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Here some formulae and results complete the explanations of
http://www.tphys.uni-heidelberg.de/∼wegner/Fl2mvs/Movies.html.

More details are given in [1]. The first section gives some basic formulae, the
second section contains formulae in the limit, in which the curves can be repre-
sented by ’elementary’ functions like exponential- and trigonometric functions,
whereas in the general case double-periodic functions are needed.

1 Few Basic Formulae

1.1 Hydrostatics of the Problem

I denote the mass of the body by m, its relative density, that is the ratio of
the density of the body to the density of water, in which it floats, by ρd. The
body displaces its mass in the fluid according to Archimedes. Then the part of
the mass of the body floating below the waterline is m2 = mρd; the part of the
mass floating above the waterline is m1 = m(1− ρd). Correspondingly the part
of the cross-section below the waterline is given by A2 = ρdA, the part above
the waterline by A1 = (1 − ρd)A, where A is the total cross-section.

Denoting the height of the center of gravity of mass m1 above the waterline
by h1 and the depth of the center of gravity of m2 below the waterline by h2,
then the potential energy of the body is

V = m1gh1 + (m−m2)gh2 = m(1 − ρd)g(h1 + h2), (1)

since measured from the waterline the mass m1 is lifted by h1, and the mass
m2 is lowered by h2, whereas the mass m of the water is lifted by h2. The
distance of both centers of gravity is given by h = h1 + h2. It follows that h is
independent of the orientation, since the potential energy has to be equal in all
orientations.

If one rotates the body by an infinitesimal angle δφ to the left, then the
centers of gravity are shifted to the right by

(

−h1 +
2ℓ3

3A1

)

δφ, upper center of gravity (2)
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(

h2 −
2ℓ3

3A2

)

δφ, lower center of gravity. (3)

2ℓ is the length of the waterline, that is the length of the line, that separates
the part of the cross-section above the waterline from that below this line.

Both centers of gravity have to be vertically above each other, since otherwise
a torque acts on the body, both displacements have to be equal. This yields

2

3
ℓ3

(

1

A1
+

1

A2

)

= h1 + h2. (4)

Thus ℓ has to be constant.
The infinitesimal rotation is performed around the midpoint of the waterline,

since during the rotation the same area emerges out of the water on one side as
is immersed on the other side. The midpoint of the waterline moves in direction
of the waterline. These midpoints constitute the envelope of the waterlines (in
the figures and animations depicted in red). Thus the requirement is: Find an
envelope so that the tangents to this envelope at distance ℓ from the tangential
point lie in both directions on one and the same curve.

1.2 The Differential Equation

The differential equation for the curve is derived in [2] by means of the following
consideration: The radius r of the boundary as function of the polar angle ψ
is expanded in powers of an expansion parameter ǫ (Taylor expansion) starting
from a circle of radius r0, where

r(ψ) = r0
(

1 + ǫ cos(pψ) +

∞
∑

n=2

cn(ǫ) cos(npψ)
)

, (5)

is set with cn(ǫ) = O(ǫn). The resulting eqs. yield in first order of ǫ a solution
for p−2 different densities for given p. Continuation of the calculation by means
of computer algebra yields surprisingly that all p− 2 solutions are identical up
to seventh order in ǫ, where I discontinued the calculation. The conjecture that
this holds in higher orders suggested itself.

Naturally p has to be integer, so that the border yields a closed curve after
one revolution. If instead one allows a ’border curve’, whose distance from the
origin oscillates periodically as function of the polar angle, but for a value of p,
which differs infinitesimally from an integer, then the curve will deviate from
the original one after a revolution around the origin by an infinitesimal angle χ.
If we require that there is an envelope, whose tangent connects these both parts
of the ’border’ curve at distance ℓ, then it is possible to derive a differential
equation for the curve. It is non-linear and of third order. ℓ3 is proportional to
χ in the limit of small χ. The ratio yields a constant of proportionality a,

a = lim
χ→0

3χ

16ℓ3
. (6)
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The differential equation in [2], which I do not reproduce here, yields after two
integrations

1
√

r2 + ( dr
dψ )2

= ar2 + b+ cr−2 (7)

with the integration constants b and c.

1.3 Extreme Radii

Maximal and minimal distance of the curve from the origin is obtained from
dr
dψ = 0. Thus eq. (7) yields the equation

ar4i + br2i − ri + c = 0 (8)

for the extreme radii. Given the maximal and minimal distance from the origin
(center), one obtains two conditions on the three coefficients a, b und c. There
remains one free condition. It can be used to fix, how many (p) oscillations
between maximal and minimal distance close the curve.

Since eq. (8) is of fourth order, it may have up to four real solutions. How
many are real, depends on the coefficients a, b und c. An extensive discussion
can be found in section 2.1 of [1]. There can be no real solution or two or four.
If there are two real solutions, then there is one curve. If there are four real
solutions, then there are two curves. One sees from eq. (8) that the sum of the
four solutions is zero. Actually some ri can be negative. Generally the extreme
radii are given by |ri|. Since their sum vanishes, they can be written

r4,3 = r0(1 ± ǫ), r2,1 = −r0(1 ± ǫ̂). (9)

ǫ̂ can be either real (two curves) or purely imaginary (one curve).

1.4 Differential equations once more

In order to solve the equations it is useful to introduce a parameter representa-
tion. One introduces the parameter u, which measures the distance along the
perimeter like milestones along a road. For this u one has

du

dψ
=

√

r2 +

(

dr

dψ

)2

(10)

This allows to rewrite eq. (7)

(

dq

du

)2

= −4a2
4

∏

i=1

(q − qi), (11)

where q denotes the square of the radius, q = r2, qi = r2i . This eq. is solved by
the integral

u =

∫

dq

2a
√

−∏4
i=1(q − qi)

. (12)

3



Then the equation for the angle ψ reads

dψ

du
= aq + b+ cq−1, (13)

which is solved by the integral

ψ(u) =

∫

du(aq + b+ cq−1). (14)

1.5 The Solution

In general these integrals cannot be expressed by elementary functions. They
are expressed by Weierstrass functions. They can be found in the tables of
functions [3, 4, 5], but also in books on function theory like [6]. One obtains
from eq. (12)

q(u) = qi
℘(u) − ℘(3v)

℘(u) − ℘(v)
, qi = r2i =

(

℘(2v) − ℘(v)

2a

)2

(15)

with the Weierstrass ℘ function (pronounced p function). This function is double
periodic. One of the periodicities yields the periodic oscillation of the radius. v
is given by

℘(2v) =
4ca− b2

3
. (16)

Since the eq. determines 2v, one can add to a solution v one of the three half-
periods and obtains four different sets of ℘(v), ℘(3v), which belong to the four
different extreme radii ri.

Moreover the Weierstrass functions depend on the two invariants g2 and g3.
They are related to the constants a, b and c by

g2 =
4

3
(4ca− b2)2 + 8ab, (17)

g3 = − 8

27
(4ca− b2)3 − 8

3
ab(4ca− b2) + 4a2. (18)

Carrying out the integral (14) and combining x and y to a complex number,
which in the complex plane represents the curve, one obtains

z(χ, u) := x+ iy = eiψ(u)r(u) (19)

with

z(χ, u) =
eiχ+2uζ(2v)

2aσ2(2v)

σ(u − 3v)

σ(u + v)
. (20)

ζ is the negative of the integral of ℘, σ the exponential of the integral of ζ.
One can choose a purely imaginary v for all curves. The distance

2ℓ = |z(v, χ, u+ δu) − z(v̂, χ̂, u− δu)|, (21)
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is independent of u, provided

ei(χ−χ̂) = ∓e−2δu(ζ(2v)−ζ(2v̂))σ(2δu+ v + v̂)

σ(2δu− v − v̂)
(22)

holds. The minus sign applies, if one considers two equal curves rotated by the
angle χ − χ̂ against each other; the plus sign applies for two different curves.
The length of the distance is obtained from

4ℓ2 =
1

℘(2δu+ v − v̂) − ℘(2v)
. (23)

2 The limit case yielding elementary functions

In the limit case, in which two extreme radii are equal, the Weierstrass functions
degenerate to single-periodic functions. One of the solutions for the curve is a
circle of radius r0. The two other extreme radii are r0(1 + ǫ) and r0|ǫ− 1|.

2.1 The periodic case ǫ > 2

In this case the two smallest radii |ri| are equal and one obtains

z(χ, u) = r0
(ǫ2 − 2) cos(2λu) + iǫ

√
ǫ2 − 4 sin(2λu) − ǫ

ǫ− 2 cos(2λu)
ei(χ−u/r0) (24)

with

λ =

√
ǫ2 − 4

2ǫr0
. (25)

Expressed by the Cartesean coordinates x and y eq. (24) yields

x(χ, u) = c1(u) cos(χ− u/r0) − s1(u) sin(χ− u/r0), (26)

y(χ, u) = c1(u) sin(χ− u/r0) + s1(u) cos(χ− u/r0) (27)

with

c1(u) = r0
(ǫ2 − 2) cos(2λu) − ǫ

ǫ− 2 cos(2λu)
, (28)

s1(u) = r0
ǫ
√
ǫ2 − 4 sin(2λu)

ǫ− 2 cos(2λu)
. (29)

The distance 2ℓ between the curve points χ, u+ δu and χ̂, u− δu is given by

4ℓ2 = |z(χ, u+ δu) − z(χ̂, u− δu)|2

= (x(χ, u + δu) − x(χ̂, u− δu))2 + (y(χ, u+ δu) − y(χ̂, u− δu))2.(30)

If δu obeys

tan(2λδu) = 2λr0 tan

(

δu

r0
− χ− χ̂

2

)

, (31)
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then the distance is independent of u with

2ℓ =
2r0

√

1 + ǫ2−4
ǫ2 cot2(2λδu)

. (32)

2.2 The case ǫ < 2

In this case the two middle radii are equal. One obtains two curves, which
approach asymptotically the circle. The curve with s = +1 lies outside the
circle of radius r0, the other one with s = −1 inside this circle,

z(χ, u) = r0
(2 − ǫ2) cosh(2λu) + iǫ

√
4 − ǫ2 sinh(2λu) + sǫ

2 cosh(2λu) − sǫ
ei(χ−u/r0) (33)

with1

λ =

√
4 − ǫ2

2ǫr0
. (34)

Expressed in Cartesean coordinates x and y one obtains from eq. (33)

x(χ, u) = c2(u) cos(χ− u/r0) − s2(u) sin(χ− u/r0), (35)

y(χ, u) = c2(u) sin(χ− u/r0) + s2(u) cos(χ− u/r0) (36)

with

c2(u) = r0
(2 − ǫ2) cosh(2λu) + sǫ

2 cosh(2λu) − sǫ
, (37)

s2(u) = r0
ǫ
√

4 − ǫ2 sinh(2λu)

2 cosh(2λu) − sǫ
. (38)

If δu satisfies

tanh(2λδu) = 2λr0 tan

(

δu

r0
− χ− χ̂

2

)

, (39)

then the distance between the points χ, u + δu and χ̂, u − δu on two curves,
which are both outside or both inside the circle of radius r0 is independent u

2ℓ =
2r0ǫ

√

(4 − ǫ2) coth2(2λδu) + ǫ2
(40)

The distance between the point χ, u+ δu on the curve outside the circle and the
point χ̂, u− δu inside the circle of radius r0 is constant 2ℓ

2ℓ =
2r0ǫ

√

(4 − ǫ2) tanh2(2λδu) + ǫ2
, (41)

if δu satisfies

tanh(2λδu) = 2λr0 cot

(

δu

r0
− χ− χ̂

2

)

. (42)

1The hyperbolic functions are defined by cosh(z) = (ez + e−z)/2, sinh(z) = (ez
− e−z)/2,

tanh(z) = sinh(z)/ cosh(z), coth(z) = cosh(z)/ sinh(z).
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2.3 The limit case ǫ = 2

In the limit case ǫ = 2 the curve is described by

z(χ, u) =
3r0 + iu

1 − iu/r0
ei(χ−u/r0) (43)

or equivalently by

x(χ, u) = c3(u) cos(χ− u/r0) − s3(u) sin(χ− u/r0), (44)

y(χ, u) = c3(u) sin(χ− u/r0) + s3(u) cos(χ− u/r0) (45)

with

c3(u) =
r0(3r

2
0 − u2)

r20 + u2
, (46)

s3(u) =
4ur20
r20 + u2

. (47)

If
δu

r0
= tan(

δu

r0
− χ− χ̂

2
), (48)

then the distance between the two points on the curves χ, u+ δu and χ̂, u− δu
is constant 2ℓ with

ℓ2 =
r20δu

2

r20 + δu2
. (49)

2.4 Distance to the circle

The circle with radius r0,
ẑ(u) = r0e

−iu/r0 (50)

is a second solution for ǫ > 2. For ǫ ≤ 2 the curves approach asymptotically the
circle for u → ∞. In all these cases the distance between the curve at χ = 0, u
and the circle at u is constant 2ℓ = ǫr0.

2.5 Linear case

Finally there is a solution, where the curve approaches asymptotically a straight
line. With s = ±1 both curves are described by

x(u) =
sd

cosh(2u/d)
, (51)

y(y0, u) = y0 − u+ d tanh(2u/d). (52)

Then the points y0, u+ δu and ŷ0, u− δu on two curves have the distance

2ℓ = |y0 − ŷ0 − 2δu|, (53)

if

y0 − ŷ0 − 2δu =

{

−d tanh(2δu/d) same s
−d coth(2δu/d) different s.

(54)
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[5] Jahnke-Emde-Lösch, Tafeln höherer Funktionen - Tables of Higher Func-

tions B.G. Teubner, Stuttgart

[6] E. Freitag, R. Busam, Funktionentheorie Springer-Lehrbuch

8


