA: The spectrum of an observable is the set of all possible measurement values {λA}, whereas
λA ∈ R. The probability to measure a certain value λAis given by:

pλA =
∑

τ |Aτ=λA

pτ (2.5)

A linear combination of two classical observables A and B is again a classical observable.

C = fAA+ fBB fA,B ∈ R (2.6)

Cτ = fAAτ + fBBτ (2.7)

iv) Expectation value

〈A〉 =
∑
τ

pτAτ (2.8)

5



2 Basic concepts of statistical physics

v) Dispersion

=
∑
τ

pτ (Aτ − 〈A〉)2 =
∑
τ

(
A2
τ − 2Aτ 〈A〉+ 〈A〉2

)
=
∑
τ

pτA
2
τ − 〈A〉

2

=
〈
A2
τ

〉
− 〈Aτ 〉2 (2.9)

vi) Expectation values and probability distribution

The expectation values of a complete set of observables determine the probability distribution {pτ}
uniquely.

Examples:

• Consider Ω observables A(σ) with A(σ) = δστ . Then:

Table 2.1: A system with A(σ) = δστ
τ 1 2 3 4

A(σ) 0 1 0 0

and therefore 〈
A(σ)

〉
=
∑
τ

pτA
(σ)
τ = pσ (2.10)

• Two-state system: A coin, spin, occupied and unoccupied States, computer bits.

– τ : ↑, ↓ or 〈1〉 , 〈2〉 or 1, 0

– p: p↑, p↓ or p1, p2, p1 + p2 = 1

– A : number up-down

We define the observable A, for which holds that A1 = 1 for state↑and A2 = −1 for state ↓.
Then, we can express the spin in z direction in terms of A: Sz = ~

2 ·A. The number of particles
is given by N = 1

2 (A+ 1),which corresponds to N1 = 1 and N2 = 0. The expecation values of
A and N are:

〈A〉 = p1A1 + p2A2 = p1 − (1− p1) = 2p1 − 1 (2.11)

〈N〉 =

〈
1

2
(A+ 1)

〉
= p1 (2.12)

Their dispersions could also be easily calculated. For A we need first:

(A1)2 = 1 (2.13)

(A2)2 = 1 (2.14)〈
A2
〉

= p1A
2
1 + p2A

2
2 = p1 + 1− p1 = 1 (2.15)

Then:

∆A2 =
〈
A2
〉
− 〈A〉2 = 1− (2p1 − 1)2 = 4p1 (1− p1) (2.16)

6



2 Basic concepts of statistical physics

And for N accordingly:

〈
N2
〉

=

〈
1

4

(
A2 + 2A+ 1

)〉
=

1

4

〈
A2
〉

+
1

2
〈A〉+

1

4
= p1 (2.17)

∆N2 = p1 (1− p1) (2.18)

• Four-state system

Table 2.2: States τ in a four-state system

� ↑↓ ↑↓ �
11 10 01 00
|1〉 |2〉 |3〉 |4〉

Assume that all the states are equipotential, i. e. p1 = p2 = p3 = p4 = 1
4 . We can introduce a

new variable called the total spin A (see table 2.3).

Table 2.3: Observables in a four-state system

|1〉 |2〉 |3〉 |4〉
Aτ 2 0 0 2 total spin
Bτ 1 1 -1 -1 spin 1
Cτ 1 -1 1 -1 spin 2

Then, we can compute the expectation values:

〈A〉 = 〈B〉 = 〈C〉 = 0 (2.19)

and the dispersion: 〈
B2
〉

=
〈
C2
〉

= 1

∆B2 = 1 (2.20)〈
A2
〉

= 2

∆A2 = 2 (2.21)

b) Reduced system

When only part of the information in {pτ}is needed or available, we can integrate out the redundant
information, which results in a reduced probability distribution.

Examples:

• Suppose we have information only about spin 1 (from the previous example). Then, we can
combine the probabilities for states with the same Bτ and arbitrary Cτ . As a consequence, the
system turns into an effective two-state system.

Table 2.4: States of the reduced ensemble τ

↑ ↓
|1〉 |2〉

7



2 Basic concepts of statistical physics

Here τ = |1〉 groups the former states τ = |1〉, τ = |2〉 together, in which Bτ had the same
values.

p1 = p1 + p2, p2 = p3 + p4

B1 = 1, B2 = −1

〈B〉 = p1B1 + p2B2 = p1 + p2 − p3 − p4

In this case B is a system observable, which means the information in the system is enough
to compute the distribution of the measurement values. In contrast, A and C are environment
observables.

• Now, consider the case when A is the system observable. Thus, the system becomes an effective
three-state system with A1 = 2, A2 = 0, A3 = −2. The probability for each state is p1 =
p1, p2 = p2 + p3, p3 = p4. We will continue examing the example in c).

c) Probabilistic observables

Can the mean value 〈B〉 in the reduced system be determined, i. e. by the formula 〈B〉 = p1B1 +
p2B2 + p3B3?

Table 2.5: Observables in the reduced system∣∣1〉 ∣∣2〉 ∣∣3〉
p p1 p2 + p3 p4

A 2 0 -2
N 2 1 0

B 1 p2−p3
p2+p3

-1

B2 1 1 1

B2 is the expectation value of B in the reduced state
∣∣2〉and it is an average of the micro-states |2〉

and |3〉.

B2 = 〈B〉2,3 =
p2

p2 + p3
· 1 +

p3

p2 + p3
· (−1)

=
p2 − p3

p2 + p3
(2.22)

Here, p2
p2+p3

gives the probability to measure 1 for the observable B and p3
p2+p3

to measure −1.

B

probability

-1 1

Figure 2.1: Probability distribution of a probabilistic variable

We should check and see that:

〈B〉 = 1 · p1 +
p2 − p3

p2 + p3
p2 − 1 · p3 = p1 + p2 − p3 − p4 (2.23)

One should note that
(
B2

)2
=
(
p2−p3
p2+p3

)2
6= 1 =

(
B2
)

2
.

8



2 Basic concepts of statistical physics

Consequently B has not a fixed value in state
∣∣2〉 of the reduced ensemble. It rather has a probability

distribution of values B = ±1 in the state
∣∣2〉, with relative probabilities p2

p2+p3
and p3

p2+p3
. B is a

probabilistic observable, not a classical one. Probabilistic observables need additional information
about probability distribution of measurement values in a given state.

B environment observable →︸︷︷︸
additional information

B system observable

d) Quantum Statistics and density matrix

i) Expectation value

〈A〉 = tr (ρ?A) (2.24)

where ?A is the operator associated with A and ρ is the density matrix

ii) Dispersion

〈
A2
〉

= tr
(
ρ?A2

)
(2.25)

∆A2 =
〈
A2
〉
− 〈A〉2 (2.26)

iii) Diagonal operators

When A is diagonal:

?A =


A1 0

A2

. . .

0 AΩ

 (2.27)

?Anm = Anδnm (2.28)

then expectation value is just:

〈A〉 = trρ?A =
∑
n,m

ρnm?Amn =
∑
n

ρnnAn (2.29)

and we need only the diagonal elements of the density matrix. They can associated with probabilities
pn = pnn.

Example: A two-state system

Let ?A =

(
A1 0
0 A2

)
and ρ =

(
ρ11 ρ12

ρ∗12 ρ22

)
, then:

ρ?A =

(
ρ11 ρ12

ρ∗12 ρ22

)
·
(
A1 0
0 A2

)
=

(
A1ρ11 A2ρ12

A1ρ
∗
12 A2ρ22

)
trρ?A = A1ρ11 +A2ρ22

〈A〉 =
∑
n

ρnnAn =
∑
τ

pτAτ

With {pτ} = {ρnn} and An = Aτ one can see that classical statistics can be derived from quantum
statistics.

9



2 Basic concepts of statistical physics

iv) Properties of the density matrix

1. hermicity ρ† = ρ → all eigenvalues are real

2. positivity ∀λn ≥ 0

3. normalization trρ = 1,
∑

n λn = 1, 0 ≤ λn ≤ 1

From 1, 2 and 3 follows that ρnn ≥ 0 and
∑

n ρnn = 1. {ρnn} has all the properties of a probability
distribution.

Example: Two-state QM

Let ρ be a complex 2 × 2 matrix: ρ =

(
ρ11 ρ12

ρ∗12 1− ρ11

)
with ρ11 ∈ R, 0 ≤ ρ11 ≤ 1 and ?A =

~
2

(
1 0
0 −1

)
. We can find the expectation value:

〈A〉 =
~
2

tr

(
1 0
0 −1

)(
ρ11 ρ12

ρ∗12 1− ρ11

)
=

~
2

tr

(
ρ11 ρ12

−ρ∗12 −1 + ρ11

)
=

~
2

(2ρ11 − 1) (2.30)

From the classical statistics we have 〈A〉 = p1A1 +p2A2, if we set p1 = ρ11, p2 = 1−ρ11, A1 = ~
2 , A2 =

−~
2 , then we will become the same result if we put those values in.
The positivity condition for λ give us a condition for

(ρ11 − λ) (1− ρ11 − λ)− f = 0 (2.31)

f = |ρ12|2 ≥ 0 (2.32)

λ2 − λ+ ρ11 (1− ρ11)− f = 0 (2.33)

λ1,2 =
1

2

(
1±

√
1− 4 [ρ11 (1− ρ11)− f ]

)
(2.34)

λ1,2 ≥ 0⇒ ρ11 (1− ρ11)− f ≥ 0 (2.35)

⇒ ρ11 (1− ρ11) ≥ 0 (2.36)

Figure 2.2: Positivity condition for two state density matrix

The positivity condition for two state density matrix is:

f = |ρ12|2 ≤ ρ11 (1− ρ11) (2.37)

10



2 Basic concepts of statistical physics

v) Non-diagonal operators

One may ask why do we need the information in ρ12, since for the expectation value holds 〈A〉 =∑
n ρnn?An, provided that ?A is diagonal. The answer is that ρ12 carries additional information for

the probabilistic observables.

Example: Spin in arbitrary direction ?Si = 2
~Si (Table 2.6)

Table 2.6: Observables for a system with a spin in an arbitrary direction

|1〉 |2〉
?Sz 1 −1
?Sx ρ12 + ρ∗12 ρ12 + ρ∗12

?S2
x, ?S2

z 1 1

We shall check if classical and quantum statistics produce discrepancies.

classical:

〈?Sx〉 = p1 (?Sx)1 + p2 (?Sx)2 = ρ11 (ρ12 + ρ∗12) + (1− ρ11) (ρ12 + ρ∗12)

= ρ12 + ρ∗12 = 2Re (ρ12) (2.38)

quantum:

〈?Sx〉 = tr

{(
ρ11 ρ12

ρ∗12 ρ22

)(
0 1
1 0

)}
= tr

(
ρ12 ρ11

ρ22 ρ∗12

)
= ρ12 + ρ∗12 (2.39)

One can see that 2.38 and 2.39 give exactly the same result. Actually, this could be generalized
for any quantum operator

?A = ?A† =

(
A11 A12

A∗12 A22

)
(2.40)

The probabilistic observable has mean values in the states |1〉 and |2〉 given by A1 and A2

A1 = A11 + ρ∗12A12 + ρ12A
∗
12 (2.41)

A2 = A22 + ρ∗12A12 + ρ12A
∗
12 (2.42)

It turns out quantum mechanics is the same as classical statistics, but with additional information
for non-diagonal observables (probabilistic observables). As long as we are dealing with diagonal
observables, there is no difference between the both approaches and this case non-diagonal
elements of ρ are of no importance. Actually, the last statement is only true for a given point
in time. Non-diagonal elements of ρ are important for the time evolution of the probability

distribution {pτ (t)} ∧= {ρnn(τ)}.

vi) Pure quantum states

Consider a special form of the density matrix ρnm = ψn · ψm, where ψn is a complex vector with Ω
components and

∑
n ψ
∗
nψn = 1. In other words ψn is a wave function. Then:

〈A〉 = ρnm?Amn = ψ∗m?Amnψn = 〈ψ |A |ψ〉

11



2 Basic concepts of statistical physics

pn = ρnn = |ψn|2 ≥ 0

As already mentioned, only ρnn is needed for diagonal observables (pure states) in contradiction to
probabilistic (mixed states). We can state the condition for pure states:

ρ2 = ρ (2.43)

because ρmnρnk = ψmψ
∗
nψnψk = ψmψk = ρnk.

vii) Change of the basis by unitary transformation

A unitary transformation is of the kind ρ→ ρ′ = UρU † where U †U = 1. ρ′ has still all the properties
of the density matrix: (ρ′)† = ρ′, trρ = 1, positivity. Operators also can be transferred unitary
?A→ ?A′ = U?AU †. Nevertheless, the expectation values are invariant under this transformation:

〈A〉 = tr
(
ρ′?A′

)
= tr

(
UρU †U?AU †

)
= tr

(
Uρ?AU †

)
= tr

(
U †Uρ?A†

)
= tr

(
ρ?A†

)
(2.44)

Here are several important properties:

• Even if ?A is diagonal, U?AU † can be non-diagonal in the general case.

• If ρ can be diagonalized, then ρ′ = diag (λ1, λ2, . . . , λΩ)

• Pure states are invariant:
ρ2 = ρ⇔ ρ′2 = ρ′ (2.45)

One could see this ρ′2 = UρU †UρU † = Uρ2U † = UρU † = ρ′ ⇒ ρ′2 = ρ′ ⇒ λ2
n = λn ⇒ λn = 0, 1 ⇒

ρ′nm = δmkδnk ⇒ψ′n = δnke
ıα, ψ′∗m = δmke

−ıα, which is a pure state.

viii) Pure and mixed states

Consider an observable l = 1, which could be associated with the angular momentum. Then, lz could
be −1, 0, 1. The system is described in table 2.3. Of course, p1 + p2 + p3 = 1 must be satisfied. The

Table 2.7: z-component of the angular momentum

lz 1 0 −1

pure states

 1
0
0

  0
1
0

  0
0
1


density matrix

 1 0 0
0 0 0
0 0 0

  0 0 0
0 1 0
0 0 0

  0 0 0
0 0 0
0 0 1


probability p1 p2 p3

density matrix of the system is:

ρ =

 p1 0 0
0 p2 0
0 0 p3

 (2.46)
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2 Basic concepts of statistical physics

This is a mixed state as long as ∃pi 6= 0, 1. One could check and see that in this case

ρ2 =

 p2
1 0 0

0 p2
2 0

0 0 p2
3

 6= ρ (2.47)

Example: Let us examine a system characterized by the following density matrix

ρ =

 1
3 0 0
0 1

3 0
0 0 1

3

 (2.48)

Here, all the states lz = −1, 0, 1 have equal probability, so 〈lz〉 = 0. If we compare this with a
pure state:

ψ =
1√
3

 1
1
1

 (2.49)

ρ =
1

3

 1 1 1
1 1 1
1 1 1

 (2.50)

we will see that both (2.48) and (2.50) have the same diagonal elements. Consequently, 〈lz〉 is
again zero. The difference though are the mean values of that probabilistic observables, because
of the different off-diagonal elements.

e) Micro-states

Back to the quantum-mechanical point view; provided that |ψn〉 is a complete orthonormal basis, then
ψn are micro-states.

Example: Hydrogen atom

n = (?n, l,m, s), n is a multiple index. We assume that the micro-states are countable, although it is
commonly otherwise. They are often also limited, e. g. only micro-states with E < E0

5 .

E =
−E
?n2

(2.51)

ψ1,2 : ?n = 1, l = 0,m = 0, s = ±1;E = −E0 (2.52)

ψ3,...,10 : ?n = 2, l = 0, 1,m, s;E = −E0

4
(2.53)

?n = 3 : E = −E0

9
(2.54)

Ω = 2 + 8 = 10 (2.55)

The operator ?E = −E0diag
(
1, 1, 1

4 , · · ·
1
4

)
. Let the distribution be equal ρ = diag

(
1
10 , . . . ,

1
10

)
.

〈E〉 =
1

10

(
2 +

8

4

)
(−E0) = −0.4E0 (2.56)

Example: A particle in a box

13



2 Basic concepts of statistical physics

− ~∆

2M
ψ = Eψ (2.57)

Consider a cubical box with an edge L.

ψ = e
ıpxx
~ e

ıpyy

~ e
ıpzz
~ ψ0 = e

ı~p~x
~ ψ0E =

1

2M
~p2 (2.58)

Periodical boundary conditions give ψ
(
−L

2 , y, z
)

= ψ
(
L
2 , y, z

)
(and also for y and z). As px,y,z have

discrete values:

~p = ~
2π

L
~m ~m = (mx,my,mz)

mx,y,z ∈ Z
(2.59)

Figure 2.3: Wave functions of a particle in a box

f) Partition function

What is the number of states with given Energy, E, of a single particle, N = 1, in an one-dimensional,
d = 1, box with volume L? We will denote the number of states in [E,E + δE] with Ω(E, V ). For

our purposes, assume that E � ~2π2

2ML2

~p2

2M
=
π2~2

2M

n2

L2

E <
π2~2

2M

n2

L2
< E + δE

(2.60)
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If δE � E, we can approximate
√
E + δE ≈

√
E
(
1 + 1

2
δE
E

)
=
√
E + 1

2
δE√
E

.

√
2ME

π~
L < n <

√
2ME

π~
L+

1

2π~

(
2M

E

)1/2

LδE (2.61)

Ω(E, V ) =
V

2π~

(
2M

E

)1/2

δE (2.62)

Which means that Ω ∼ V !

g) Continuous distribution and continuous variables

We will examine the continuous description of “closely situated” discrete States. We need to define
the probability density p(x) with:

ˆ
dx p(x) = 1

ˆ
dx p(x)A(x) = 〈A〉

(2.63)

Figure 2.4: Probability distribution for a continuous variable

I(x) Interval of states τ which belong to the interval
[
x− dx

2 , x+ dx
2

]
.

p(x) Mean probability in I(x)

Ω(x) Number of states belonging to I(x)
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2 Basic concepts of statistical physics

We can write that p(x)dx =
∑

”τ∈I(x)” pτ = p(x)Ω(x).

A(x) = 〈A〉x mean value of A in interval I(x).

〈A〉x =

∑
τ∈I(x) pτAτ∑
τ∈I(x) pτ

(2.64)

Let us check if the continuous case is equivalent with the discrete:

ˆ
dxp(x)A(x) =

∑
x

dx p(x)A(x) =
∑
x

 ∑
τ∈I(x)

pτ


︸ ︷︷ ︸

dxp(x)

∑
τ∈I(x) pτAτ∑
τ∈I(x) pτ

=
∑
x

∑
τ∈I(x)

pτAτ =
∑
τ

pτAτ (2.65)

p(x)dx probability of reduced system with states x

A(x) probabilistic observable

Note that
〈
A2
〉

=
´

dx p(x)A2(x) =
∑

τ pτAτ holds only if the dispersion of A vanishes in the contin-
uum limit dx→ 0

We shall see that p(x) depends on the choice of the variables x. For that purpose, consider the
explicit coordinate transformation

x = f(x′) (2.66)

dx =
df

dx′
dx′ (2.67)

The expectation value of A in the new coordinates becomes:

〈A〉 =

ˆ
dx p(x)A(x) =

ˆ
dx′

df

dx′
p
(
f
(
x′
))

︸ ︷︷ ︸
p′(x′)

A
(
f
(
x′
))︸ ︷︷ ︸

A′(x′)

(2.68)

This could be generalized for many variables:

〈A〉 =

ˆ
dx1 . . . dxn p (x1 . . . xn)A (x1 . . . xn) (2.69)

where p(x) is transformed by the Jacobi determinant:

p′(x′) = det

∣∣∣∣ df

dx′

∣∣∣∣ p (f (x′)) (2.70)

xi = fi
(
x′j
)

(2.71)

∣∣∣∣ df

dx′

∣∣∣∣ = det


df1
dx′1

. . . dfn
dx′1

...
. . .

...
df1
dx′n

. . . dfn
dx′n

 (2.72)
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h) Probability density of energy

p (E) dE = p (E)
Ω (E)

δE
dE (2.73)

Ω(E)

δE
→

change of symbols

δΩ(E)

δE
→

continium limit

∂Ω(E)

∂E
(2.74)

p(E)dE = p(E)
∂Ω

∂E
dE (2.75)

An example could be one particle in a linear box (d = 1, N = 1).

i) Equal probability for all values τ

We know that

δΩ(E) ≡ Ω(E) =
V

2π~

(
2M

E

)1/2

δE (2.76)

⇒ δΩ

δE
→ V

2π~

(
2M

E

)1/2

(2.77)

then:

pj(E) =

{
V

2π~
(

2M
E

)1/2
Z−1 forE < Emax

0 else
(2.78)

Here, Z is a constant factor, which could be determined by the normalization condition
´
p(E)dE = 1

Z =
V

2π~

ˆ Emax

0
dE

(
2M

E

)1/2

(2.79)

ii) Boltzmann distribution for micro-states τ

The Boltzmann distribution is given by the formula:

pτ = Z−1e
− Eτ
kBT = Z−1e−

Eτ
T (2.80)

We have set kB = 1, which means we measure the temperature in energy units. Eτ is the energy of
state τ .

pB(E) =
V

2π~

(
2M

E

)1/2

e−
E/TZ−1 (2.81)

〈E〉 =

ˆ Emax

0
p(E)E dE (2.82)

〈
E2
〉

=

ˆ Emax

0
p(E)E2 dE (2.83)

It should be marked that p(E) is the macroscopic probability distribution and pτ is the microscopic.
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Figure 2.5: (1) is a equipotential distribution, (2) is the Boltzmann distribution

iii) Number of one particle states in a momentum interval

Number of one particle states in a momentum interval∆px, ∆py, ∆pz First, the one-dimensional
case:

Ω(p) =
L

2π~
∆px (2.84)

Periodical boundary conditions would give:

px <
2π~
L
n < px + ∆px (2.85)

For an arbitrary we have Ω(~p) = V
(2π~)d

∆p1 . . .∆pd, which in the most usual case of d = 3 is:

∂Ω

∂px∂py∂pz
=

V

(2π~)3 ∆p1∆p2∆p3 (2.86)

Number of one particle states with energy E for arbitrary d

∂Ω

∂E
=

ˆ
dd~p

∂dΩ

∂p1 . . . ∂pd
δ

(
~p2

2M
− E

)
(2.87)

∂Ω

∂E
=

V

(2π~)d

ˆ
dd~p δ

(
~p2

2M
− E

)
(2.88)
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For d = 1:
ˆ ∞
−∞

dp δ

(
p2

2M
− E

)
=
√

2M

ˆ ∞
0

dε ε−
1/2δ(ε− E)

=

(
2M

E

)1/2

(2.89)

with ε = p2

2M . We have used that |p| =
√

2ME and
´∞
−∞ dp = 2

´∞
0 d |p| = 2

´∞
0 dε

√
2M 1

2ε
−1/2.

∂Ω

∂E
=

L

2π~

(
2M

E

)1/2

(2.90)

For d = 3: ˆ
d3~p = 4π

ˆ ∞
0

d |p| |p|2 (2.91)

with |p|
2

2M = ε

ˆ ∞
−∞

dp δ

(
~p2

2M
− E

)
= 4π

ˆ ∞
0

dε δ(ε− E)

√
M

2
ε−

1/2︸ ︷︷ ︸
∂|~p|
∂ε

2Mε︸︷︷︸
|~p|2

= 4π
√

2M
3/2E

1/2 (2.92)

Number of states per energy is given by

∂Ω

∂E
=

V

(2π~)3
4
√

2πM
3/2E

1/2 (2.93)

Boltzmann probability distribution for one particle This Boltzmann probability distribution for one
particle is given by

p(E) =
∂Ω

∂E
exp

(
−E
T
Z−1

)
(2.94)

where Z is the normalization factor. To find it we useˆ
dE p(E) = 1 (2.95)

so we get

Z =

ˆ ∞
0

dE
∂Ω

∂E
exp(−E/T ) (2.96)

where ∂Ω
∂E = FE1/2, so

Z = F

ˆ
dE E1/2 exp(−E/T ) = F?Z (2.97)

and p(E) = ?E−1E1/2 exp(−E/T ). It is therefore possible to find this probability where ~ does not
longer appear.

i) Correlation functions

If there are two observables A and B, what is the probability that measurement of A yields a specific
values λA and λB? Imagine that B is measured after A, then the probability becomes p (λB, λA) .
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i) Conditional Probability p (λB|λA)

The probability to find λB if λA is measured for A is called conditional probability and is written as
p(λB|λA).

p(λB, λA) = p(λB|λA)p(λA). (2.98)

ii) Product Observable B ◦ A

The product observable is defined as

〈B ◦A〉 =
∑

(λB ,λA)

p (λB, λA)λBλA =
∑
λB

∑
λA

p (λB|λA) p (λA)λBλA (2.99)

Spec (B ◦A) = {λBλA} (2.100)

〈B ◦A〉 depends on conditional probabilities, not only on p (λB) and p (λA).

iii) Correlation Function

Correlation function is defined as

< B ◦A >c=< B ◦A > − < B >< A > (2.101)

for < B ◦A >c 6= 0 then B and A are correlated.

Example: A falling marble

Imagine a marble that is falling out of pipe on a prism (Figure 2.6a). Moreover, it can to roll down
any on the sides of the prism with equal probability. However, there are two detectors A and B on the
left side. The corresponding measurement values are λA = 1 and λB = 1 if the marble goes through
the detectors and 0 otherwise.

1/2 1/2

A

B

(a) Two possibilities

1/2 1/2

A

B

1/21/2

(b) Three possibilities

Figure 2.6: A marble is falling down on a prism.
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The probability to measure λA = 1 is 1
2 . It is easy to see that p(λB|λA) = 1. Therefore, p(λB, λA) =

1
2 . With this we calculate

〈B ◦A〉 =
1

2
(2.102)

〈A〉 =
∑
λA

pAλA =
1

2
(2.103)

〈B〉 =
∑
λB

pB︸︷︷︸
= 1

2

λB =
1

2
(2.104)

〈B〉 〈A〉 =
1

4
(2.105)

〈B ◦A〉c =
1

2
− 1

4
=

1

4
(2.106)

Is 〈B ◦A〉 = 〈A ◦B〉 true? Although, it is true in this case, in general, it is not. A simple example is
illustrated in figure 2.6b.

iv) Independent Observables

If the measurement of A does not influence B, then the probability

p(λB|λA) = p(λB) (2.107)

is independent of λA. So only for independent observables

p(λB, λA) = p(λB)p(λA) (2.108)

but we must keep in mind that this in general is not true. We can now also write the correlation
function

〈B ◦A〉 =
∑
λB

∑
λA

p (λB) p (λA)λBλA =

∑
λB

p (λB)λB

∑
λA

p (λA)λA


= 〈B〉 〈A〉 ⇒ 〈B ◦A〉c = 0 (2.109)

An important note: the reverse statement (“⇐”) is not true.

v) Classical Correlation Function

(B ◦A)τ = BτAτ (2.110)

The classical correlation function is

< BA >c= ΣτpτBτAτ︸ ︷︷ ︸
=〈BA〉

− (ΣτpτBτ )︸ ︷︷ ︸
=<B>

(ΣτpτAτ ) (2.111)

In general 〈BA〉c 6= 0. If B = A
< AA >c= ∆A2 (2.112)

There is an easy recipe for calculating conditional probabilities p(λB|λA):

1. We eliminate all τ for which Aτ 6= λA.
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2 Basic concepts of statistical physics

2. Now we have a new system with states τ ′ and

pτ ′ =
pτ ′

Στ ′pτ ′
(2.113)

and now Aτ ′ = λA and Bτ ′ = Bτ

3. The result is:
p (λB, λA) =

∑
τ

Aτ=λA,Bτ=λB

pτ (2.114)

One should note that after the measurement of A the relative probabilities
pτ ′
pρ′

are the same as pτ
pρ

before the measurement of A.
pτ ′

pρ′
=
pτ
pρ

(2.115)

In this lecture we will be mostly concerned with classical product of two observables BA = AB and
with classical correlation functions, which are special correlation functions. However, if the relative
probabilities change after the measurement of A, then we have different conditional probabilities
B ◦ A 6= BA. Note that every consistent choice of conditional probabilities p (λB|λA) leads to the
definition of a product of two observables B ◦A. Many different products and correlation functions are
possible; in general, the correct choice depends on the way how measurements are performed. This
choice is important for statistical description of systems with few states like atoms (with bounded
energy), where the measurements of a Fermi observable has a strong influence on the possible outcome
of measurement of a second observable.

vi) Quantum correlations

We now have

〈B ◦A〉 = tr

(
ρ

?A?B + ?B?A

2

)
(2.116)

for ?A, ?B diagonal, where ?A = diag(An). Therefore

< B ◦A >=
∑
m

ρmAmBm (2.117)

The quantum product coincides with the classical in this case. However, if ?A and ?B do not commute,
this is no longer correct, because in that case ?A and ?B cannot simultaneously be diagonal.
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3 Systems with many states or particles

N is the particle number where N ≈ NAvogadro ≈ 6 · 1023.

a) Chain with N lattice sites

i) Probability distribution

First we treat fermions. A fermion is present on site j if Sj =↑ and absent on site j if Sj =↓. We have
τ = {sj} and sj = ±1 for every j. Here Ω = 2N . Let us define the number of fermions, N , which is
the observable we want do discuss. For every collection of spins, what is the corresponding value of
the observable

N = N({sj}) =
∑
j

1

2
(sj + 1) (3.1)

Lattice sites are independent and we say that the probability is q if the site is occupied, ↑, and 1− q
if empty, ↓. So

p({sj}) =
N∏
j=1

[
1

2
+

(
q − 1

2

)
sj

]
= qN (1− q)N−N (3.2)

ii) Macroscopic probability

We want to compute the macroscopic probability to find N fermions (particles), that is p(N).

p(N) = qN (1− q)(N−N)Ω(N) (3.3)

where

Ω(N) =
N !

N !(N −N)!
(3.4)

is the number of macroscopic states with N particles.
If we have 1 particle there are N possibilities. If we have 2 particles there are N (N−1)

2 possibilities

and if we have 3 particles then there are N (N−1)(N−2)
3! possibilities.

We now introduce the binomial distribution

p(N) = qN (1− q)N−N N !

N !(N −N)!

we get

(q + r)N =
N∑
N=0

N !

N !(N −N)!
qNrN−N (3.5)

since
∑

N p(N) = 1 we normalize

1 =
∑
N

qN (1− q)N−N N !

N !(N −N)!
(3.6)

The total number of micro-states is Ω = 2N but the total number for macro-states is N + 1. For the
micro-states τ = {sj} and for the macro states τ = N . The marcostates are only characterized by the
total fermion number N and are therefore simple.
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3 Systems with many states or particles

iii) Expectation value

The expectation value is (with r = 1− q)

〈N〉 =
∑
N

p(N)N

=

N∑
N=0

N !

N !(N −N)!
NqN (1− q)N−N =

∑
N

N !

N !(N −N)!
q
∂

∂q
qNrN−N

= q
∂

∂q

∑
N

N !

N !(N −N)!
qNrN−N = q

∂

∂q
(r + q)N = qN (r + q)N−1

= qN (3.7)

iv) Dispersion

The dispersion is

< N2 >=
∑
N

p(N)N2

=

(
q
∂

∂q

)2

(q + r)N = q
∂

∂q

(
N q(q + r)N−1

)
= qN

[
(q + r)N−1 + (N − 1)q(q + r)N−2

]
= qN + q2N (N − 1) = q2N 2 +N (q − q2) (3.8)

We also have
4N2 =< N2 > − < N >2= N q(1− q) (3.9)

from where we get

∆N

< N >
=

√
N q(1− q)
N q

=
1√
N

√
1− q
q

= (3.10)

Relative fluctuations are ∼ 1√
N

! The distribution get sharper, when N grows. An example:

N = 1020 =⇒ 4N
<N> ∼ 10−10.

This is the main reason why statistical physics has such a predictive power. The statistical uncertainty
is so small, that one can practically calculate deterministically with mean values.

b) Uncorrelated probability distribution

Uncorrelated means that the observables relate to different lattice sites, that are uncorrelated. Does
not mean that all correlations vanish.

i) Chain with N sites

Now we have one spin per lattice site, so we have N spins. Therefore the total spin, S, is given by

S =
∑
j

sj (3.11)
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3 Systems with many states or particles

In quantum mechanics the spin is ~
2S. We have our observable N ,

N =
∑
j

1

2
(sj + 1) =

1

2
S +

1

2
N (3.12)

and therefore
S = 2N −N = N (2q − 1) (3.13)

and also
< S >= 2 < N > −N = N (2q − 1) (3.14)

and
< S2 >= 4 < N2 > −4N < N > +N 2 (3.15)

Similarly, we get
∆S2 = 4∆N2 = 4Nq(1− q) (3.16)

and also
∆S

< S >
∼ 1√
N

(3.17)

Now, we have from equation (3.2)

p(S) = p(N =
N + S

2
) = q

N+S
2 (1− q)

N−S
2

N !

(N+S
2 )!(N−S2 )!

(3.18)

p({sj}) =
N∏
j=1

[
1

2
+ (q − 1

2
)sj

]
=
∏
j

p(sj) (3.19)

We can now compute the correlation function.

ii) Correlation functions

Let us compute the correlation function for l 6= k in a micro state τ

< slsk >=
∑
{sj}

slskp({sj}) (3.20)

First, so we have a look at the sum over all micro-states∑
{sj}

=
∏
j

∑
sj=±1

(3.21)

and use it because ∏
j

∑
sj=±1

p(sj) = 1 (3.22)

We can also compute the individual ones

< sk >=

∑
sk=±1 skp(sk)∑

sk
p(sk)

(3.23)
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3 Systems with many states or particles

and we are almost done because we can write

< sksl >=

∑
sk
skp(sk)

∑
sl
slp(sl)∑

sk
p(sk)

∑
sl
p(sl)

=< sk >< sl > (3.24)

and the definition of a correlation function was

< sksl >c=< sksl > − < sk >< sl > (3.25)

which in our case is < sksl >c=< sksl > − < sk >< sl >= 0.

iii) Random walk in one dimension

Path has N steps. Assume a small example of a drunken professor in Sweden close to his house at the
lake. We can let ↑ be a step to the house of the professor with q = 0.6 and ↓ be a step to the water
with 1− q = 0.4. The position of the professor is therefore

N(sj = 1)−N(sj = −1) (3.26)

iv) Measurement sequences

Now we have N independent measurements of the state system. Independent measurement sj = ±1.
The relative dispersion is ∼ 1√

N . The first thing we want to compute is the average of the spins

< sj >=
< S >

N
(3.27)

But what is the dispersion. It is not just < sj >
2. It is

∆S2 =< S2 > − < S >2 (3.28)

∆S = 2
√
N q(1− q)

We compute now

∆s =
∆S

N
=

2
√
q(1− q)√
N

(3.29)

Attention ∆s 6= ∆sj !
This brings us to the idea of statistical ensemble.

c) Statistical Ensemble

The statistical ensemble is always specified by the states τ and the probability distribution pτ (or the
density matrix for quantum statistics). Now we can imagine an ensemble as a repetition of systems
number of times. We can for example have a statistical ensemble with only two states. In the real
world, we can not have infinite number of repetitions, but a finite number.

d) Gauss distribution

Systems with many uncorrelated degrees of freedom can be described by a Gaussian distribution. It
is an exact description in the limit when the number of particles N →∞.

For the continuous distribution we have

p(x) = A exp

(
−(x− x)2

2σ2

)
(3.30)
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3 Systems with many states or particles

where A is a normalization constant. The mean value of x is now defined as x =< x > and the
variance is σ = ∆x =

√
(∆x2). We can find the constant A by normalizing

∞̂

−∞

dx p(x) = 1 (3.31)

so we have that

A =
1√
2π

1√
σ

(3.32)

We can also quantize to several variables xi:

p = A exp

(
−1

2
Aij (xi − xi) 2 (xj − xj) 2

)
(3.33)

As an example we can think about fermions on a one-dimensional lattice. We have the binomial
distribution, for large N as

p(N) =
N !

N !(N −N)!
qNrN−N (3.34)

where r = (1− q). We can now use the Stirling’s formula

lim
N→∞

ln(N !) =

(
N +

1

2

)
ln(N)−N +

1

2
ln(2π) +O(

1

N
) (3.35)

to get

α(N) = ln(p(N))

=

(
N +

1

2

)
ln(N )−N +

1

2
ln(2π)−

(
N +

1

2

)
ln(N) +N − 1

2
ln(2π)

−
(
N −N +

1

2

)
ln(N −N) +N −N − 1

2
ln(2π) +N ln(q) + (N −N) ln(1− q)

=

(
N +

1

2

)
ln(N )−

(
N +

1

2

)
ln(N)− 1

2
ln(2π)

−
(
N −N +

1

2

)
ln(N −N) +N −N +N ln(q) + (N −N) ln(1− q) (3.36)

It can be shown that

α(N) =
−(N −N)

2∆N2
(3.37)

where N = N q and ∆N2 = N q(1− q). The maximum is when the derivative is zero

0 =
∂α

∂N

∣∣∣∣
N=N

(3.38)

= ln

(
N −N
N

)
− ln

(
1− q
q

)
− N

2N(N −N)
(3.39)

we neglect the last term since N is large and get

0 ≈ ln

(
N −N
N

)
− ln

(
1− q
q

)
(3.40)

ln

(
N −N
N

)
= ln

(
1− q
q

)
(3.41)

N =N q (3.42)
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3 Systems with many states or particles

We can also take the second derivative and get

∂2α

∂N2

∣∣∣∣
N=N

(3.43)

=− 1

∆N2
(3.44)

=− 1

N(1− q)
(3.45)

and the third one.

e) Thermodynamic limit

The thermodynamic limit is
lim
N→∞

and lim
V→∞

(3.46)

In this case the Gauss distribution becomes extremely sharp. For example, then for N = 1020 we have
∆N2 = 2N = 2 · 1020 when q = 1/2. If we have small deviations

N = N(1 + 10−5) (3.47)

p(N)

p(N)
= exp

(
− 1

2∆N2

(
N −N

)
2

)
(3.48)

= exp

(
−
(
N
(
1 + 10−5

)
−N

)
2

2 (2 · 1020) 2

)
(3.49)

= exp

(
− 1

8 · 1010

)
(3.50)

For even smaller N = N
(
1 + 10−10

)
we have

p(N)

p(N)
= e−

1
x (3.51)

Therefore, we have only
N − 5∆N ≤ N ≤ N + 5∆N (3.52)
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4 Equilibrium ensembles

Equilibrium states are described by statistical ensembles with a static probability distribution.

If the probability distribution {pτ} is time independent, then all expectation values of the observ-
ables are time independent, too. An example could be an isolated system after sufficiently long time,
or just parts of the isolated system. Another possibility is an open system which is immersed in a
heath bath.
Basic postulate for equilibrium states
An isolated system approaches an equilibrium state. After sufficiently long time an isolated system
can be described by an equilibrium ensemble.

This conjecture was made by Boltzmann, but was never proven and most probably it is not true.
There are two problems with the postulate. First, the time scale could be extremely large, compare
systems like water, honey and glass. Second, one can work out time reversal microscopic equation,
but the direction of time points toward equilibrium. Even though the basic postulate is not strictly
true and important practical systems without equilibrium exist, the basic postulate is useful in many
applications and it provides very good approximations.

a) Micro-canonical ensemble

We will be examining an isolated system in volume V with fixed energy E and fixed number of particles
N .

i) Fundamental statistical postulate

Micro-states These are the states τ of a statistical ensemble, given by all possible quantum states with
specified V , E, N . In quantum mechanics one has to choose a complete basis of eigenstates to
E, N in a given V . Then

ψτ
∧
= τ (4.1)

Fundamental statistical postulate
In a equilibrium state of an isolated system all micro-states τ (with a given E, N) have the same
probability pτ .

An alternative way to say this is that an isolated system in equilibrium is with equal probability in
each of the allowed states.
Micro-canonical ensemble
The number of micro-states with given E and N is Ω(E,N). Therefore

pτ = Ω(E,N) (4.2)

This raises several arguments in favour of the basic statistical postulate. To begin with, no state τ
is preferred as compared to another one τ ′. In addition to that, equipartition of states (equal pτ ) is
constant in time. It is an important note that for a micro-canonical ensemble all expectation values
and classical correlations for classical observables are uniquely fixed.
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4 Equilibrium ensembles

ii) Micro-canonical partition function

Micro-canonical partition function is denoted with Zmic and

Zmic = Ω(E) (4.3)

pτ = Z−1
mic (4.4)

Zmic(E,N, V ) depends on the thermodynamical variables V,E,N . Recall that Ω(E) ≡ δΩ(E) is the
number of states with energy between E and E + δE.

iii) Entropy S

For a micro-canonical ensemble:
S = kBlnΩ (4.5)

where kB is the Boltzmann constant. If we set it to be equal to one, which simply means that we are
measuring the temperature in energy units, e. g. eV, then we have:

lnΩ(E,N, V ) = S(E,N, V ) (4.6)

This equation is valid for isolated systems in equilibrium. The entropyS is an extensive thermody-
namical potential, which means that S ∼ N for N →∞.

Examples:

1. Consider N uncorrelated particles. Each of them can be in F different states. Furthermore, let
the energy be independent of the particles states E = cN . There are FN possible micro-states.

Ω = FN (4.7)

lnΩ = N lnF (4.8)

S = kBN lnF (4.9)

2. Now, we will examine uncorrelated particles on N lattice sites with E = cN,N = bN .

Ω =
N !

N !(N −N)!
(4.10)

S = lnN !− lnN !− ln(N −N)! (4.11)

Applying Stirling’s formula on lnN ! for large N gives:

lnN ! ≈ N lnN −N (4.12)

S = N −N lnN + (N −N)− (N −N) ln(N −N) +N lnN −N

= N ln
N −N
N

+N ln
N

N −N
= N ln

(
N
N
− 1

)
−N ln

(
1− N

N

)
= N ln

(
bV

N
− 1

)
− b V

N
ln

(
1− N

bV

)
(4.13)

S = Nf

(
N

V

)
with

N

V
= n (4.14)

For small n we can approximate

S = N

{
ln

(
b

n
− 1

)
+ 1

}
(4.15)
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4 Equilibrium ensembles

iv) Partition function for ideal classical gas

Zmic = Ω (4.16)

S = lnZmic (4.17)

Our task is to count the number of quantum states in box with volume V (e.g. periodical boundary
conditions) with given N,E.

Quantum states for one particle

τ
∧
= ~p = (p1, p2, p3) (4.18)

(p1, p2, p3) ⇒ n(p1, p2, p3) (4.19)∑
p

n(p) = 1 (4.20)

E =
∑
p

E(p)n(p) (4.21)

E =
~p2

2M
(4.22)

Ω =
∑
p

~p2

2M
=E

=

ˆ
d3p

∂3Ω

∂p3
δ

(
~p2

2M
− E

)
δE =

V

(2π~)3

ˆ
d3p

∂3Ω

∂p3
δ

(
~p2

2M
− E

)
δE

=
V

(2π~)3
4
√

2πM
3/2E

1/2 (4.23)

Quantum states for two particles (N = 2) The number of states for N = 2 are n(p) with∑
p

n(p) = 2 (4.24)

E =
∑
p

n(p)E(p) (4.25)

We should discriminate between fermions, for which n(p) = 0, 1, and bosons, for which n(p) is arbitrary.
Nevertheless, for both of them the equation

Ω = Ω1 + Ω2 (4.26)

should be satisfied. Here Ω1 is the number of states with n(~p1) = 1, n(~p2) = 1, ~p1 6= ~p2, and Ω2

number of states with n(~p) = 2


0 for fermions

Ω2 =
∑
p
~p2

2M

6= 0 for bosons

Ω1 =
1

2

∑
~p1

∑
~p2

E=
~p21
2M

+
~p22
2M

(4.27)
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The factor 1
2 in (4.27) is needed because state in which the first particle has momentum ~p1 and the

second ~p2 is the same as the one in which the first has ~p2 and the second ~p1.

Ω =
1

2

∑
~p1

∑
~p2

E=
~p21
2M

+
~p22
2M

+

(
Ω2 −

1

2

)
(4.28)

We will the term
(
Ω2 − 1

2

)
in (4.28), which means that there would be no distinction between fermions

and bosons anymore.

Ω =
1

2

ˆ
d3~p1d3~p2

(
V

(2π~)3

)2

δ

(
~p2

1

2M
+

~p2
2

2M
− E

)
δE (4.29)

Quantum states for N particles ∑
p

n(p) = N (4.30)∑
p

n(p)E(p) = E (4.31)

Ω =
1

N !

ˆ
d3p1 . . . d

3pn

(
V

(2π~)3

)
δ

 N∑
j

~pj
2

2M
− E

 δE (4.32)

Equation (4.32) also neglects the particular behavior where two or more momenta commute. This is
the classical approximation without any distinction between fermions and bosons.

Partition function We set

ω =
Ω

δE
(=

∂Ω

∂E
) (4.33)

To find ω, we have to evaluate a 3N-dimensional integral. For this purpose, we will use relations (4.34)
and (4.35).

ˆ ∞
−∞

d3~pj = 23

ˆ ∞
0

d3|~pj | (4.34)

|~pj,k| =
√

2MExj,k
~p2
j

2M
= ~x2

jE (4.35)

such that
∑

j ~x
2
jE = E. Then

∞̂

−∞

d3~p1 . . . d
3~pN = (8ME)3N/2

1ˆ

0

d3~xj . . . d
3~xN (4.36)

∑
j

~p2
j

2M
=

∑
j

~x2
jE (4.37)
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For our purposes, we also define yi = (x1,1, x1,2, x1,3, x2,1, . . . ), which consists of N variables. So,
finally, we can calculate ω:

ω =
1

N !

(
V

(2π~)3

)N
(8ME)

3N/2

1ˆ

0

dy1 . . . dy3Nδ

(∑
i

y2
iE − E

)

=
1

N !
V N

(
2ME

π2~2

)3N/2 1

E
F (4.38)

The term 1
E comes from the relation δ(Ex) = 1

E δ(x) and

F =

∞̂

0

dy1 . . . dy3Nδ

(
1−

3N∑
i=1

y2
i

)
(4.39)

F = 2−3N

∞̂

−∞

dy1 . . . dy3Nδ

(
1−

3N∑
i=1

y2
i

)
(4.40)

23NF is the volume of a 3N − 1-dimensional unit sphere, which is equal to the surface of a 3N -
dimensional unit ball.

F =
2(

3N

2
− 1

)
!︸ ︷︷ ︸

Γ( 3N
2 )

(π
4

) 3N
2

(4.41)

To check if (4.41) is true, we will develop the case for N = 1

F =
1

8
4π =

π

2
=

2(
1
2

)
!

(π
4

) 3
2

=
4√
π
π

3
2

1

8
=
π

2
(4.42)

We have use 1
2 ! = Γ

(
3
2

)
= 1

2

√
π

Ω =
2

N !
(

3N
2 − 1

)
!

(
M

2π~2

) 3N
2

E
3N
2 V N δE

E
(4.43)

If δE
E = 1

3N is substituted, then

Ω =
2

N !
(

3N
2

)
!

(
M

2π~2

) 3N
2

E
3N
2 V N (4.44)

N is typically around 6 · 1023, therefore, Ω increases extremely rapidly with E and V .

v) Entropy of an ideal classical gas

With the help of our favorite approximated Stirling’s formula (4.45) we can find the entropy of an
ideal classical gas S.

lnN ! = N lnN −N (4.45)

S = kB (3N)

{
1

2
ln

M

2π~2
+

1

3
lnV +

1

2
lnE − 1

3
lnN +

1

3
− 1

2
ln

3N

2
+

1

2

}
(4.46)
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S = kB (3N)

{
1

2
ln
V

N
+

1

2
ln

2

3

E

N
+

1

2
ln

M

2π~2
+

5

6

}
(4.47)

3N = f is the number of degrees of freedom. We can write:

S = ckBf (4.48)

and, therefore, the number of states is
Ω(E) ∼ Ecf (4.49)

vi) Thermodynamic limit

Thermodynamic limit is where the the quantities go to infinity, V → ∞, E → ∞, N → ∞ but
N
V = n (particle density) and E

V = ε (energy density) are constants. We make the distinction between
extensive quantities (A) where

lim
V→∞

< A >

V
(4.50)

is a constant and the intensive (A) where

lim
V→∞

< A > (4.51)

is a constant. Some extensive and intensive quantities are listed in table 4.1. The ratio of two extensive

Table 4.1: Examples for extensive and intensive quantities

extensive intensive

V p pressure

N n

E ε

S s = S
V entropy density

is intensive.
We now have

S = 3kBn · V · c(n, ε) (4.52)

where

c(n, ε) =
1

2
ln

2ε

3n
− 1

3
lnn+

1

2
ln

M

2π~2
+

5

6
(4.53)

We have to check the units, because we can only take the logarithm of a dimensionless number. We
let kB = 1 and ~ = 1. So

s =
S

V
= 3n

(
lnn−

1
3 + ln

( ε
n

) 1
2

+ lnM
1
2 + constant

)
(4.54)

s =
S

V
= 3n

(
ln

√
Mε

n5/3
+ constant

)
(4.55)

We see that M ∼ M1, ε ∼ M4, n ∼ M3. The units are therefore all right. The factor 1
N ! in Ω (E)

is very important, because it turns the entropy into an intensive quantity. The factor is absent in
the classical description. It was first introduced by Max Planck in 1900, for which he was fervently
criticized.
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4 Equilibrium ensembles

vii) The limit E → E0

We now have E0 as the quantum mechanical energy of the ground state. We also have the difference
δE < E1 − E0 with E1 the the lowest excited state. So if the ground state is not degenerate

lim
E→E0

Ω(E) = 1 (4.56)

a simple consequence is that
lim
E→E0

S = 0 (4.57)

If we have q-fold degeneracy then
lim
E→E0

S = kB ln q � kBf (4.58)

So, often, the assumption is made that is is 0 because f is very very big and S
f ,

S
N → 0.

viii) Derivatives of entropy

Temperature We take first the derivative with respect to E at fixed particle number and volume:

1

T
=
∂S

∂EN,V
(4.59)

This defines the temperature T . We can now say that the temperature is a function of E, V and N .
T is a new thermodynamic variable T = T (E, V,N). So we can make a variable substitution in order
to transform E(T, V,N) into S(T, V,N). We also see that the temperature is an intensive quantity
because S and E are extensive and the ratio must therefore be intensive.

Pressure Now we take the derivative with respect to V at fixed particle number and energy:

p

T
=
∂S

∂V E,N
(4.60)

This defines the pressure p. We also see that the pressure is an intensive quantity.
Let us know compute this for out ideal gas of particles (note that the rest f is independent of volume):

∂S

∂V
= kB

∂

∂V

(
N ln

V

N
+ f(E,N)

)
= kB

N

V
=
p

T
(4.61)

We get from this the ideal gas law
pV = kBNT (4.62)

This was actually a very easy derivation of the ideal gas law. T and p are determined by the change
of the number of available states when E and V are changed.

Chemical potential Now we take the derivative with respect to N at fixed volume and energy:

µ = −T ∂S
∂N E,V

(4.63)

This defines the chemical potential µ.
We can compute all these variables, if we have the entropy, which is the counting of states. This

is the whole basically thermodynamics. We finish by making a little summary for entropy (we are
looking at an micro-canonical ensemble for a system in equilibrium).

S = kB ln Ω (4.64)
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and S is extensive. We also have seen that S
V → 0 for E → E0. Also

1

T
=
∂S

∂EN,V
(4.65)

This is no cheating, this is a very straightforward definition of these quantities. This is may not be
intuitive, but it is a good definition. We continue with canonical ensembles.

b) Canonical ensemble

i) System in a heat bath

Canonical ensemble is a system in a heat bath intuitively speaking. Energy can be exchanged with
the environment, but the particle number N remains constant. The heat bath is characterized by the
temperature T . Now we will derive all properties of this system.

The system is connected to a big reservoir R with which it can exchange energy. An important thing
is that the total system is isolated. We take the subsystem S and determine what is the probability
distribution in this subsystem. We let the volume of the reservoir be much bigger VR � VS and also
the number of particles NR � NS � 1. The total system is a micro-canonical ensemble with total
energy EG = ES + ER which is fixed. ER and ES are though not fixed separately. We now have an
Hamiltonian which we can split (Hint is the Hamiltonian of the interaction).

?H = ?HS + ?HR + ?Hint (4.66)

and the coupling is weak |〈?Hint〉| � 〈?HS〉 , 〈?HR〉. Now |ψn〉 is the quantum state of S and |ϕν〉 is
the quantum state of R. They make a complete basis, so

|χτ 〉 = |ψn〉 |φν〉 (4.67)

of G = R+ S where τ = (n, ν). Now the energy is as follows

ES,n = 〈ψn |HS |ψn〉 (4.68)

ER,ν = 〈ϕν |HR |ϕν〉 (4.69)

EG,τ=(n,ν) = ES,n + ER,ν = EG (4.70)

pτ = pnν = Ω−1
G (EG) (4.71)

We now consider an observable that only “depends on S”, An, so

< A > =
∑
n

∑
ν

pnνAn =
∑
n

pnAn (4.72)

because
pn =

∑
ν

pnν (4.73)

Our task is to compute this pn and that is where the Boltzmann factor will come from, pn ∼ exp
(
En
kBT

)
.

ii) Canonical partition function and Boltzmann factor

What are the pn? It is simply

pn =
∑
ν

Ω−1
G (EG)δ(ESn + ERν − EG)δE (4.74)
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where δ is the delta-function. So we have with the only constraint that ES + ER = EG that the sum
is the number of states,

pn(ES) =
ΩR(ER)

ΩG(EG)
(4.75)

What happens now if ES � EG? Then ER is close to EG and we can make a Taylor expansion of
ln ΩR(ER) around EG (and note that ER − EG = ES)

ln ΩR(ER) = ln ΩR(EG) + (ER − EG)
∂

∂EG
ln ΩR(EG) + ... (4.76)

We define now

β =
∂

∂EG
ln ΩR(E)|E=EG =

1

kBT
for β ≥ 0 (4.77)

with T the temperature in the reservoir. We insert the Taylor expansion in the formula for pn.

pn(ES) =
ΩR(EG)

ΩG(EG)
exp(−βES) (4.78)

We now introduce
Zcon = ΩG(EG)/ΩR(EG) (4.79)

and get

pn(ES) = Z−1
con exp(−βES) (4.80)

and this is the Boltzmann distribution.
In principle, we could also compute the partition function directly. We know that the sum of all pn

is 1. Therefore

Zcon =
∑
n

e−βES (4.81)

or ∑
n

pn =

∑
n e−βES

Zcon
= 1 (4.82)

And in particular

Zcon =
∑
ES

Ω(ES)e−βE (4.83)

=

ˆ
dEω(E)e−βES . (4.84)

We see that Zcon = Zcon(β,N, V ).

iii) Connection between < E > and β

Let us next compute the mean energy of our statistical ensemble. First the probability to find a given
energy, W (E):

W (E) = Ω(E)e−βEZ−1
con (4.85)

W (E)dE = Z−1
conw(E)e−βEdE (4.86)

37



4 Equilibrium ensembles

and therefore the mean energy

< E > =

ˆ
dEW (E)E (4.87)

=

´
dEw(E)Ee−βE´
dEw(E)e−βE

(4.88)

So

< E >= − ∂

∂β
lnZcon(β,N, V ) (4.89)

How is the probability distribution? We know that

W (E) ∼ Ecsfs e−βE (4.90)

where in the first exponential we have the degrees of freedom and therefore we have a very big number.
This function first rises very fast and then decreases fast, so we actually have a very narrow peak.
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5 Thermodynamics

a) Thermodynamical potentials

i) State variables, equations of state

The classical thermodynamics describes equilibrium states and transition from one equilibrium state
to another. Without any doubt it has an imensive technological importance. It is mostly axiomatic,
based on the law of thermodynamics and their consequences. Classical thermodynamics uses only a
few macroscopical variables (both extensive and intensive) such as E, T, S,N, µ, V, P .

The thermodynamical limit gives a functional relationship between the state variables. Usually, no
average values are used, because 〈E〉 ≡ E, etc.

There are several practical question, which we will try to answer in this chapter:

• How much energy should be deposited in a system, so that its temperature rises by a certain
amount, provided the volume stays constant?

• How much will the pressure increase during this process?

• How is heat transformed into mechanical energy? What is the efficiency factor of machines?

• When is a process reversable and when not?

Table 5.1: Different kinds of systems and their corresponding state and depedent variables

State variables Depedent variables

micro-cannonical ensemble; isolated system lnZmic(E,N, V ) S, T, µ, P

cannonical ensemble; closed system lnZcan(T,N, V ) S,E, µ, P

grand cannonical ensemble; open system lnZgc(T, µ, V ) S,E,N, P

The depedence of the depedent variables on the state variables is called equation of state.

Examples:

1. Equation of state fore an ideal gas

pV = nMRT = kBTN (5.1)

Here, nM is the number of moles and R is the gas constant, R = 8.31 J/mol·K

2. Van der Waals equation of state for a real gas(
p+

n2
M

V 2
a

)
(V − nMb) = nMRT (5.2)

with a and b specific constants of the gas. This equation could also be written in a more compact
form: (

p+ ?an2
)

=
nT

1− ?bn
(5.3)
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5 Thermodynamics

The goal of the statistical physics is to explain the equations of state and to derive them in their
fundamental form. On the other hand, classical thermodynamics examines the consequesence of the
existence of the equations of state. There are seven variables and only 4 equations, which automatically
makes three of the variables indepedent (state), but, commonly, there are aslo other thermodynamical
conditions. As already mentioned, variables split into two types: extensive (E,N, V, S) and intensive
(T, µ, p). However, the choice of the state variables cannot be arbitrary - one of them should always
be extensive.

Example: Grand cannonical ensemble with state variables T, µ, V .

S = V fS(T, µ) (5.4)

E = V fE(T, µ) (5.5)

N = V fN (T, µ) (5.6)

p = fp(T, µ) (5.7)

Therefore, (p, T, µ) cannot be three indepedent variables at the same time.

ii) Thermodynamical potentials and partition function

S = S(E,N, V ) = kB lnZmic(E,N, V ) entropy (5.8)

F = F (T,N, V ) = kB lnZcan(T,N, V ) free energy (5.9)

J = J(T, µ, V ) = kB lnZgc(T, µ, V ) Gibbs potential (5.10)

(
∂S

∂E

)
N,V

=
1

T
(5.11)(

∂S

∂N

)
E,V

= −µ
T

(5.12)(
∂S

∂V

)
E,N

=
p

T
(5.13)

Repetition from chapter 3:

S = kB lnZmic = kB ln Ω (5.14)

1

T
=

∂S

∂EN,V
(5.15)

−µ
T

=
∂S

∂N E,V
(5.16)

Zmic =
∑
τ

?δ (Eτ − E) ?δ (Nτ −N) (5.17)

Zcan =
∑
τ

exp (−βEτ ) ?δ (Nτ −N) (5.18)

Zgc =
∑
τ

exp {−β (Eτ − µNτ )} (5.19)
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Here,
∑

τ means a sum over all micro-states with arbitrary Eτ , Nτ .

E = − ∂

∂β
lnZcan (5.20)

E − µN = − ∂

∂β
lnZgc (5.21)

N =
1

β

∂

∂µ
lnZgc (5.22)

Example: Photons

Photons have chemical potential of zero (µ = 0), therefore, they have one variable less.

Zcan =
∑
τ

exp (−βEτ ) = Zgc (5.23)

The free energy for photons is:

F = kBT
π2

45
V (~cβ)−3 (5.24)

from which one can derive the free energy per volume

F

V
= −π

2

45
(~c)−3 β−4 ~=c=kB=1

= −π
2

45
T 4 (5.25)

iii) Entropy in canonical ensemble

The entropy is defined as
S = kB ln Ω

(
E
)

(5.26)

In thermodynamical limit E = E. It is important to note that the thermodynamic relations are
invariant of the choice of the ensemble.

Relation between E,F, T, S

Zcan =
∑
τ

e−βEτ =
∑
E

Ω (E) e−βE (5.27)

Since the function from (5.27) has a very narrow peak, it is more convenient to make an approximation

Zcan = Ω
(
E
)

e−βE (5.28)

lnZcan (β) = ln Ω
(
E
)
− βE (5.29)

From (5.9) and (5.29) follows

F = −kBT lnZcan = −kBT ln Ω
(
E
)

+ E = −TS + E (5.30)

F = E − TS (5.31)
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Relation between S and Zcan

E = − ∂

∂β
lnZcan (5.32)

From (5.31) and (5.9) one can derive

S =
E − F
T

= kBβ

(
− ∂

∂β
lnZcan

)
+ kB lnZcan (5.33)

S = kB

(
1− β ∂

∂β

)
lnZcan for fixed N,V (5.34)

iv) Properties of the entropy

Energy distribution for subsystems Let R1 and R2 be two subsystems of a total system G with
respective energies E1 and E2. Of course, the condition

E1 + E2 = EG (5.35)

should always be fullfilled. We would like to know what is the most probable value of E1? Its
probabibility distribution could be expressed as the ratio

w (E1) =
Ω1 (E1) Ω2 (EG − E1)

ΩG (EG)
(5.36)

So, the maximum of w (E1) coincides with the maximum of Ω1 (E1) Ω2 (EG − E1). But, we could also
take the logarithm of tha last expression without changing the position of the maximum.

max {ln [Ω1 (E1) Ω2 (EG − E1)]} = max {ln Ω1 (E1) + ln Ω2 (EG − E1)} (5.37)

This is equivalent with maximising S1 + S2 with the condition E1 +E2 = EG. Now we can formulate
the maximum principle for entropy.
In a equilibrium the entropy is maximised, but according to the constraints to the system.

The energies E1and E2 can be computed from the maximum of S1 + S2 and (5.35).

Now, consider two isolated systems in equilibrium with arbitrary energies E
(0)
1 and E

(0)
2 . Their

entropies are S
(0)
1 and S

(0)
2 . The total energy of the system is given by EG = E

(0)
1 + E

(0)
2 . When the

two systems are brought to contact, energy flows E
(0)
1 → E1, E

(0)
2 → E2 until S1 + S2 is maximazed

for given EG. As a consequence,

S1 + S2 ≥ S(0)
1 + S

(0)
2 (5.38)

Entropy can only increase.
The last statement is a key indregient of the second law of thermodynamics.

Additivity of entropy Assume that R1 and R2 are two isolated system, i. e. microcanonical ensem-
bles. The number of states is:

ΩG (E1 + E2) = Ω1 (E1) · Ω2 (E2) (5.39)

⇒ SG = S1 + S2 (5.40)

Relation 5.40 is true with accuracy 1√
N

. It is exactly true in the thermodynamical limes, where

w (E1) =
Ω1 (E1) Ω2 (E2)

ΩG (EG)
≈ 1 (5.41)
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b) Reversible and irreversible processes

i) / and constrains

We consider a isolated system in equilibrium with energy E (respectively [E,E + δE].
Micro states:
Ω: number of states with energy E, which the system can occupy
S = k · lnΩ (Ω = Zmic).
Generally the system is set by the constrains. They correspond to particular parameter. Ω =

Ω(E, y1...yk), respectively intervals
[y1, y1 + δy1], ...[yk, yk + δyk].
Example 1 : fixed volume V1

V1: volume of the gas
Example 2: fixed energy of the particles E1

E1: energy of gas 1
V1: volume of gas 1
N1: number of particles of gas 1
One can consider this picture as two isolated systems, and can look at subsystems

Ωg(E,E1, V, V1, N,N1) = Ω(E1, V1, N1)Ω(E − E1, V − V1, N −N1)

ii) Getting rid of the constraints

After long time the system gets in a new equilibrium Ωi → Ωp. In this case it is always true that
Ωp ≥ Ωi . All the states compatible with the constrain conditions are still possible. But there appear
new possible states with fixed energy E, which are otherwise banned from the constrains.

Getting rid of the constrains in an isolated system:
the entropy of the last state is larger or equal to the entropy of the first state Sp ≥ Si. Here the

first and the last states are equilibrium states, it is not important what happens in between.

Example 1:

Getting rid of the barrier

Ωi ∼ V N
1

Ωp ∼ V N

Ωp � Ωi for V > V1

Example 2:

The barrier is thermally made conductive; subsystem canonical ensemble.

Ωi = Ωi1Ωi2

Ω1i ≈
1

N1!(2N1
3 − 1)!

(
m

2π~2
)
3N1
2 V N1

1 E
3N1
2

1

δE1

E1
diluted gas at high energy

Ωp ≈
1

N1!(2N1
3 − 1)!

(
m

2π~2
)
3N1
2 V N1

1 E
3N1
2

1

δE1

E1
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Ωi ∼ W (E1)

Ωp ∼ W (E1)

Ωp � Ωi for E1 6= E1max = E1

Ωp ≈ Ωi for T1 = T2

iii) Increase of entropy by removing of constrains.

The probability that without constraints the system, after sufficiently long time, goes back in the
initial states:

Wi =
Ωi

Ωp

1
Ωp

is the probability that the system is in one particular macro-state (system without constrains).
Ωi are the number of micro-states sufficing the initial conditions.

Wi � 1 if Ωi � Ωp

Example 1:

V = 2V1

Wi = (
1

2
)N (factor

1

2
for each molecule)

Example 2:

Wi = W (E1)δE for an intervall [E1 −
1

2
δE;E1 +

1

2
δE]

δE

E
≥ 1√

N

⇒W (Emax)δE = W (E)δE ≈ 1
W (E1) is exponentially inhibited for E1 6= E.

Removing of constrains

Before: fixed initial value yi.
After: Probability distribution W (y)δy ∼ Ω(y).
Generally y 6= yi, yis the maximum of W (y), ∂W

∂y (y) = 0.
Generalization on multiple variables y1...yk:

N →∞
Sharp value yf = y = ymax, (generally yl 6= yi). yf is defined by the maximal entropy (Ω(ymax)).

S(yf )maximal

When there are no constrains the parameters get such that the entropy becomes maximal (at given
limiting conditions as V,N,E of the system).
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Example:

y : the energy in a partial volume of the system
S(E,N, V ; y): calculated with given constrains
∂S
∂y |E,N,V = 0⇒ y

When getting near to the equilibrium state, the entropy of a system grows.

Consequences from the postulates:

Initial conditions are very improbable for large Nλ, if the corresponding probability distributions aren’t
uniform distributions over all micro-states.

Wi =
Ωi

Ωp
� 1

Si < Sp

From the equilibrium-state point of view:
states similar to the equilibrium ,transition from improbable to probable state.

iv) The second law of thermodynamics (introducing constrains).

How can the initial conditions be restored?
i) in an isolated system
The restoration of the barriers in general doesn’t restore the initial conditions.
New parameter y instead of yi. (Examples 1,2). We remove more constrains, at most the entropy

rises.

An isolated system cannot spontanously go from a probable in an unprobable state!

Precisions:

• “will not switch” - it is extremely improbable that this transition happens.

• “states” - here macro-states described by a probability distribution pf ; equilibrium state de-
scribed by micro-canonical ensemble, pf = 1

Ω .

Another states: no uniform distribution of the micro-states (pf 6= 1
Ω).

Second law of thermodynamics

The entropy of a closed system cannot decrease!

Historical formulations:

Heat cannot flow from a body with lower to one with higher temperature!

Clausius

It is impossible to produce work continuously by lowering the temperature of a system, without other changes in the environment!
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Kelvin

⇐⇒ impossibility of perpetuum mobile.

0. Law

T, T1,= T 2

1. Law

E, conservation of E

2. Law

S, Scannot decrease

3. Law

Smin = 0

v) Reversible processes

A process (i)→(f) in a closed system is reversible, if (f)→(i) is also possible.

in other cases the process is called irreversible.

In a closed system:

increase of entropy ⇔ irreversible process
A reversible process is one occupying the hole system , for example adiabatic (the entropy stays

constant).

vi) Reversible processes for open systems

Definition :

It must be possible, that an inverse of this process can be made, so that the system gets back in the
initial state, without changing the environment. Carnot-process is an example of a reversible process.

The temperature difference between the reservoirs is lowered and work is done. Inverse process -
fridge - work is done in order to make the temperature difference between the reservoirs larger.

Irreversible processes:

dissipative processes
Typically energy is being divided between many degrees of freedom, example: mechanical energy

transformed in heat (pendulum in air).
Examples: mechanical friction, eddy currents, viscose friction, balance of the temperature of two

heat reservoirs.

vii) Thermodynamics and non-equilibrium states

The course of an irreversible process cannot be described by thermodynamical potentials.
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Statistical systems
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6 Ideal quantum gas

An ideal gas is such that the interaction between its point-like particles is negligible. An ideal gas can
consist of molecules, photons, electrons, excited states in solids (quasiparticles). It is usually a good
approximation for low pressure or other conditions.

a) Occupation number basis

One particle Let the Hamiltonian be H1. Then for one particle

H1ψν = Eνψν ψν = ψν (Q) (6.1)

Example: A particle in a box (Lx = Ly = Lz = L)

H = − ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
(6.2)

ν = (mx,my,mz) with mx,y,z ∈ N (6.3)

Therefore, the energy levels are

Eν =
π2~2

2mL2

(
m2
x +m2

y +m2
z

)
(6.4)

The wave function ψν (Q) can be expressed in position coordinates Q = (x, y, z) or impulse Q =
(kx, ky, kz).

N identical particles The Hamiltonian is just

H =
N∑
i=1

Hi (6.5)

ψ
(N)
{νi} (Q) = P [ψν1 (Q1)ψν2 (Q2) . . . ψνN (QN )] = ψα (Q1 . . . QN ) (6.6)

i) Bosons

P is completely symmetric in Qi

P ≡ 1

N !

∑
Perm{Qi}

(6.7)

⇒ ψα (Q1 . . . Qi . . . Qk . . . QN ) = ψα (Q1 . . . Qk . . . Qi . . . QN ) (6.8)

⇒ ψν1...νi...νk...νN (Q) = ψν1...νk...νi...νN (Q) (6.9)

Exchange of two identical particles does not change the wave function, e.g. eı
~k1~x eı

~k2~y + eı
~k1~y eı

~k2~x. In
quantum mechanics they also have to be indistinguishable.

α : (ν1, ν2, . . . , νN ) (6.10)

It is not important which particle is in state ν, but how many are in state ν.
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6 Ideal quantum gas

Occupation number basis ψn′

τ ≡ {n1, n2, . . . , nk . . . } = {nν} nν ∈ N n1 # Particles in ν = 1
nk # Particles in ν = k

(6.11)

There can be infinitely many particles in every state ν.

N =
∑

nν (6.12)

ψ{νi} ≡ ψα and ψ{nν} ≡ ψτ are different choices of bosons, which directly correspond to each other.

Example: One dimensional harmonic Oscillator

N = 1
ψ1 n1 = 1 ψ10000... E1

ψ2 n2 = 1 ψ01000... E2

N = 2
ψ13 ≡ ψ31 n1 = 1, n3 = 1 ψ10100... E1 + E3

ψ22 n2 = 2 ψ02000... 2E2

N = 5 ψ13345 ψ10211... E1 + 2E3 + E4 + E5

N = 0 ψ00000... E = 0

ψ{νi} is the basis in Hilbert space with fixed number of particles N : HN . ψ{nν} is the basis the
Fock space.

F = H0 ⊕H1 ⊕H2 ⊕ . . .HN ⊕ . . .H (6.13)

It describes states without fixed number of particles. F is the discrete sum over all Hilbert spaces HN .
Therefore, ψ{nν} is very suitable for systems with arbitrary number of particles, because then there is
no limit for nν : nν ∈ N. This is fulfilled for the grand canonical ensemble (otherwise

∑
nν = N).

Hψ{nv} =
∑
ν

Eνnνψ{nν} (6.14)

E =
∑
ν

Eνnν (6.15)

It should be noted that occupation number basis for systems with particle interaction also exists.

ii) Fermions

P is completely antisymmetric in Qi for fermions.

⇒ ψ{νi} (Q1 . . . Qi . . . Qk . . . QN ) = −ψ{νi} (Q1 . . . Qk . . . Qi . . . QN ) (6.16)

For N = 2
ψ34 (Q1, Q2) ∼ (ψ3 (Q1)ψ4 (Q2)− ψ3 (Q2)ψ4 (Q1)) ∼ ψ43 (Q1,Q2) (6.17)

⇒ ψ33 (Q1, Q2) ≡ 0⇒ ν1 6= ν2 (6.18)

This is a consequence from Pauli’s Principle.
For an arbitrary N :

ψν1...νi...νk...νN = −ψν1...νk...νi...νN (6.19)

νi = νk ⇒ ψ = 0 (6.20)
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Two fermions cannot be in the same state simultaneously. Therefore, nν in ψ{nν} could be either 0 or
1.

N =
∑
ν

nν (6.21)

E =
∑
ν

Eνnν (6.22)

b) Partition function for grand canonical ensemble

Zgc =
∑
n

exp(−β

{∑
ν

Eνnν − µ
∑
ν

nν

}
(6.23)

where ∑
ν

Eνnν = E (6.24)

,and ∑
ν

= N (6.25)

Zgc =
∑
E

∑
N

Ω(E,N, V ) exp(−β(E − µN) (6.26)

-we compete Ω indirectly by computing Zgc

Zgc =
∑
{nν}

exp {−βnν(Eν − µ} =
∑
{n1}

∏
ν

exp {−βnν(Eν − µ}
.
=
∏
ν

(
∑
nν

exp {−βnν(Eν − µ)} (6.27)

Every term in this sum .....

lnZgc =
∑
ν

ln
∑
nν

exp {−βnν(Eν − µ)} (6.28)

! for every ν : ∑
nν

=

{∑∞
nν=1 bosons∑∞
nν=0 fermions

(6.29)

One particle state ν
(p1, p2, p3),−→p , (m1,m2,m3)
Eν = E(−→p )
sequence of occupation states {nν} — {n(−→p )} ,−→p → n(−→p ), for each −→p indicate n(−→p ) ; given

sequence ,given function n(−→p )
fermions

nν = 0, 1 (6.30)

bosons
nν = 0, 1, 2...∞ (6.31)

τ , {nν} (6.32)
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∑
τ

,
∑
{nν}

=
∑
n1

∑
n2

...
∑
nk

... =
∏
ν

(
∑
nν

) (6.33)

bosons ∑
{nν}

=
∏
ν

(

∞∑
nν=0

) (6.34)

fermions ∑
{nν}

=
∏
ν

(

1∑
nν=0

) (6.35)

∑
nν
,sum over all possible functions n(−→p )(functional integral ! )

Free fermions

lnZ(B)
gc =

∑
ν

ln[1 + exp {−β(Eν − µ)}] (6.36)

Bosons

lnZ(B)
gc =

∑
ν

ln[

∞∑
j=0

(exp{−β(Eν − µ)}j ] (6.37)

j = nν

1 + x+ x2 + x3 + ... =
1

1− x
(6.38)

lnZ(B)
gc =

∑
ν

ln
1

1− exp{−β(Eν − µ)}
(6.39)

All that has to be done now is a sum over all one-particle-states!

c) Occupation Numbers

i) Mean occupation number for bosons.

N =
1

β

∂

∂µ
lnZgc =

∑
τ

Nτ exp(−β(Eτ − µNτ )

Zgc
=
∑
τ

Nτpτ (6.40)

Bosons

N =
∑
ν

{− 1

β

∂

∂µ
ln{1− exp[−β(Eν − µ)]}} (6.41)

=
∑
ν

1

β

∂
∂µ exp[−β(Eν − µ)]

1− exp[−β(Eν − µ)]
(6.42)

=
∑
ν

exp[−β(Eν − µ)]

1− exp[−β(Eν − µ)]
(6.43)

=
∑
ν

nν (6.44)

nν : mean occupation number for state ν

n(B)
ν =

1

exp[β(Eν − µ)− 1
(6.45)
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This is the Bose-Einstein-statistics.
Proof :

Z(β;µ1...µν) =
∑
n1

...
∑
nν

exp[−β
∑
ν

(Eνnν − µνnν)] (6.46)

nν =
1

β

∂

∂µ
lnZ|µν=µ (6.47)

Bosons

lnZ(β;µν) =
∑
ν

ln
1

1− exp[−β(Eν − µ)]
(6.48)

ii) Fermions

N =
∑
ν

nν (6.49)

nν =
exp[−β(Eν − µ)

1 + exp[−β(Eν − µ)]
(6.50)

Fermi-Dirac-Statistics

n(F )
ν =

1

exp[β(Eν − µ)] + 1
(6.51)

0 ≤ n(F )
ν ≤ 1 (6.52)

n(F )
ν → 0 for Eν − µ� kT (6.53)

n(F )
ν → for Eν − µ < 0 and kT � |Eν − µ| (6.54)

iii) Mean Energy

E =

(
− ∂

∂µ
+
µ

β

∂

∂µ

)
lnZgc = − ∂

δβ
lnZgc + µN (6.55)

Bosons

E =
∑
ν

(Eν − µ) exp[−β(Eν − µ)

1− exp[−β(Eν − µ)
+ µN =

∑
ν

(Eν − µ)n(B)
ν + µ

∑
ν

n(B)
ν (6.56)

E =
∑
ν

Eνnν (6.57)

The same is true for fermions!
The formula for other macroscopical values look the same.
nν :... macroscopical value

iv) Chemical Potential

Which value should be chosen for µ?
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iv).1 Conserved number of particles.

Example:
Ne : electrical charge and lepton number
Ni : for the number of molecules of the same sort, if one can neglect the chemical transitions
NB: number of baryons

N =
1

β

∂

∂µ
lnZgc(β, µ) = N(β, µ) (6.58)

⇒ µ(N,T ) termodynamical marginal case (6.59)

Grand canonical and canonical ens amble equivalent

µ = µ(N,T ) (6.60)

Multiple conserved quantum numbers Ni, multiple variables µi

iv).2 No conserved number of particles

Example: photons, pions.
The canonical ensemble does not depend on N . µ ≡ 0 . No limitation of the number of sumands∑
{nν}, becauseN is not a conserved quantum number. The middle occupation numbers characterize

the canonical ensemble.

iv).3 Approximately conserved quantum numbers

µ 6= 0

When we also consider time scales smaller than the time for decay.

v) Boltzmann statistics

Energies large in comparison with kT .

Eν − µ� kT

nν ≈ exp {−β(Eν − µ)}
for fermions and bosons

Maxwell-Boltzmann statistics for classical particles

nν = c · exp(−Eν − µ
kT

) = ?c · exp(−Eν
kT

) (6.61)

exp(−Eν
kT

) is the Boltzmann factor (6.62)

Eν is the energy of the one-particle-state ν.
Recall earlier lecture: Ω(E,N) with approximation that Ω is dominated by microstates ν is occupied

at most once
, nν � 1

Check:
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lnZgc =
∑
ν

exp {−β(Eν − µ} (6.63)

⇒ J(T, µ) (6.64)

use thermodynamics for S(E,N)→ Ω(E,N).

d) Photon gas

We will examine the electromagnetical radiation in equilibrium. The temperature T is defined as the
temperature of the walls of the cube. This example prooved to be decisive in the development of
modern Physics. The classical field theory could not give a correct answer, because there was a huge
deviation in the observed frequency distibution of the radiation.

i) Black body radiation

Consider photons in equilibrium at temperature T . The mean occupation number is

n0 =
1

exp(βEν)− 1
(6.65)

We need one photon state ν and their energy Eν . From Maxwell equations follows

1

c2

∂2 ~E

∂t2
= ∇2 ~E (6.66)

We can set ~E = ~E(r) exp(−ıwt)

∇2 ~E(r) +
ω2

c2
~E = 0 (6.67)

~E(r) can be expressed as
~E(r) = ~A exp ı~k~r (6.68)

The exact boundary conditions are not important, but we can take a cube with length L and assume
periodical boundary conditions:

~k =
2π

L
~n nx,y,z ∈ Z (6.69)

~k2 =
ω2

c2
ω = c

∣∣∣~k∣∣∣ c = 1 (6.70)

~∇ ~E(r) = 0⇒ ~k ~A = 0 (6.71)

The electromagnetic wave is transversal, so there are 2 degrees of freedom for every ~k. Photons are
massless particles with spin 1 and helicity H = ±1.

Quantifying

E = ~ω ~p = ~~k (6.72)

Eν = ~c
∣∣∣~k∣∣∣ = 2π~c |~n| ν = (nx, ny, nz, H) (6.73)

Eν =
2π~c
L
|~n| V = L3 (6.74)

We split ν in two
ν = (νT , νI) (6.75)

νT ≡ (nx, ny, nz) translational degrees of freedom

νI ≡ H inner degree of freedom
(6.76)
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Density of the translational states The translational state lay very densely for a very large volume
(Eν ∼ 1

L). Therefore, we can exchange the sum with an integral

∑
νT

→ V

ˆ
d3p

(2π~)3 (6.77)

ii) Spectrum of black body radiation

We want to compute the mean number of photons per volume in a momentum interval
[
~k,~k + d~k

]
, ~p =

~~k
1

V
2︸︷︷︸

H=±1

n(k)
V

(2π~)3 d3p =
1

(2π)3 2n(k)d3k =
2

exp(β~ω)− 1

d3k

(2π)3
(6.78)

We can use ω = ω(~k) = c
∣∣∣~k∣∣∣ , E = ~ω

d3k = 4π |k|2 d |k| = 4π

c3
ω2dω (6.79)

The mean number of photons pro volume in frequency interval [ω, ω + dω] is

?n (ω) dω =
8π

(2πc)3

ω2

exp(β~ω)− 1
dω (6.80)

(6.80) does not diverge for ω → 0. The mean photon energy pro volume in the frequency interval
[ω, ω + dω] is

u(ω, T )dω =
~
π2c

ω3

exp(β~ω)− 1
dω (6.81)

(6.81) could be transformed with η = β~ω = ~ω
kBT

to the original form, postulated by Planck in 1900

u(η, T )dη =
(kBT )4

π2(~c)3

η3dη

exp η − 1
(6.82)

Of course, (6.81) can be expressed as a function of the wavelength ω = 2πc
λ

u(λ, T )dλ = 16π2~c
1

exp
(

2π~c
kBTλ

)
− 1

dλ

λ5
(6.83)

The maximum in the spectrum of the sun, which has surface temperature T ≈ 5800 K, is λmax =
500 nm. This green light, to which the human eye is to most sensistive.

When ~ω � kBT

u(ω, T )dω =
~

π2c3

ω3

β~ω
dω =

kBT

π2c3
ω2dω (6.84)

(6.84) coincides with the result derived from the classical electrodynamics. Noteworthy is that there
is no ~ in (6.84). However, a problem arises, when one integrates over the frequency

∞̂

0

dω u(T, ω)→∞ (6.85)

A solution is offered by quantum statistics of photons.
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iii) Energy density

ε =
E

V
=

∞̂

0

dω u(ω, T ) =

∞̂

0

dη u(η, T ) = (6.86)

ε =
(kBT )4

π2c3~3

∞̂

0

dη
η3

eη −1︸ ︷︷ ︸
π4

15

(6.87)

ε =
π2

15

(kBT )4

(c~)3
(6.88)

(6.88) is called Stefan-Boltzmann law.

Natural units
~ = c = kB = 1 (6.89)

kB = 1 Temperature is measured in energy units, e.g. eV. 1 K = 8.617 · 10−5 eV

c = 1 Mass is also measured in energy units, e.g. me = 511 keV 1 eV = 1.783 · 10−33 g

~ = 1 Time and length are measured in inverse energy units 1 fm = 10−15 m = 1
197 MeV 1 m =

5.068 · 106 (eV)−1

iv) Canonical partition function

lnZcan(β, V ) =
∑
ν

ln
1

1− exp {−βEν}
(6.90)

∑
ν

= V

ˆ
d3k

(2π)3
Eν = ~c

∣∣∣~k∣∣∣ = ~ω =
η

β
(6.91)

lnZcan =
V

π2

(
kBT

~c

)3
∞̂

0

dη η2 ln
1

1− e−η
(6.92)

lnZcan =
π2

45
V (βc~)−3 (6.93)

We can make a small check.

E = − ∂

∂β
lnZcan =

π2

15
V (~c)−3β−4 (6.94)

ε =
E

V
=
π2

15
(~c)−3β−4 (6.95)

One can easily see that (6.88) and (6.95) are identical.

Notes

1. Macroscopic observables is not only the energy E, but also the energy distribution as a function
of the frequency

2. From Zcan other observables could be derived, e.g. the pressure of the photon gas. ⇒Thermodynamic
potentials →classical thermodynamics.
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v) Free energy and equation of state

lnZcan =
π2

45
V

(
kBT

~c

)3

(6.96)

⇒ F = −τ
3
V T 4 (6.97)

For (6.97) we have used natural units and F = −kBT lnZcan and have set

τ =
k4

Bπ
2

15c3~3
(6.98)

S =

(
−∂F
∂T

)
V

=
4

3
τV T 3 (6.99)

E = F + TS = τV T 4 (6.100)

p = −
(
∂F

∂V

)
T

=
τ

3
T 4 =

1

3

E

V
=

1

3
ε (6.101)

ε =
π2

15
T 4 (6.102)

p =
1

3
ε (6.103)

e) Fermi gas

i) Quasi-particles

We consider low temperatures. What does that mean? We have to compare it with something. Is
is slow compared to the Fermi temperature, so T � TF . Of course there is a transition between the
low an high temperature regime but we will not deal with that. Low temperature is important when
considering particles and hole, for example in solid state physics. We are not only interested in the
free Fermi gas, but when interactions happen. Free Fermi gas is when the interaction between the
quasi-particles can be neglected.

ii) T → 0

Our starting poing is the formula

n(F )
ν =

1

exp(β(Eν − µ)) + 1
(6.104)

which we will evaluate in the limit then T → 0 or when βT << |Eν − µ|. When kT → 0, we have
β →∞. We have

n(F )
ν = 0 (6.105)

when Eν > µ and
n(F )
ν = 1 (6.106)

for the case when Eν < µ. This gives us the famous Fermi surface. The Fermi energy is defined as

εF = lim
T→0

µ (6.107)
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As we have nonrelativistic fermions, we can also define the Fermi momentum

p2
F

2M
= εF =

~k2
F

2M
(6.108)

which can also be written in terms of the Fermi wave number kF .

iii) Computation εF

We now have

N = 2
V

(2π)3

ˆ

k2<k2F

d3k =
V

π2

ˆ kF

0
d|k||k|2 =

V

3π2
k3
F (6.109)

and therefore we have

kF =

(
3π2N

V

)1/3

(6.110)

and an expression for εF which is valid for free non-relativistic fermions

εF =
~2

2M

(
3π2N

V

)2/3

(6.111)

with kTF = εF .

iv) Thermodynamics

We know that the energy is a function of T , V and N , so E(T, V,N). The lowest state of the system
is E(T = 0) = E0 which is gotten by counting the states multiplying by the energy of the states

E0 = 2
V

(2π)3

ˆ

k2<k2F

d3k
~2k2

2M
(6.112)

=
V

(π)3

~2

2M

kFˆ

0

k4d3k (6.113)

=
V ~2

10π2M
k5
F (6.114)

=
3

10

~2k2
F

M
N (6.115)

=
3

5
NεF (6.116)

E0 =
3

5
NεF (6.117)

if we remember that N = V
3π2k

3
F and εF =

~2k2F
2M .

Now we have a good starting point, the equation of state

E(T = 0, N, V ) =
3~2

10M
(3π2n)2/3N (6.118)
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v) Number of states per particle for given one particle energy

We want to go beyond the standard dispersion relation and have some general relation

Eν = ε(|~k|) (6.119)

In the non-relativistic case we would have ε = ~k2/2M and in the relativistic case ε = ~c|k|. The kF is
same as before. The computation of the Fermi energy does though change, εF = ε(kF ).
We start by computing the ground state energy. We have

N = gI
V

6π2
k3
F (6.120)

and the energy is

E0 = gI
V

(2π)3

ˆ

k2<k2F

d3k ε(|k|) (6.121)

E0 = gI
V

(2π)3

ˆ
d3k

ˆ εF

0
dε ε (6.122)

We can now invert the integration and define the quantity which gives us the number of states per
particle,

E0 = N

εFˆ

0

dεΩ1(ε)ε (6.123)

with

Ω1(ε) = gI
V

N

ˆ
d3k

(2π)3
δ (ε− ε(|k|)) Ω1(ε) = gI

V

N

ˆ
d3k

(2π)3
δ

(
ε− ~2k2

2M

)
(6.124)

which is the number of states per energy per mass.

vi) Ω1 for ε(k) = k2

2M

We integrate the equation above by changing into polar coordinates and the result is (only true for
ε > 0)

Ω1(ε) =
3

2
ε
−3/2
F ε1/2 (6.125)

but we will not derive it in class.
The energy per particle is then

E0

N
=

3

2
ε
−3/2
F

2

5
ε
5/2
F =

3

5
εF (6.126)

We use thermodynamic observation for determination of microscopical properties. We compute ob-
servables with free Ω1(ε).

vii) E(T )

We have

E(T, ν,N) = N

∞̂

−∞

dεΩ1(ε)
ε

eβ(ε−µ) + 1
(6.127)
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We can compute the particle number as a function of the chemical potential

N = N

∞̂

−∞

dεΩ1(ε)
1

eβ(ε−µ) + 1
(6.128)

and we get a type of normalization condition, where this is valid for arbitrary temperatures

1 =

∞̂

−∞

dεΩ1(ε)
1

eβ(ε−µ) + 1
(6.129)

So if we know Ω1 we get a function of β and ν by using this normalization condition. Therefore we
get the chemical potential as a function of temperature.

Now we look at small temperatures. If T > 0 the fermi surface is not a step function but a smooth
one. We want to compute the edges, which are the difference between the step function and the
smooth one. If electrons have energy bigger than the energy µ, which is higher than the Fermi surface,
we call that particles. If they have less energy, we can call them missing electrons or holes.
Our approximations are that kT << |εF − ε| and we consider the difference between two cases, when
T 6= 0 and when T = 0 for fixed N and V .

E − E0 = N

ˆ
dεΩ1(ε)ε

(
1

eβ(ε−µ) + 1
−Θ(εF − ε)

)
(6.130)

viii) Compute µ(t) from normalization

We have

0 =

∞̂

−∞

dεΩ1(ε)

(
1

eβ(ε−µ) + 1
−Θ(εF − ε)

)
(6.131)

Now we have
Ω1(ε) = Ω1(εF ) + Ω′1(εF )(ε− εF ) (6.132)

and the Sommerfeld approximation
µ = εF + ∆µ (6.133)

and let x = β(ε− εF ) so we therefore get

0 =

∞̂

−∞

dx

(
Ω1(εF ) + Ω′1(εF )

x

β

)(
1

exe−β∆µ + 1
−Θ(−x)

)
(6.134)

Now we to Taylor expansion around β∆µ and get

1

exe−β∆µ + 1
=

1

ex(1− β∆µ) + 1
(6.135)

=
1

(ex + 1)(1− β∆µ ex

ex+1)
(6.136)

=
1

ex + 1
+ β∆µ

ex

(ex + 1)2
(6.137)

We now use this into the expression above and get
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0 =

∞̂

−∞

dx

(
Ω1(εF ) + Ω′1(εF )

x

β

)(
f(x) + β∆µ

ex

(ex + 1)2

)
(6.138)

where

f(x) =
1

ex + 1
−Θ(−x) (6.139)

which has the property that f(−x) = −f(x) so it is antisymmetric. f(x) has a jump in x = 0. This
function has two useful properties. First that

∞̂

−∞

dxf(x) = 0 (6.140)

and also that
∞̂

−∞

dxf(x)x =
π2

6
(6.141)

We now have from the normalization equation

β∆µΩ1(εF )

∞̂

−∞

dx
ex

(ex + 1)2
= −Ω′1(εF )

β

π2

6
(6.142)

and now finally ∆µ ∼ Ω′1
β2 and since µ = εF + ∆µ we get

µ = εF −
π2

6

Ω′1(εF )

Ω1(εF )
(kT )2 (6.143)

f) Non-relativistic bosons

i) Chemical Potential

We will take a look at one-atom gases, without excited internal degrees of freedom and gI = 1, such
as hydrogen.

?nν =
1

exp [β (Eν − µ)]− 1
(6.144)

The lowest energy ist E0 ⇒ µ < E0. We will take E0 = 0 without loss of generality, µ < 0. Otherwise
rescale Eν , µ by some additive shift, which is allowed because only Eν−µ matters and it is indepedent

on the shift. Example for bosons are atoms with the appropriate spins with Eν = ~p2

2M

ii) Number of bosons in ground state

?n0 =
1

e−βµ − 1
(6.145)

This could be approximated for small |βµ|:

?n0 =
1

1− βµ− 1
= − 1

βµ
= −kBT

µ
(6.146)
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(6.146) can become very large for µ→ 0−. Macroscopic ?n0 is equivalent with Bose-Einstein conden-
sate. ?n0

N gives the fraction of condensed atoms or the superfluid density. In the thermodynamical
limit V →∞:

?n0

N
→ 0 no condensation

?n0

N
→ ns > 0 Bose-Einstein cond.

iii) Qualitive behaviour of n0 (Eν) for T → 0

The smaller temperature means that there less particles with higer energies due to the stronger Boltz-
mann supression. n0 increases for small Eν ⇒ µ (T → 0, N)→ 0

iv) Gibbs potential

J = −kBT lnZgc = −pV (6.147)

J = −kBT
∑
ν

ln

(
1

1− exp {−β (Eν − µ)}

)

= kBTgIV

ˆ
d3k

(2π)3 ln

1− exp

−
1

kBT

~2~k2

2M︸ ︷︷ ︸
ε(~k)

−µ





g) Classical ideal gas

i) Classical approxiamtion

The classical approximation is for the case

Eν − µ� kBT,
~2~k2

2M
− µ� kBT (6.148)

The occupation number becomes

nν =
1

eβ(Eν−µ)∓1
→ e−β(Eν−µ) for bosons and fermions (6.149)

This means the classical approximation is valid for nν � 1

ii) Gibbs potential

J = kBTgIV

ˆ
d3k

(2π)3 ln

(
1− exp

{
− 1

kBT

[
~2~k2

2M
− µ

]})

= −kBTgIV

wπ2

∞̂

0

d
∣∣∣~k∣∣∣ ∣∣∣~k∣∣∣2 exp

{
− 1

kBT

[
~2~k2

2M
− µ

]}
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6 Ideal quantum gas

It is the same for bosons and fermions.

J = −kBTgI
V

2π2
exp

(
µ

kBT

)
IJ (6.150)

IJ =

∞̂

0

dxx2 exp
(
−bx2

)
= − ∂

∂b

∞̂

0

dx exp
(
−bx2

)
=

∂

∂b

(
1

2

√
π

b

)
=

1

4
π

1/2b−
3/2 (6.151)

with b = ~2
2MkBT

iii) Thermal de Broglie wavelength

We define

λ(T ) =

(
2π~2

MkBT

)1/2

(6.152)

λ2 = 4πb⇒ b =
λ2

4π
⇒ b−

3/2 = λ−3 (4π)
3/2 (6.153)

⇒ IJ = 2π2λ−3 (6.154)

iv) Thermodynamics

J = −kBTgIV λ
−3(T ) exp

µ

kBT
(6.155)

J = −pV (6.156)

N = −
(
∂J

∂µ

)
T,V

= − 1

kBT
J =

pV

kBT
(6.157)

From (6.157) one can derive the equation of state for the ideal gas

pV = kBNT (6.158)

Now, let us make a comparission with the thermodynamical derivation.

J = −kBTV exp
µ

kBT
?a(T ) (6.159)

⇒ ?a(T ) = gIλ
−3(T ) ∼ T 3/2 (6.160)

E = kBTN
∂ ln ?a

∂ lnT
=

3

2
kBNT (6.161)

6.161 does not involve the degenaracy gI . The function ?a(T ) is uniquely defined.

cV =
3

2
kBN ⇒

cV
N

=
3

2
kB (6.162)

h) Bose-Einstein Condensation

We will discuss the case when we keep n fixed and lower T .
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6 Ideal quantum gas

i) n(µ)

N

V
=

ˆ
d3k

(2π)3

1

expβ
(
~2k2
2M − µ

)
− 1

(6.163)

For the calculation of the integral we transform to spherical coordinates.

⇒
ˆ

d3k

(2π)3
=

1

2π2

ˆ
d |k| |k|2 =

1

4π2

ˆ
dk2
√
k2 (6.164)

We also use the following variable z

z =
~2k2

2MkBT
=
λ(T )2k2

4π
(6.165)

k2 =
4πz

λ2
(6.166)

⇒ n =
1

4π2

(
4π

λ2

)3/2
∞̂

0

dz
√
z

1

ez−βµ−1
(6.167)

nλ3 =
2√
π

ˆ
dz
√
z

1

ez−βµ−1
= f(βµ) (6.168)

µ is negative, if we increase towards 0−, then −βµ→ 0+ ⇒ f(βµ) increases.

ii) Critical temperature

We want to compute nλ3 for µ = 0 (the maximal value of µ)

nλ3 =
2√
π

ˆ
dz
√
z

1

ez − 1︸ ︷︷ ︸
Γ( 3

2)φ( 3
2)

(6.169)

Γ
(

3
2

)
= 1

2

√
π and φ

(
3
2

)
= 2.612 (

nλ3
)

c
= φ

(
3

2

)
(6.170)

λc =

(
φ

(
3

2

))1/3

n−
1/3

c (6.171)

λ2
c =

2π~2

MkBTc
=

(
φ

(
3

2

))2/3

n−
2/3

c (6.172)

kBTc =
2π~2

M

(
φ

(
3

2

))−2/3

n
2/3
c = 3.31

~2

M
n

2/3
c (6.173)

If T reaches Tc for a given n, then µ reaches 0. So, what happens for T < Tc?
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6 Ideal quantum gas

iii) Ground state of bosonic gas

The ground state is at T = 0, which corresponds to the minimum of the energy. All bosons are in the

state with the lowest energy E0. In a box with periodic boundary conditions the energy is E0 =
~2k20
2M ,

where ~k0 is the lowest possible discrete momentum; or in a cavity the lowest resonance frequency w0

is excited with E0 = ~w0. ⇒ nν=0(T = 0) = N , which diverges in the thermodynamic limit. The
macroscopic number of particles in the ground state ν = 0 are:

nν=0

V
=
N

V
= n0 (6.174)

Therefore, a problem arise in the transition from discrete sum
∑

ν to an integral
´

d3k
(2π)3

, because the

atoms in the ground state are not properly counted. That is why

n = n0 + ?n(T ) (6.175)

n0 6= 0 in the case of BEC, ?n(T ) is the number of non-condensed thermal atoms.

iv) Bose-Einstein Condensation

As already mentioned the condensation occurs for T < Tc. The chemical potential µ becomes 0.

?n(T ) = φ

(
3

2

)
λ(T )−3 < n (6.176)

⇒ n0(T ) = n− ?n(T ) > 0 (6.177)

?n(T )

?n(Tc)
=
λ3(Tc)

λ3(T )
=

(
T

Tc

)3/2

(6.178)

?n(Tc) = n⇒ ?n(T ) =

(
T

Tc

)3/2

n (6.179)

n0(T ) =

{
1−

(
T

Tc

)3/2
}
n (6.180)

For T < Tc

E =
gIM

3/2T 5/2V√
2π2~3

∞̂

0

dz
z3/2

ez −1︸ ︷︷ ︸
Γ( 5

2)φ( 5
2)

(kB = 1)
(6.181)

E

NT
= 0.77

(
T

Tc

)3/2

(6.182)

Compare (6.182) with the result for the classical gas E
NT = 3

2
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7 Gas of interacting particles

a) Interactions and complexity

• So far we had only free particles. From now on we will consider interactions, which is a major
change and introduced complexity.

• Phase transitions

• long range correlations

We will examine two regions

• low temperature: few states are excited → collective modes → quasi-particles. For example

– solids: acoustic waves, phonons

– magnetic systems: magnons, spin waves

• high temperature

At high temperatures interaction could be treated as pertubation: for small T there is order, for large
T disorder.

The aim of statistical physics is to described all these phenoma, starting from known microphysics
- atomic physics - and bridge it to macrophysics. A key for that are statistical fluctuations and
correlations

b) Real gases

Interactions between atoms or molecules cannot be neglected in real gases. Let us denote the distance
between two particles with R. Then the acting potential is V (R) (usually due to van der Waals forces).
Typically this is the Lennard-Jones potential:

V (R) = V0

[(
R0

R

)12

− 2

(
R0

R

)6
]

(7.1)

We will approximate the particles as hard spheres and will take into account only the attractive
interaction. The approximated potential is

V (R) =

{
∞ for R < R0

−V0

(
R0
R

)6
for R > R0

(7.2)

c) Mean field approxiamtion

We will consider a single molecule which is in an effective potential, created by the other molecules.
This reduced the problem to a single with an effective Hamiltonian.
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7 Gas of interacting particles

i) Classical statistics in phase space

The Hamiltonian is

H =
∑
i

~p2
i

2M
+
∑
ij

V (~ri − ~rj) (7.3)

The problem is that in quantum mechanics ~pi and ~ri do not commute and it is not easy to diagonalize
H.

Take a look at the classical limit for fixed N∑
τ

→ 1

N !

N∏
i=1

ˆ
d3ri

d3pi
(2π~)3

(7.4)

For free particles it is exact ∑
τ

=
1

N !
V N

N∏
i=1

ˆ
d3pi

(2π~)3
(7.5)

ii) Average potential

We replace the potential with an average one∑
ij

V (~ri − ~rj)→
∑
i

Ueff(~ri) (7.6)

This is the average potential “seen” by one particle, created by interaction with all other particles.

Zcan =
1

N !

∏
i

ˆ
d3ri d3pi
(2π~)3

exp

−β
∑

f

p2
f

2M
+
∑
jk

V (~rj − ~rk)

 (7.7)

=
1

N !

∏
i

ˆ
d3ri d3pi
(2π~)3

exp

{
−β
[
p2
i

2M
+ Ueff(~ri)

]}
(7.8)

iii) Approximation of the canonnical partition function

Zcan ≈ 1

N !

{ˆ
d3ri d3pi
(2π~)3

exp

[
−β
(
p2
i

2M
+ Ueff(~ri)

)]}N
(7.9)

= ZidealV
−N
[ˆ

d3r exp (−βUeff(r))

]N
(7.10)

= Zideal

(
Z

(1)
WW

)N
(7.11)

F = −kBT lnZcan (7.12)

= −kBT lnZideal −NkBT lnZ
(1)
WW (7.13)

= Fideal −NkBT lnZ
(1)
WW (7.14)

Fideal = kBTN

{
1− ln

[
N

V

(
2π~2

mkBT

)3/2
]}

(7.15)

= −kBTN + kBTN ln
N

V
− 3

2
kBNT ln

mkBT

2π~2
(7.16)
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7 Gas of interacting particles

iv) Calculation of Z(1)
WW

We will consider two effects

• excluded Volume

• attractive interaction

Z
(1)
WW =

1

V

ˆ
d3r exp (−βUeff(r)) (7.17)

As seen from (7.2), there are two regions: Vex with Ueff →∞; and the rest with Ueff → −W

⇒ Z
(1)
WW =

V − Vex

V
exp−βW (7.18)

v) Excluded volume Vex

Vex is the mead excluded volume for one atom. The total excluded volume is

NVex =
1

2
N(N − 1)︸ ︷︷ ︸

number of pairs

4π

3
a3︸ ︷︷ ︸

excluded volume pro pair

(7.19)

Vex ≈
1

2
N

4π

3
a3 =

2π

3
a3N = b0N (7.20)

vi) Mean potential W

W is the mean potential “seen” by a single atom. The potential energy of all atoms is NW

NW =
1

2
N(N − 1)︸ ︷︷ ︸

number of pairs

u︸︷︷︸
mean potential en. pro pair

(7.21)

u = 4π

ˆ
dRR2W (R)V −1 (7.22)

W =
1

2
Nu =

2πN

V

ˆ
dRR2W (R) (7.23)

W = −N
V
b1 (7.24)

Z
(1)
WW =

V − Vex

V
exp− W

kBT
(7.25)

lnZ
(1)
WW = ln

(
V − b0N

V

)
− W

kBT
(7.26)

= ln

(
V − b0N

V

)
+

N

V kBT
b1 (7.27)
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7 Gas of interacting particles

vii) Free energy

F = Fideal −NkBT lnZ
(1)
WW (7.28)

F = −kBTN + kBNT ln
N

V︸ ︷︷ ︸
Fideal

− kBNT ln
V − b0N

V︸ ︷︷ ︸
Z

(1)
WW

− 3

2
kBNT ln

mkBT

2π~2︸ ︷︷ ︸
Fideal

− kBNT
N

V kBT
b1︸ ︷︷ ︸

Z
(1)
WW

(7.29)

F = −kBNT + kBNT ln
N

V − b0N
− 3

2
kBNT ln

mkBT

2π~2
− b1

N2

V
(7.30)

d) Equation of state

p = −V ∂F
∂V N,T

=
kBNT

V − b0N
− b1

(
N

V

)2

(7.31)

This is the van der Waals equation of state.

p =
kBnT

1− b0n
− b1n2 (7.32)

Van der Waals equation of state describes qualitively correctly the phase transition from gas to liquid.

e) Heat capacity of real gases

CV = T
∂S

∂T V,N
= −T ∂

2F

∂T 2 V,N
(7.33)

Entropy density

S

V
= − ∂

∂T

(
F

V

)
n

= −
(
kBn+ kBn ln

n

1− b0n
− 3

2
kBn ln

mkBT

2π~2
− 3

2
kBn

)
(7.34)

S

V
= kBn

(
5

2
− ln

n

1− b0n
+

3

2
ln
mkBT

2π~2

)
(7.35)

From (7.35) follows that the entropy density does not depend on b1

Cv
V

=
∂

∂ lnT

(
S

V

)
n

=
3

2
kBn (7.36)

cV =
3

2
kBn (7.37)

There is no difference in the specific heat capacity of real gas and van der Waals gas.

f) Equipartition

69


	I Fundamental Physics
	1 Introduction
	a) From Microphysics to Macrophysics
	b) New macroscopic laws
	c) Micro physical laws and their probabilistic nature

	2 Basic concepts of statistical physics
	a) Probability distribution and expectation values
	i) States (Microstates)
	ii) Probability distribution
	iii) Observables
	iv) Expectation value
	v) Dispersion
	vi) Expectation values and probability distribution

	b) Reduced system
	c) Probabilistic observables
	d) Quantum Statistics and density matrix
	i) Expectation value
	ii) Dispersion
	iii) Diagonal operators
	iv) Properties of the density matrix
	v) Non-diagonal operators
	vi) Pure quantum states
	vii) Change of the basis by unitary transformation
	viii) Pure and mixed states

	e) Micro-states
	f) Partition function
	g) Continuous distribution and continuous variables
	h) Probability density of energy
	i) Equal probability for all values 
	ii) Boltzmann distribution for micro-states 
	iii) Number of one particle states in a momentum interval 

	i) Correlation functions
	i) Conditional Probability p(B|A)
	ii) Product Observable BA
	iii) Correlation Function
	iv) Independent Observables
	v) Classical Correlation Function


	3 Systems with many states or particles
	a) Chain with N lattice sites
	i) Probability distribution
	ii) Macroscopic probability
	iii) Expectation value
	iv) Dispersion

	b) Uncorrelated probability distribution
	i) Chain with N sites
	ii) Correlation functions
	iii) Random walk in one dimension
	iv) Measurement sequences

	c) Statistical Ensemble
	d) Gauss distribution
	e) Thermodynamic limit

	4 Equilibrium ensembles
	a) Micro-canonical ensemble
	i) Fundamental statistical postulate
	ii) Micro-canonical partition function
	iii) Entropy S
	iv) Partition function for ideal classical gas
	v) Entropy of an ideal classical gas
	vi) Thermodynamic limit
	vii) The limit EE0
	viii) Derivatives of entropy

	b) Canonical ensemble
	i) System in a heat bath
	ii) Canonical partition function and Boltzmann factor
	iii) Connection between <E> and 


	5 Thermodynamics
	a) Thermodynamical potentials
	i) State variables, equations of state
	ii) Thermodynamical potentials and partition function
	iii) Entropy in canonical ensemble
	iv) Properties of the entropy

	b) Reversible and irreversible processes
	i) / and constrains
	ii) Getting rid of the constraints
	iii) Increase of entropy by removing of constrains.
	iv) The second law of thermodynamics (introducing constrains).
	v) Reversible processes
	vi) Reversible processes for open systems
	vii) Thermodynamics and non-equilibrium states



	II Statistical systems
	6 Ideal quantum gas
	a) Occupation number basis
	i) Bosons
	ii) Fermions

	b) Partition function for grand canonical ensemble
	c) Occupation Numbers
	i) Mean occupation number for bosons.
	ii) Fermions
	iii) Mean Energy
	iv) Chemical Potential
	iv).1 Conserved number of particles.
	iv).2 No conserved number of particles
	iv).3 Approximately conserved quantum numbers

	v) Boltzmann statistics

	d) Photon gas
	i) Black body radiation
	ii) Spectrum of black body radiation
	iii) Energy density
	iv) Canonical partition function
	v) Free energy and equation of state

	e) Fermi gas
	i) Quasi-particles
	ii) T0
	iii) Computation F
	iv) Thermodynamics
	v) Number of states per particle for given one particle energy
	vi) 1 for (k)=k22M
	vii) E(T)
	viii) Compute (t) from normalization

	f) Non-relativistic bosons
	i) Chemical Potential
	ii) Number of bosons in ground state
	iii) Qualitive behaviour of n0(E) for T0 
	iv) Gibbs potential

	g) Classical ideal gas
	i) Classical approxiamtion 
	ii) Gibbs potential
	iii) Thermal de Broglie wavelength
	iv) Thermodynamics

	h) Bose-Einstein Condensation
	i) n()
	ii) Critical temperature
	iii) Ground state of bosonic gas
	iv) Bose-Einstein Condensation


	7 Gas of interacting particles
	a) Interactions and complexity
	b) Real gases
	c) Mean field approxiamtion
	i) Classical statistics in phase space
	ii) Average potential
	iii) Approximation of the canonnical partition function
	iv) Calculation of ZWW(1)
	v) Excluded volume Vex
	vi) Mean potential W
	vii) Free energy

	d) Equation of state
	e) Heat capacity of real gases
	f) Equipartition



