Functional renormalization group for the effective average action

physics at different length scales

- microscopic theories : where the laws are formulated
- effective theories : where observations are made
 effective theory may involve different degrees of freedom as compared to microscopic theory
 example: the motion of the earth around the sun does not need an understanding of nuclear burning in the sun

QCD : Short and long distance degrees of freedom are different !

> Short distances : quarks and gluons Long distances : baryons and mesons

How to make the transition?

confinement/chiral symmetry breaking

collective degrees of freedom

Hubbard model

Electrons on a cubic lattice
 here : on planes (d = 2)

- Repulsive local interaction if two electrons are on the same site
- Hopping interaction between two neighboring sites

Hubbard model

Functional integral formulation

$$Z[\eta] = \int_{\hat{\psi}(\beta) = -\hat{\psi}(0), \hat{\psi}^{*}(\beta) = -\hat{\psi}^{*}(0)} \mathcal{D}(\hat{\psi}^{*}(\tau), \hat{\psi}(\tau))$$

$$\exp\left(-\int_{0}^{\beta} d\tau \left(\sum_{\mathbf{x}} \hat{\psi}_{\mathbf{x}}^{\dagger}(\tau) \left(\frac{\partial}{\partial \tau} - \mu\right) \hat{\psi}_{\mathbf{x}}(\tau)\right)$$

$$+ \sum_{\mathbf{xy}} \hat{\psi}_{\mathbf{x}}^{\dagger}(\tau) \mathcal{T}_{\mathbf{xy}} \hat{\psi}_{\mathbf{y}}(\tau)$$

$$+ \frac{1}{2} U \sum_{\mathbf{x}} \left(\hat{\psi}_{\mathbf{x}}^{\dagger}(\tau) \hat{\psi}_{\mathbf{x}}(\tau)\right)^{2}$$

$$- \sum_{\mathbf{x}} \left(\eta_{\mathbf{x}}^{\dagger}(\tau) \hat{\psi}_{\mathbf{x}}(\tau) + \eta_{\mathbf{x}}^{T}(\tau) \hat{\psi}_{\mathbf{x}}^{*}(\tau)\right)\right)$$

U > 0 : repulsive local interaction

next neighbor interaction

$$\mathcal{T}_{xy} = \begin{cases} -t & \text{, if } \boldsymbol{x} \text{ and } \boldsymbol{y} \text{ are nearest neighbors} \\ 0 & \text{, else} \end{cases}$$

External parameters T : temperature μ : chemical potential (doping) In solid state physics : " model for everything "

Antiferromagnetism
 High T_c superconductivity
 Metal-insulator transition
 Ferromagnetism

Antiferromagnetism in d=2 Hubbard model

antiferromagnetic order is finite size effect

here size of experimental probe 1 cm
vanishing order for infinite volume
consistency with Mermin-Wagner theorem
dependence on probe size very weak

Collective degrees of freedom are crucial !

for T < T_c

nonvanishing order parameter

$$\tilde{\vec{m}}(X) = \hat{\psi}^{\dagger}(X) \vec{\sigma} \hat{\psi}(X)$$

$$\hat{\vec{m}}(Q) \rightarrow \vec{a}\delta(Q-\Pi)$$

gap for fermions

 low energy excitations: antiferromagnetic spin waves

effective theory / microscopic theory

sometimes only distinguished by different values of couplings

sometimes different degrees of freedom
need for methods that can cope with such situations

Functional Renormalization Group

describes flow of effective action from small to large length scales

perturbative renormalization : case where only couplings change , and couplings are small

How to come from quarks and gluons to baryons and mesons ? How to come from electrons to spin waves ?

Find effective description where relevant degrees of freedom depend on momentum scale or resolution in space.

Microscope with variable resolution:
High resolution, small piece of volume: quarks and gluons
Low resolution, large volume : hadrons

block spins

 Kadanoff, Wilson

 exact renormalization group equations
 Wilson, Kogut
 Wegner, Houghton
 Weinberg
 Polchinski
 Hasenfratz²

• Lattice finite size scaling Lüscher,...

• coarse grained free energy/average action

effective average action

Unified picture for scalar field theories with symmetry O(N) in arbitrary dimension **d** and arbitrary N

linear or nonlinear sigma-model for chiral symmetry breaking in QCD or: scalar model for antiferromagnetic spin waves (linear O(3) – model)

fermions will be added later

Effective potential includes all fluctuations

Average potential U_k

 $\equiv scale dependent effective$ potential $\equiv coarse grained free energy$

Only fluctuations with momenta $q^2 > k^2$ included

k: infrared cutoff for fluctuations, "average scale" Λ : characteristic scale for microphysics

 $U_{\Lambda} \approx S \to U_0 \equiv U$

Scalar field theory

 $\varphi_a(x)$: magnetization, density, chemical concentration, Higgs field, meson field, inflaton, cosmon

O(N)-symmetry:

Flow equation for average potential

$$\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$$

$$ar{M}_{k,ab}^2 = rac{\partial^2 U_k}{\partial \varphi_a \partial \varphi_b}$$
: Mass matrix
 $ar{M}_{k,i}^2$: Eigenvalues of mass matrix

Simple one loop structure – nevertheless (almost) exact

Infrared cutoff

 $R_k : \text{IR-cutoff}$ e.g $R_k = \frac{Z_k q^2}{e^{q^2/k^2} - 1}$ or $R_k = Z_k (k^2 - q^2) \Theta(k^2 - q^2) \quad \text{(Litim)}$

 $\lim_{k \to 0} R_k = 0$ $\lim_{k \to \infty} R_k \to \infty$

Flow equation for U_k

$$\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$$

'91

 $\bar{M}_{k,ab}^2 = \frac{\partial^2 U_k}{\partial \varphi_a \partial \varphi_b}$: Mass matrix $\bar{M}_{k,i}^2$: Eigenvalues of mass matrix

 R_k : IR-cutoff

e.g
$$R_k = \frac{Z_k q^2}{e^{q^2/k^2} - 1}$$

or $R_k = Z_k (k^2 - q^2) \Theta(k^2 - q^2)$ (Litim)

 $\lim_{k \to 0} R_k = 0$ $\lim_{k \to \infty} R_k \to \infty$

Partial differential equation for function U(k,φ) depending on two (or more) variables

 $Z_{k} = c k^{-\eta}$

Regularisation

For suitable R_k :

$$\begin{aligned} R_k \ &= \ \frac{Z_k q^2}{e^{q^2/k^2} - 1} \\ R_k \ &= \ Z_k (k^2 - q^2) \Theta(k^2 - q^2) \end{aligned}$$

Momentum integral is ultraviolet and infrared finite

Numerical integration possible
 Flow equation defines a regularization scheme (ERGE –regularization)

$$\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$$

Integration by momentum shells

$$\boxed{\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}}$$

Momentum integral is dominated by $q^2 \sim k^2$.

Flow only sensitive to physics at scale k

Wave function renormalization and anomalous dimension

 Z_k : wave function renormalization

 $k\partial_k Z_k = -\eta_k Z_K$

 η_k : anomalous dimension

 $t = \ln(k/\Lambda)$

 $\partial_t \ln Z = -\eta$

for $Z_k(\phi,q^2)$: flow equation is exact !

Scaling form of evolution equation

$$egin{aligned} u &= rac{U_k}{k^d} \ ilde{
ho} &= Z_k k^{2-d}
ho \ u' &= rac{\partial u}{\partial ilde{
ho}} \ ext{ etc.} \end{aligned}$$

$$\partial_t u|_{\tilde{\rho}} = -\frac{du}{dt} + (\frac{d}{dt} - 2 + \eta)\tilde{\rho}u' + 2v_d \{ l_0^d(u' + 2\tilde{\rho}u''; \eta) + (N-1) l_0^d(u'; \eta) \}$$

$$v_d^{-1} = 2^{d+1} \pi^{d/2} \Gamma\left(\frac{d}{2}\right)$$

linear cutoff:

$$l_0^d(w;\eta) = \frac{2}{d}\left(1-\frac{\eta}{d+2}\right)\frac{1}{1+w}$$

On r.h.s. : neither the scale k nor the wave function renormalization Z appear explicitly.

Scaling solution: no dependence on t; corresponds to second order phase transition.

Tetradis ...

decoupling of heavy modes

$$l_0^d(w;\eta) = \frac{2}{d} \left(1 - \frac{\eta}{d+2}\right) \frac{1}{1+w}$$

threshold functions vanish for large w : large mass as compared to k

$$\partial_t u|_{\tilde{\rho}} = -\frac{du}{4} + (\frac{d}{2} - 2 + \eta)\tilde{\rho}u' + 2v_d \{ l_0^d(u' + 2\tilde{\rho}u''; \eta) + (N-1) l_0^d(u'; \eta) \}$$

Flow involves effectively only modes with mass smaller or equal k

unnecessary heavy modes are eliminated automatically effective theories addition of new collective modes still needs to be done unified approach

choose N
choose d
choose initial form of potential
run !

Flow of effective potential

 CO_{2}

Ising model

Critical exponents

 η

0.0292

0.0356

0.0385

0.0380

0.0363

0.025

0.003

1

d = 3

N

0 0.590

1 0.6307

2 0.666

3 0.704

4 0.739

10 0.881

100 0.990

Critical exponents ν and η

V

0.5878 0.039

0.6308 0.0467

0.6714 0.049

0.7102 0.049

0.7474 0.047

0.028

0.0030

"average" of other methods

 $(typically \pm (0.0010 - 0.0020))$

0.886

0.980 ↑

Experiment :

T_{*} =304.15 K p_{*} =73.8.bar ρ_{*} = 0.442 g cm-2

S.Seide ...

Critical exponents, d=3

			-		
	ν			η	
0	0.590	0.5878		0.039	0.0292
1	0.6307	0.6308		0.0467	0.0356
2	0.666	0.6714		0.049	0.0385
3	0.704	0.7102		0.049	0.0380
4	0.739	0.7474		0.047	0.0363
10	0.881	0.886		0.028	0.025
100	0.990	0.980		0.0030	0.003
	ERGE	world		ERGE	world

"average" of other methods (typically $\pm (0.0010 - 0.0020)$)

derivative expansion

good results already in lowest order in derivative expansion : one function u to be determined
second order derivative expansion - include field dependence of wave function renormalization : three functions to be determined

apparent convergence of derivative expansion

from talk by Bervilliers

anomalous dimension

Solution of partial differential equation :

yields highly nontrivial non-perturbative results despite the one loop structure !

Example: Kosterlitz-Thouless phase transition

Essential scaling : d=2,N=2

MR ~ exp{- 1/2}, T>To

 Flow equation contains correctly the nonperturbative information !
 (essential scaling usually described by vortices)

Von Gersdorff ...
Kosterlitz-Thouless phase transition (d=2,N=2)

Correct description of phase with Goldstone boson (infinite correlation length) for T<T_c

Running renormalized d-wave superconducting order parameter x in doped Hubbard model

X

Renormalized order parameter \varkappa and gap in electron propagator Δ in doped Hubbard model

 T/T_{c}

Temperature dependent anomalous dimension η

 T/T_{c}

convergence and errors

- for precise results: systematic derivative expansion in second order in derivatives includes field dependent wave function renormalization $Z(\rho)$ fourth order : similar results apparent fast convergence : no series resummation
- rough error estimate by different cutoffs and truncations

Effective average action

and

exact renormalization group equation

Generating functional

generating functional for connected Green's functions in presence of quadratic infrared cutoff

$$W_{\mathbf{k}}[j] = \ln \int \mathcal{D}\chi \, \exp\left(-S[\chi] - \Delta_{\mathbf{k}}S[\chi] + \int d^d x \, j_a \chi_a\right)$$

$$\Delta_{\boldsymbol{k}}S = \frac{1}{2} \int \frac{d^d q}{(2\pi)^d} R_{\boldsymbol{k}}(q^2) \chi_a(-q) \chi_a(q)$$

e.g.
$$R_k = \frac{Z_k q^2}{e^{q^2/k^2} - 1}$$

$$\lim_{k \to 0} R_k = 0$$

 $R_{k\to\infty}\to\infty$

Effective average action

$$\Gamma_{\mathbf{k}}[\varphi] = -W_{\mathbf{k}}[j] + \int d^d x \, j_a \varphi_a - \Delta_{\mathbf{k}} S[\varphi]$$

 $\Gamma_0[\varphi]$: quantum effective action generates 1PI vertices free energy: $F = \Gamma T + \mu nV$

 Γ_k includes all fluctuations (quantum, thermal) with $q^2 > k^2$

 Γ_{Λ} specifies microphysics

$$arphi_a = \langle \chi_a
angle = rac{\delta W_{m k}}{\delta j_a}$$

Loop expansion : perturbation theory with infrared cutoff in propagator

Quantum effective action

for $k \to 0$ all fluctuations (quantum + thermal) are included

knowledge of $\Gamma_{k\to 0} =$ solution of model

Exact renormalization group equation

Exact flow equation

for scale dependence of average action

$$\partial_k \Gamma_k[\varphi] = \frac{1}{2} \operatorname{Tr} \left\{ \left(\Gamma_k^{(2)}[\varphi] + R_k \right)^{-1} \partial_k R_k \right\}$$

'92

$$\left(\Gamma_k^{(2)} \right)_{ab} (q, q') = \frac{\delta^2 \Gamma_k}{\delta \varphi_a(-q) \delta \varphi_b(q')}$$

Tr : $\sum_a \int \frac{d^d q}{(2\pi)^d}$

(fermions : STr)

Proof of exact flow equation

$$egin{aligned} \partial_k \left.\Gamma
ight|_{\phi} &= \left.-\partial_k \left.W
ight|_j - \partial_k \Delta_k S[arphi] \ &= rac{1}{2} ext{Tr} \left\{\partial_k R_k (\langle \phi \phi
angle - \langle \phi
angle \langle \phi
angle)
ight\} \ &= rac{1}{2} ext{Tr} \left\{\partial_k R_k W_k^{(2)}
ight\} \end{aligned}$$

 $W_k^{(2)}(\Gamma_k^{(2)} + R_k) = \mathbb{1}$ $(\Delta_k S^{(2)} \equiv R_k)$

$$\Longrightarrow$$
$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{Tr} \left\{ \partial_k R_k (\Gamma_k^{(2)} + R_k)^{-1} \right\}$$

Truncations

Functional differential equation – cannot be solved exactly Approximative solution by truncation of most general form of effective action

non-perturbative systematic expansions

derivative expansion

Tetradis,...; Morris

O(N)-model:

$$\Gamma_{k} = \int d^{d}x \{ U_{k}(\rho) + \frac{1}{2} Z_{k}(\rho) \partial_{\mu} \varphi_{a} \partial_{\mu} \varphi_{a} + \frac{1}{4} Y_{k}(\rho) \partial_{\mu} \rho \partial_{\mu} \rho + \cdots \}$$
$$(N = 1: \quad Y_{k} \equiv 0)$$

field expansion (flow eq. for 1PI vertices) Weinberg; Ellwanger,...

$$\Gamma_{k} = \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{j=0}^{n} d^{d}x_{j} \Gamma_{k}^{(n)}(x_{1}, x_{2}, \dots, x_{n})$$
$$\prod_{j=0}^{n} (\phi(x_{j}) - \phi_{0})$$

Expansion in canonical dimension of couplings

Lowest order:

$$d = 4: \quad \rho_0, \bar{\lambda}, Z \\ d = 3: \quad \rho_0, \bar{\lambda}, \bar{\gamma}, Z \\ U = \frac{1}{2} \bar{\lambda} (\rho - \rho_0)^2 + \frac{1}{6} \bar{\gamma} (\rho - \rho_0)^3$$

works well for O(N) models Tetradis,...; Tsypin

polynomial expansion of potential converges if expanded around ρ_0 Tetradis,...; Aoki et al.

Exact flow equation for effective potential

 \blacksquare Evaluate exact flow equation for homogeneous field ϕ .

 R.h.s. involves exact propagator in homogeneous background field φ.

many models have been studied along these lines ...

- several fields
- complicated phase structure (e.g. ³He)
 replica trick N=0
- shift in critical temperature for Bose-Einstein condensate with interaction (needs resolution for momentum dependence of propagator)
 gauge theories

disordered systems

Canet, Delamotte, Tissier, ...

including fermions :

no particular problem !

Universality in ultra-cold fermionic atom gases

S. Diehl, H.Gies, J.Pawlowski

BEC – BCS crossover

Bound molecules of two atoms on microscopic scale:

Bose-Einstein condensate (BEC) for low T

Fermions with attractive interactions (molecules play no role) :

BCS – superfluidity at low T by condensation of Cooper pairs

Crossover by Feshbach resonance as a transition in terms of external magnetic field

chemical potential

BEC – BCS crossover

 qualitative and partially quantitative theoretical understanding

mean field theory (MFT) and first attempts beyond

concentration : $c = a k_F$ reduced chemical potential : $\sigma^{\sim} = \mu / \epsilon_F$

Fermi momentum : $\mathbf{k}_{\mathbf{F}}$ Fermi energy : $\mathbf{\varepsilon}_{\mathbf{F}}$

binding energy:

$$\tilde{\epsilon}_M = -\theta(c^{-1})c^{-2}$$

concentration

c = a k_F , a(B) : scattering length
 needs computation of density n=k_F³/(3π²)

different methods

- Compare RGE (diamonds), SDE (dashed-dotted) and MFT (dashed) approximation schemes.
- Compare to QMC calculations at c⁻¹ = 0 QMC RGE SDE MFT
 σ̃ 0.44(2)*,0.42(2)[†] 0.40 0.50 0.63 (* Carlson *et al.*, PRL 91, 050401 (2003),
 [†] Giorgini et al., PRL 93, 200404 (2004)).

QFT for non-relativistic fermions

functional integral, action

$$S = \int_{x} \{ \psi^{\dagger} (\partial_{\tau} - \frac{\Delta}{2M} - \sigma) \psi + \varphi^{*} (\partial_{\tau} - \frac{\Delta}{4M} + \bar{\nu}_{\Lambda} - 2\sigma) \varphi - \bar{h}_{\varphi} (\varphi^{*} \psi_{1} \psi_{2} - \varphi \psi_{1}^{*} \psi_{2}^{*}) \}$$

Molecule exchange
$$\hat{\phi}^*$$
 \bar{h}_{ϕ} ψ_2

perturbation theory: Feynman rules

 τ : euclidean time on torus with circumference 1/T σ : effective chemical potential

parameters

detuning v(B)

$$\bar{\nu}_{\Lambda} = \bar{\nu}_{\Lambda,0} + \bar{\mu}_B (B - B_0)$$

$$\frac{\partial \bar{\nu}_{\Lambda}}{\partial B} = \bar{\mu}_{B}$$

$$S = \int_{x} \{ \psi^{\dagger} (\partial_{\tau} - \frac{\Delta}{2M} - \sigma) \psi + \varphi^{*} (\partial_{\tau} - \frac{\Delta}{4M} + \bar{\nu}_{\Lambda} - 2\sigma) \varphi - \bar{h}_{\varphi} (\varphi^{*} \psi_{1} \psi_{2} - \varphi \psi_{1}^{*} \psi_{2}^{*}) \}$$

Vukawa or Feshbach coupling h_o

fermionic action

equivalent fermionic action, in general not local

$$S_F = \int_x \psi^{\dagger} (\partial_{\tau} - \frac{\Delta}{2M} - \sigma)\psi + S_{\text{int}}$$

$$S_{\text{int}} = -\frac{1}{2} \int_{Q_1, Q_2, Q_3} (\psi^{\dagger}(-Q_1)\psi(Q_2))(\psi^{\dagger}(Q_4)\psi(-Q_3)) \frac{\bar{h}_{\varphi}^2}{\bar{\nu}_{\Lambda} - 2\sigma + (\bar{q}_1 - \bar{q}_4)^2/4M + 2\pi i T(n_1 - n_4)}$$

scattering length a

$$\bar{\lambda} = -\frac{\bar{h}_{\varphi}^2}{\bar{\nu}_{\Lambda}}$$

 $a = M \lambda / 4\pi$

broad resonance : pointlike limitlarge Feshbach coupling

$$\bar{h}_{\varphi}^2 \to \infty, \ \bar{\nu}_{\Lambda} \to \infty, \ \bar{\lambda} \text{ fixed}$$

$$S_{\text{int}} = -\frac{1}{2} \int_{Q_1, Q_2, Q_3} (\psi^{\dagger}(-Q_1)\psi(Q_2))(\psi^{\dagger}(Q_4)\psi(-Q_3)) \frac{\bar{h}_{\varphi}^2}{\bar{\nu}_{\Lambda} - 2\sigma + (\vec{q}_1 - \vec{q}_4)^2/4M + 2\pi i T(n_1 - n_4)}$$

collective di-atom states

collective degrees of freedom can be introduced by partial bosonisation

(Hubbard - Stratonovich transformation)

units and dimensions

- **c** = 1; \hbar = 1; k_B = 1
- \blacksquare momentum ~ length⁻¹ ~ mass ~ eV
- \blacksquare energies : 2ME ~ (momentum)²
 - (M: atom mass)
- typical momentum unit : Fermi momentum
- typical energy and temperature unit : Fermi energy
- \blacksquare time ~ (momentum) $^{-2}$
- canonical dimensions different from relativistic QFT !

rescaled action

$$S = \int_{\hat{x}} \{ \hat{\psi}^{\dagger} (\hat{\partial}_{\tau} - \hat{\Delta} - \hat{\sigma}) \hat{\psi} \\ + \hat{\varphi}^{*} (\hat{\partial}_{\tau} - \frac{1}{2} \hat{\Delta} + \hat{\nu} - 2\hat{\sigma}) \hat{\varphi} \\ - \hat{h}_{\varphi} (\hat{\varphi}^{*} \hat{\psi}_{1} \hat{\psi}_{2} - \hat{\varphi} \hat{\psi}_{1}^{*} \hat{\psi}_{2}^{*}) \}$$

$$\hat{\psi} = \hat{k}^{-3/2}\psi, \ \hat{\varphi} = \hat{k}^{-3/2}\varphi,$$
$$\hat{x} = \hat{k}x, \ \hat{\tau} = \frac{\hat{k}^2}{2M}\tau,$$
$$\hat{\sigma} = \frac{2M\sigma}{\hat{k}^2}, \ \hat{h}_{\varphi} = \frac{2M\bar{h}_{\varphi}}{\sqrt{\hat{k}}}$$

M drops out
 all quantities in units of k_F if

$$\hat{k} = k_F$$

effective action

- integrate out all quantum and thermal fluctuations
- quantum effective action
- generates full propagators and vertices
 richer structure than classical action

$$\Gamma = \int_{x} \{ \psi^{\dagger} (\partial_{\tau} - A_{\psi} \Delta - \sigma) \psi + \varphi^{*} (\partial_{\tau} - A_{\varphi} \Delta) \varphi + u(\varphi) - h_{\varphi} (\varphi^{*} \psi_{1} \psi_{2} - \varphi \psi_{1}^{*} \psi_{2}^{*}) + \dots \}$$

gap parameter

BCS regime: recover BCS gap result $\Delta/\Delta^{BCS}(c^{-1}) pprox 0.9$ for $c^{-1} < -2$.

MFT (dashed): No boson interactions. SDE (dashed-dotted): Overestimates interactions, $a_M = 2$.

limits

temperature dependence of condensate

Compare free BE condensate fraction to result for $c^{-1} = 0$ (resonance, triangles) and $c^{-1} = 1$ (BEC regime, diamonds). Low temperature: Condensate fraction strongly depends on c^{-1} . Close to criticality:

- Second order phase transition.
- Similar approach to T_c: dominance of boson fluctuations, system attracted to universal critical point.

condensate fraction : second order phase transition

changing degrees of freedom

Antiferromagnetic order in the Hubbard model

A functional renormalization group study

T.Baier, E.Bick, ...

Hubbard model

Functional integral formulation

$$Z[\eta] = \int_{\hat{\psi}(\beta) = -\hat{\psi}(0), \hat{\psi}^{*}(\beta) = -\hat{\psi}^{*}(0)} \mathcal{D}(\hat{\psi}^{*}(\tau), \hat{\psi}(\tau))$$

$$\exp\left(-\int_{0}^{\beta} d\tau \left(\sum_{\mathbf{x}} \hat{\psi}_{\mathbf{x}}^{\dagger}(\tau) \left(\frac{\partial}{\partial \tau} - \mu\right) \hat{\psi}_{\mathbf{x}}(\tau)\right)$$

$$+ \sum_{\mathbf{xy}} \hat{\psi}_{\mathbf{x}}^{\dagger}(\tau) \mathcal{T}_{\mathbf{xy}} \hat{\psi}_{\mathbf{y}}(\tau)$$

$$+ \frac{1}{2} U \sum_{\mathbf{x}} \left(\hat{\psi}_{\mathbf{x}}^{\dagger}(\tau) \hat{\psi}_{\mathbf{x}}(\tau)\right)^{2}$$

$$- \sum_{\mathbf{x}} \left(\eta_{\mathbf{x}}^{\dagger}(\tau) \hat{\psi}_{\mathbf{x}}(\tau) + \eta_{\mathbf{x}}^{T}(\tau) \hat{\psi}_{\mathbf{x}}^{*}(\tau)\right)\right)$$

U > 0 : repulsive local interaction

next neighbor interaction

$$\mathcal{T}_{xy} = \begin{cases} -t & \text{, if } \boldsymbol{x} \text{ and } \boldsymbol{y} \text{ are nearest neighbors} \\ 0 & \text{, else} \end{cases}$$

External parameters T : temperature μ : chemical potential (doping)

lattice propagator

$$S_{F,\text{kin}} = \sum_{Q} \hat{\psi}^{\dagger}(Q)(i\omega_F - \mu - 2t(\cos q_1 + \cos q_2))\hat{\psi}(Q),$$

Fermion bilinears

$$\begin{split} \tilde{\rho}(X) \ &= \ \hat{\psi}^{\dagger}(X) \hat{\psi}(X), \\ \tilde{\vec{m}}(X) \ &= \ \hat{\psi}^{\dagger}(X) \vec{\sigma} \hat{\psi}(X) \end{split}$$

Introduce sources for bilinears

Functional variation with respect to sources J yields expectation values and correlation functions

$$S_F = S_{F,\text{kin}} + \frac{1}{2}U(\hat{\psi}^{\dagger}\hat{\psi})^2 - J_{\rho}\tilde{\rho} - \vec{J}_m\tilde{\vec{m}}$$

$$Z = \int \mathcal{D}(\psi^*, \psi) \exp\left(-\left(S_F + S_\eta\right)\right)$$
$$S_\eta = -\eta^{\dagger} \psi - \eta^T \psi^*$$

Partial Bosonisation

- collective bosonic variables for fermion bilinears
 insert identity in functional integral (Hubbard-Stratonovich transformation)
 replace four fermion interaction by equivalent bosonic interaction (e.g. mass and Yukawa terms)
- problem : decomposition of fermion interaction into bilinears not unique (Grassmann variables)

$$(\hat{\psi}^{\dagger}(X)\hat{\psi}(X))^2 = \tilde{\rho}(X)^2 = -\frac{1}{3}\tilde{\vec{m}}(X)^2$$

Partially bosonised functional integral

$$Z[\eta, \eta^*, J_{\rho}, \vec{J_m}] = \int \mathcal{D}(\psi^*, \psi, \hat{\rho}, \hat{\vec{m}}) \exp\left(-\left(S + S_{\eta} + S_J\right)\right)$$

$$S = S_{F,kin} + \frac{1}{2}U_{\rho}\hat{\rho}^{2} + \frac{1}{2}U_{m}\hat{\vec{m}}^{2} - U_{\rho}\hat{\rho}\tilde{\rho} - U_{m}\hat{\vec{m}}\tilde{\vec{m}},$$

$$S_{J} = - J_{\rho}\hat{\rho} - \vec{J}_{m}\hat{\vec{m}}$$

equivalent to fermionic functional integral

$$U = -U_{\rho} + 3U_m$$

Bosonic integration is Gaussian

or:

solve bosonic field equation as functional of fermion fields and reinsert into action

$$\hat{\rho}=\tilde{\rho}+\frac{J_{\rho}}{U_{\rho}},\qquad \hat{\vec{m}}=\tilde{\vec{m}}+\frac{\vec{J}_m}{U_m}$$

fermion – boson action

$$S = S_{F,kin} + S_B + S_Y + S_J,$$

fermion kinetic term

$$S_{F,\text{kin}} = \sum_{Q} \hat{\psi}^{\dagger}(Q)(i\omega_F - \mu - 2t(\cos q_1 + \cos q_2))\hat{\psi}(Q),$$

boson quadratic term ("classical propagator")

$$S_B = \frac{1}{2} \sum_{Q} \left(U_{\rho} \hat{\rho}(Q) \hat{\rho}(-Q) + U_m \hat{\vec{m}}(Q) \hat{\vec{m}}(-Q) \right),$$

Yukawa coupling

$$S_Y = -\sum_{QQ'Q''} \delta(Q - Q' + Q'') \times (U_\rho \hat{\rho}(Q) \hat{\psi}^{\dagger}(Q') \hat{\psi}(Q'') + U_m \hat{\vec{m}}(Q) \hat{\psi}^{\dagger}(Q') \vec{\sigma} \hat{\psi}(Q'')),$$

source term

$$S_J = -\sum_Q \left(J_{\rho}(-Q)\hat{\rho}(Q) + \vec{J}_m(-Q)\hat{\vec{m}}(Q) \right)$$

is now linear in the bosonic fields

Mean Field Theory (MFT)

Evaluate Gaussian fermionic integral in background of bosonic field, e.g.

 $\begin{array}{lll} \hat{\rho}(Q) \ \rightarrow \ \rho \delta(Q) \\ \hat{\vec{m}}(Q) \ \rightarrow \ \vec{a} \delta(Q - \Pi) \end{array}$

$$\begin{split} Z_{\rm MF} &= \int \mathcal{D}(\hat{\psi}^*, \hat{\psi}) \exp(-S_{\rm MF}), \\ S_{\rm MF} &= \sum_Q \hat{\psi}^{\dagger}(Q) (i\omega_F - \mu - 2t(\cos q_1 + \cos q_2)) \hat{\psi}(Q) \\ &- \sum_Q (U_\rho \rho \hat{\psi}^{\dagger}(Q) \hat{\psi}(Q) + U_m \vec{a} \hat{\psi}^{\dagger}(Q + \Pi) \vec{\sigma} \hat{\psi}(Q)) \\ &+ \frac{V_2}{2T} (U_\rho \rho^2 + U_m \vec{a}^2) - J_\rho(0) \rho - \vec{J}_m(-\Pi) \vec{a} \end{split}$$

$$\Gamma_{\rm MF} = -\ln Z_{\rm MF} + J_{\rho}(0)\rho + \vec{J}_m(-\Pi)\vec{a}$$

Effective potential in mean field theory

$$U(\rho, \vec{a}) = \frac{T\Gamma}{V_2} = \frac{1}{2}(U_{\rho}\rho^2 + U_m \vec{a}^2) + \Delta U(\rho, \vec{a})$$

$$\Delta U(\rho, \vec{a}) = -\frac{T}{V_2} \ln \int \mathcal{D}(\hat{\psi}^*, \hat{\psi}) \exp(-S_\Delta),$$

$$S_{\Delta} = \sum_{Q} \left(\hat{\psi}^{\dagger}(Q) P(Q) \hat{\psi}(Q) - U_m \vec{a} \hat{\psi}^{\dagger}(Q + \Pi) \vec{\sigma} \hat{\psi}(Q) \right)$$

$$P(Q) = i\omega_F - \mu_{\text{eff}} - 2t(\cos q_1 + \cos q_2),$$

$$\mu_{\text{eff}} = \mu + U_\rho \rho.$$

Mean field phase diagram

for two different choices of couplings - same U !

Mean field ambiguity

Artefact of approximation ...

cured by inclusion of bosonic fluctuations

J.Jaeckel,...

mean field phase diagram

 $U = -U_{\rho} + 3U_m$

Rebosonization and the mean field ambiguity

Bosonic fluctuations

fermion loops

boson loops

mean field theory

Rebosonization

adapt bosonization to every scale k such that

is translated to bosonic interaction

H.Gies , ...

$$\begin{split} \Gamma_k[\psi,\psi^*,\phi] &= \sum_Q \psi^*(Q) P_{\psi,k} \psi(Q) \\ &+ \frac{1}{2} \sum_Q \phi(-Q) P_{\phi,k}(Q) \phi(Q) \\ &- \sum_Q h_k(Q) \phi(Q) \tilde{\phi}(-Q) \\ &+ \sum_Q \lambda_{\psi,k}(Q) \tilde{\phi}(Q) \tilde{\phi}(-Q) \end{split}$$

k-dependent field redefinition

$$\phi_k(Q) = \phi_{\bar{k}}(Q) + \Delta \alpha_k(Q) \tilde{\phi}(Q)$$

$$\partial_k \phi_k(Q) = -\partial_k \alpha_k(Q) \tilde{\phi}(Q)$$

absorbs four-fermion coupling

Modification of evolution of couplings ...

Evolution with k-dependent field variables

 $\partial_k h_k(Q) = \partial_k h_k(Q)|_{\phi_k} + \partial_k \alpha_k(Q) P_{\phi,k}(Q),$ $\partial_k \lambda_{\psi,k}(Q) = \partial_k \lambda_{\psi,k}(Q)|_{\phi_k} + h_k(Q) \partial_k \alpha_k(Q).$

$$\begin{split} \partial_k \Gamma_k[\psi, \psi^*, \phi_k] &= \partial_k \Gamma_k[\psi, \psi^*, \phi_k]|_{\phi_k} \\ &+ \sum_Q \left(\frac{\delta}{\delta \phi_k} \Gamma[\psi, \psi^*, \phi_k] \right) \partial_k \phi_k \\ &= \partial_k \Gamma_k[\psi, \psi^*, \phi_k]|_{\phi_k} \\ &+ \sum_Q \left(-\partial_k \alpha_k(Q) P_{\phi,k}(Q) \phi_k(Q) \tilde{\phi}(-Q) \right) \\ &+ h_k(Q) \partial_k \alpha_k(Q) \tilde{\phi}(Q) \tilde{\phi}(-Q) \end{split}$$

Choose α_k such that no four fermion coupling is generated \Longrightarrow

 $\partial_k h_k(Q) = \partial_k h_k(Q)|_{\phi_k} - \frac{P_{\phi,k}(Q)}{h_k(Q)} \partial_k \lambda_{\psi,k}(Q)|_{\phi_k}$

...cures mean field ambiguity

conclusions

Flow equation for effective average action:

Does it work?

- Why does it work?
- When does it work?
- How accurately does it work?

Flow equation for the Hubbard model

T.Baier, E.Bick, ...

Truncation

Concentrate on antiferromagnetism

$$\vec{a}(Q)=\vec{m}(Q+\Pi)$$

$$\begin{split} &\Gamma_{\psi,k}[\psi,\psi^*] = \sum_{Q} \psi^{\dagger}(Q) P_F(Q) \psi(Q), \\ &P_F(Q) = i\omega_F + \epsilon - \mu, \quad \epsilon(\boldsymbol{q}) = -2t(\cos q_x + \cos q_y), \end{split}$$

$$\Gamma_{Y,k}[\psi,\psi^*,\vec{a}] = -\bar{h}_{a,k} \sum_{KQQ'} \quad \vec{a}(K)\psi^*(Q)\vec{\sigma}\psi(Q')$$
$$\times\delta(K-Q+Q'+\Pi)$$

$$\Gamma_{a,k}[\vec{a}] = \frac{1}{2} \sum_{Q} \vec{a}(-Q) P_a(Q) \vec{a}(Q) + \sum_{X} U[\vec{a}(X)]$$

Potential U depends only on $\alpha = a^2$

$$SYM : \sum_{X} U[\vec{a}] = \sum_{K} \bar{m}_{a}^{2} \alpha(-K, K) + \\ + \frac{1}{2} \sum_{K_{1}...K_{4}} \bar{\lambda}_{a} \delta(K_{1} + K_{2} + K_{3} + K_{4}) \\ \times \alpha(K_{1}, K_{2}) \alpha(K_{3}, K_{4}), \\ SSB : \sum_{X} U[\vec{a}] = \frac{1}{2} \sum_{K_{1}...K_{4}} \bar{\lambda}_{a} \delta(K_{1} + K_{2} + K_{3} + K_{4}) \\ \times (\alpha(K_{1}, K_{2}) - \alpha_{0} \delta(K_{1}) \delta(K_{2})) \\ \times (\alpha(K_{3}, K_{4}) - \alpha_{0} \delta(K_{3}) \delta(K_{4}))$$

$$\alpha(K,K') = \frac{1}{2}\vec{a}(K)\vec{a}(K')$$

scale evolution of effective potential for antiferromagnetic order parameter

$$\partial_k U(\alpha) = \partial_k U^B(\alpha) + \partial_k U^F(\alpha)$$

= $\frac{1}{2} \sum_{Q,i} \tilde{\partial}_k \ln[P_a(Q) + \hat{M}_i^2(\alpha) + R_k^a(Q)]$
 $-2T \int_{-\pi}^{\pi} \frac{d^2 q}{(2\pi)^2} \tilde{\partial}_k \ln \cosh y(\alpha).$

boson contribution fermion contribution

$$\begin{split} \hat{M}_{1,2,3}^{2}(\alpha) &= \\ &= \begin{cases} (\bar{m}_{a}^{2} + 3\bar{\lambda}_{a}\alpha, \bar{m}_{a}^{2} + \bar{\lambda}_{a}\alpha, \bar{m}_{a}^{2} + \bar{\lambda}_{a}\alpha) & \text{SYM} \\ (\bar{\lambda}_{a}(3\alpha - \alpha_{0}), \bar{\lambda}_{a}(\alpha - \alpha_{0}), \bar{\lambda}_{a}(\alpha - \alpha_{0})) & \text{SSB} \end{cases} \end{split}$$

$$y(\alpha) = \frac{1}{2T_k} \sqrt{\epsilon^2(\boldsymbol{q}) + 2\bar{h}_a^2 \alpha}.$$

effective masses depend on α !

gap for fermions $\sim \alpha$

running couplings

SYM:
$$\partial_k \bar{m}_a^2 = \frac{\partial}{\partial \alpha} (\partial_k U(\alpha))|_{\alpha=0},$$

 $\partial_k \bar{\lambda}_a = \frac{\partial^2}{\partial \alpha^2} (\partial_k U(\alpha))|_{\alpha=0},$

SSB:
$$\partial_k \alpha_0 = -\frac{1}{\bar{\lambda}_a} \frac{\partial}{\partial \alpha} (\partial_k U(\alpha))|_{\alpha = \alpha_0},$$

 $\partial_k \bar{\lambda}_a = \frac{\partial^2}{\partial \alpha^2} (\partial_k U(\alpha))|_{\alpha = \alpha_0}.$

Running mass term

four-fermion interaction $\sim m^{-2}$ diverges

dimensionless quantities

$$u=\frac{Ut^2}{Tk^2},\quad \tilde{\alpha}=\frac{Z_at^2\alpha}{T}$$

$$\begin{split} m_a^2 &= \frac{\bar{m}_a^2}{Z_a k^2} = \frac{\partial u}{\partial \tilde{\alpha}}, \quad \kappa_a = \frac{Z_a t^2}{T} \alpha_0, \\ \lambda_a &= \frac{T}{Z_a^2 t^2 k^2} \bar{\lambda}_a = \frac{\partial^2 u}{\partial \tilde{\alpha}^2}, \quad h_a^2 = \frac{T}{Z_a t^4} \bar{h}_a^2 \end{split}$$

renormalized antiferromagnetic order parameter x

evolution of potential minimum

U/t = 3, T/t = 0.15

Critical temperature For T<T_c: *x* remains positive for k/t > 10⁻⁹ size of probe > 1 cm

 $T_{c}=0.115$

Below the critical temperature :

Infinite-volume-correlation-length becomes larger than sample size

finite sample \approx finite k : order remains effectively

Pseudocritical temperature T_{pc}

Limiting temperature at which bosonic mass term vanishes (\varkappa becomes nonvanishing)

It corresponds to a diverging four-fermion coupling

This is the "critical temperature" computed in MFT !

Pseudocritical temperature

Below the pseudocritical temperature

the reign of the goldstone bosons

effective nonlinear $O(3) - \sigma$ - model

critical behavior

for interval $T_c < T < T_{pc}$ evolution as for classical Heisenberg model

cf. Chakravarty, Halperin, Nelson

$$\label{eq:kappa} \begin{split} k\partial_k\kappa &= \frac{1}{4\pi} + \frac{1}{16\pi^2\kappa} + 0(\kappa^{-2}) \\ \kappa(k) &= \kappa_m(T) - \frac{1}{4\pi}\ln\frac{k_m(T)}{k} \end{split}$$

critical correlation length

$$\xi t = c(T) \exp\left\{20.7\beta(T)\frac{T_c}{T}\right\}$$

 c,β : slowly varying functions

exponential growth of correlation length compatible with observation !

at T_c: correlation length reaches sample size !

$$\begin{split} \beta(T) &= \frac{\hat{\alpha}_0(T)\hat{Z}_a(T)}{\hat{\alpha}_0(T_c)\hat{Z}_a(T_c)}, \\ c(T) &= C_{\mathrm{SR}}\frac{k_m(T_c)}{k_m(T)}\left(\frac{k_m(T_c)}{t}\right)^{\delta(T)}, \\ \delta(T) &= \beta(T)\frac{T_c}{T} - 1 \end{split}$$

$$\xi = \frac{C_{\text{SR}}}{k_m(T)} \exp\left(4\pi\kappa_m(T)\right)$$

 $\xi = \tilde{C} \exp\left(\frac{\gamma}{T}\right)$

$$\gamma = 4\pi \hat{\alpha}_0(T) \hat{Z}_a(T) t^2.$$

$$T_c(k) = \frac{\gamma(T_c)}{\ln\left(k_m(T_c)/k\right)}$$

critical behavior for order parameter and correlation function

$$\kappa_a(T) = \left(\frac{\gamma(T)T_c}{T} - 1\right)\kappa_m(T_c) + \frac{1}{4\pi}\ln\frac{k_m(T_c)}{k_m(T)}$$

$$G(q^2) = (Z_a(k = \sqrt{q^2})q^2)^{-1} \sim (q^2)^{-1+\eta_a/2}$$

Mermin-Wagner theorem ?

No spontaneous symmetry breaking of continuous symmetry in d=2!
crossover phase diagram

shift of BEC critical temperature

