Critical lines and points

in the

QCD phase diagram

Understanding the phase diagram

Phase diagram for $m_s > m_{u,d}$

Order parameters

 Nuclear matter and quark matter are separated from other phases by true critical lines

Different realizations of global symmetries
 Quark matter: SSB of baryon number B
 Nuclear matter: SSB of combination of B and isospin I₃ neutron-neutron condensate

"minimal" phase diagram for equal nonzero quark masses

< 74? small Crossover 2.0 superfluid U(1)_B broken nuclear matter 1.0

Endpoint of critical line ?

T - endpoint first order critical line

How to find out ?

Methods

Lattice : You have to wait until chiral limit is properly implemented !

 Models : Quark meson models cannot work Higgs picture of QCD ?

 Experiment : Has T_c been measured ? Indications for first order transition !

Lattice

Lattice results

e.g. Karsch, Laermann, Peikert

Critical temperature in chiral limit :

 $N_f = 3 : T_c = (154 \pm 8) \text{ MeV}$ $N_f = 2 : T_c = (173 \pm 8) \text{ MeV}$

Chiral symmetry restoration and deconfinement at same T_c

pressure

realistic QCD

precise lattice results not yet available for first order transition vs. crossover
also uncertainties in determination of critical temperature (chiral limit ...)
extension to nonvanishing baryon number only for QCD with relatively heavy quarks

Models

Analytical description of phase transition

 Needs model that can account simultaneously for the correct degrees of freedom below and above the transition temperature.

 Partial aspects can be described by more limited models, e.g. chiral properties at small momenta.

Chiral quark meson model

 Limitation to chiral behavior Small up and down quark mass - large strange quark mass Particularly useful for critical behavior of second order phase transition or near endpoints of critical lines (see N. Tetradis for possible QCD-endpoint)

Quark descriptions (NJL-model) fail to describe the high temperature and high density phase transitions correctly

High T : chiral aspects could be ok , but glue ... (pion gas to quark gas)

High density transition : different Fermi surface for quarks and baryons (T=0)

 in mean field theory factor 27 for density at given chemical potential –

Confinement is important : baryon enhancement

Berges, Jungnickel,...

Chiral perturbation theory even less complete

Universe cools below 170 MeV...

Both gluons and quarks disappear from thermal equilibrium : mass generation Chiral symmetry breaking mass for fermions Gluons ?

Analogous situation in electroweak phase transition understood by Higgs mechanism Higgs description of QCD vacuum ?

Higgs picture of QCD

"spontaneous breaking of color" in the QCD – vacuum

octet condensate

for $N_f = 3$ (u,d,s)

C.Wetterich, Phys.Rev.D64,036003(2001),hep-ph/0008150

Higgs phase and confinement

can be equivalent then simply two different descriptions (pictures) of the same physical situation Is this realized for QCD ? Necessary condition : spectrum of excitations with the same quantum numbers in both pictures

- known for QCD : mesons + baryons -

Quark – antiquark condensate

quarks: YL, Rai 12 color flavor

condensate in vacuum :

< THE YRai > = 1 50 (Sia Syb - 1 Sij Sab) color octet

+ 1/3 5 δ_{ij} δab color singlet

Octet condensate

 $< octet > \neq 0$: "Spontaneous breaking of color" Higgs mechanism Massive Gluons – all masses equal Eight octets have vev Infrared regulator for QCD

Flavor symmetry

for equal quark masses :

octet preserves global SU(3)-symmetry "diagonal in color and flavor" "color-flavor-locking"

(cf. Alford, Rajagopal, Wilczek; Schaefer, Wilczek)

All particles fall into representations of the "eightfold way"

quarks: 8 + 1 , gluons: 8

Quarks and gluons carry the observed quantum numbers of isospin and strangeness of the baryon and vector meson octets !

They are integer charged!

Low energy effective action

L = Zr { i Fi 8 2 4: + g Fi 8 Aig + 4; + 1 G is Gzi un J. OCD + $Tr \{ (D^{\mu} \gamma_{ij})^{\dagger} (D_{\mu} \gamma_{ij})^{\dagger} + \bigcup (\gamma) \}$ + Zy ¥ [hp Sy + h Xy) 1+85 - (h qt sig + h x ig) 1-55] 2/2

 $\gamma = \varphi + \chi$

 $A_{ij\mu} = \frac{1}{2} A^{2}_{\mu} (\lambda_{2})_{ij}$

...accounts for masses and couplings of light pseudoscalars, vector-mesons and baryons !

Phenomenological parameters

 5 undetermined parameters predictions

Xo, So, g, h, h

fixed by 5 observable quantities (for $M_q = 0$, averages over SU(3) multiplets) $\overline{M}_p = 850$ MeV $\overline{M}_W = 1150$ MeV $M_1 = 1400$ MeV $\overline{I} = 1400$ MeV $\overline{I} = 1400$ MeV $(\overline{I} = \frac{2}{3} f_W + \frac{1}{3} f_T)$ $\Gamma'(p \rightarrow \mu^+\mu^-)_r, \Gamma'(p \rightarrow e^+e^-) = 7$ keV

- * M (g -> 2m) = 150 MeV
- * B-decay of neutrons: gA=1 (Exp: gA=1.26)
- * vector dominance in electromagnetic interactions of pions, $g_{y\pi\pi}/e = 0.04$

Chiral perturbation theory + all predictions of chiral perturbation theory + determination of parameters

Chiral phase transition at high temperature High temperature phase transition in QCD : Melting of octet condensate

Lattice simulations : Deconfinement temperature = critical temperature for restoration of chiral symmetry

Why?

Simple explanation :

" confinement" octet condensate : " chiral symmetry breaking n " deconfinement " melting of octet condensate chival symmetry restoration

" quarks and gluons become massless simultaneously"

Higgs picture of the QCD-phase transition

A simple mean field calculation gives roughly reasonable description that should be improved. $T_{\rm c} = 170 \text{ MeV}$ First order transition

Experiment

Has the critical temperature of the QCD phase transition been measured ?

Heavy ion collision

Chemical freeze-out temperature $T_{ch} = 176 \text{ MeV}$

hadron abundancies

Exclusion argument

Exclusion argument

Assume T is a meaningful concept - complex issue, to be discussed later

 $T_{ch} < T_{c}$: hadrochemical equilibrium Exclude T_{ch} much smaller than T_{c} : say $T_{ch} > 0.95 T_{c}$ 0.95 < $T_{ch} / T_{c} < 1$
Has T_c been measured ?

- Observation : statistical distribution of hadron species with "chemical freeze out temperature " T_{ch}=176 MeV
- T_{ch} cannot be much smaller than T_c: hadronic rates for T< T_c are too small to produce multistrange hadrons (Ω,..)
- Only near T_c multiparticle scattering becomes important (collective excitations ...) – proportional to high power of density

P.Braun-Munzinger, J.Stachel, CW

Phase diagram

Temperature dependence of chiral order parameter

Does experiment indicate a first order phase transition for $\mu = 0$?

Second order phase transition

 $V = -\mu_{\theta}^{2}\varphi^{\dagger}\varphi + cT^{2}\varphi^{\dagger}\varphi + \frac{1}{2}(\varphi^{\dagger}\varphi)$

Second order phase transition

for T only somewhat below T_c : the order parameter σ is expected to be close to zero and deviate substantially from its vacuum value

This seems to be disfavored by observation of chemical freeze out !

Temperature dependent masses

Chiral order parameter σ depends on T
Particle masses depend on σ
Chemical freeze out measures m/T for many species
Mass ratios at T just below T_c are close to vacuum ratios

Ratios of particle masses and chemical freeze out

at chemical freeze out :

- ratios of hadron masses seem to be close to vacuum values
- nucleon and meson masses have different characteristic dependence on σ

• $m_{nucleon} \sim \sigma$, $m_{\pi} \sim \sigma^{-1/2}$

• $\Delta\sigma/\sigma < 0.1$ (conservative)

first order phase transition seems to be favored by chemical freeze out

... or extremely rapid crossover

How far has first order line been measured?

Exclusion argument for large density

hadronic phase with sufficient production of Ω : excluded !!

First order phase transition line

µ=923MeV
transition to
nuclear
matter

Phase diagram for $m_s > m_{u,d}$

Is temperature defined ?

Does comparison with equilibrium critical temperature make sense ?

Prethermalization

J.Berges, Sz.Borsanyi, CW

Vastly different time scales

for "thermalization" of different quantities

here : scalar with mass m coupled to fermions (linear quark-meson-model) method : two particle irreducible nonequilibrium effective action (J.Berges et al)

Prethermalization equation of state p/ε

similar for kinetic temperature

different "temperatures"

Mode temperature

$$n_p(t) \stackrel{!}{=} \frac{1}{\exp\left[\omega_p(t)/T_p(t)\right] \pm 1}$$

 $\omega_p^{(f,s)}(t)$ determined by peak of spectral function.

n_p :occupation number for momentum p

late time: Bose-Einstein or Fermi-Dirac distribution

Global kinetic temperature T_{kin}

Practical definition:

• association of temperature with average kinetic energy per d.o.f.

 $T_{\rm kin}(t) = E_{\rm kin}(t)/c_{\rm eq}$

• $c_{\rm eq} = E_{\rm kin,eq}/T_{\rm eq}$ is given solely in terms of equilibrium quantities (E.g. relativistic plasma: $E_{\rm kin}/N = \epsilon/n = \alpha T$)

Kinetic equilibration: $T_{kin}(t) = T_{eq}$

Consider also *chemical temperatures* $T_{ch}^{(f,s)}$ from integrated number density of each species, $n^{(f,s)}(t) = g^{(f,s)} \int d^3p / (2\pi)^3 n_p^{(f,s)}(t)$:

$$n(t) \stackrel{!}{=} \frac{g}{2\pi^2} \int_0^\infty \mathrm{d}p p^2 \left[\exp\left(\omega_p(t)/T_{\rm ch}(t)\right) \pm 1 \right]^{-1}$$

Chemical equilibration: $T_{ch}^{(f)}(t) = T_{ch}^{(s)}(t)$

Kinetic equilibration before chemical equilibration

Once a temperature becomes stationary it takes the value of the equilibrium temperature.

Once chemical equilibration has been reached the chemical temperature equals the kinetic temperature and can be associated with the overall equilibrium temperature.

Comparison of chemical freeze out temperature with critical temperature of phase transition makes sense Short and long distance degrees of freedom are different !

Short distances : quarks and gluons Long distances : baryons and mesons

How to make the transition?

How to come from quarks and gluons to baryons and mesons ?

Find effective description where relevant degrees of freedom depend on momentum scale or resolution in space.

Microscope with variable resolution:
High resolution , small piece of volume: quarks and gluons
Low resolution, large volume : hadrons

Functional Renormalization Group

from small to large scales

Exact renormalization group equation

Exact flow equation

for scale dependence of average action

$$\partial_k \Gamma_k[\varphi] = \frac{1}{2} \text{Tr} \left\{ \left(\Gamma_k^{(2)}[\varphi] + R_k \right)^{-1} \partial_k R_k \right\}$$

'92

$$\left(\Gamma_k^{(2)}\right)_{ab}(q,q') = \frac{\delta^2 \Gamma_k}{\delta \varphi_a(-q) \delta \varphi_b(q')}$$

Tr :
$$\sum_{a} \int \frac{d^{a}q}{(2\pi)^{d}}$$

(fermions : STr)

Infrared cutoff

 $R_k : \text{IR-cutoff}$ e.g $R_k = \frac{Z_k q^2}{e^{q^2/k^2} - 1}$ or $R_k = Z_k (k^2 - q^2) \Theta(k^2 - q^2) \quad \text{(Litim)}$

 $\lim_{k \to 0} R_k = 0$ $\lim_{k \to \infty} R_k \to \infty$

Nambu Jona-Lasinio model

 $S = \int d^{4}x \left\{ i \overline{\psi}_{a}^{i} g^{\mu} \partial_{\mu} \psi_{a}^{i} + 2\lambda_{g} \left(\overline{\psi}_{Lb}^{i} \psi_{Ra}^{i} \right) \left(\overline{\psi}_{Ra}^{j} \psi_{Lb}^{j} \right) \right\}$ $\psi_{LR} = \frac{1 \pm 8^{5}}{2} \psi$

 $i_{1}j_{2} = 1 \dots N_{c}$ color $(N_{c} = 3)$ $a_{1}b_{2} = 1 \dots N_{F}$ flavor $(N_{F} = 3, 2)$

chival flavor symmetry : $SU(N_F) \times SU_R(N_F)$

...and more general quark meson models

Chiral condensate

 \implies Explicit link between χ PT domain of validity (4d) and critical (universal) domain near T_c (3d)

Scaling form of equation of state

> Berges, Tetradis,...

critical equation of state

(2) ERGE, lowest order derivative exp.; Berges, Tetradis,...
(5) ERGE, first order derivative exp.; Scide,...
(1) mean field
(4) high-T-series, loop expansion, E-expansion

(3) Monte Carlo

temperature dependent masses

pion mass

sigma mass

conclusion

Experimental determination of critical temperature may be more precise than lattice results

Rather simple phase structure is suggested
 Analytical understanding is only at beginning

Cosmological phase transition...

...when the universe cools below 175 MeV

10⁻⁵ seconds after the big bang

QCD at high density

Nuclear matter Heavy nuclei Neutron stars Quark stars ...

QCD at high temperature

Quark – gluon plasma
Chiral symmetry restored
Deconfinement (no linear heavy quark potential at large distances)
Lattice simulations : both effects happen at the same temperature
"Solution" of QCD

Effective action (for suitable fields) contains all the relevant information of the solution of QCD

Gauge singlet fields, low momenta: Order parameters, meson-(baryon-) propagators Gluon and quark fields, high momenta: Perturbative QCD

Aim: Computation of effective action

QCD – phase transition

Quark –gluon plasma

Hadron gas

Gluons: 8 x 2 = 16
 Quarks: 9 x 7/2 = 12.5
 Dof: 28.5
 Dof: 8

Chiral symmetry

Chiral sym. broken

Large difference in number of degrees of freedom ! Strong increase of density and energy density at T_c !

Spontaneous breaking of color

- Condensate of colored scalar field
- Equivalence of Higgs and confinement description in real (N_f=3) QCD vacuum
- Gauge symmetries not spontaneously broken in formal sense (only for fixed gauge)
 Similar situation as in electroweak theory
 No "fundamental" scalars
 Symmetry breaking by quark-antiquark-condensate

A simple mean field calculation

vanishing	g quark masses	$\begin{cases} equal & m_U = m_H = m_S \neq 0 \\ 2M_H^2 + M_H^2 = (390 \text{ MeV})^2 \end{cases}$
Μg	700 MeV	770 MeV
f	68 MeV	M6 MeV
Tc	154 MeV	170 Hev
Hg(Te)	290 MeV	290 Her
₩g(TE)	580 MeV	600 Her Junasses
equation of state : pion gas -> QGP		
E-3 E+K	$\mathcal{F} \approx \tau(T_c)$	$\frac{T_c^*}{T_{\varphi}} (T \geqslant T_c)$
$\tau(T_c)$	0,37	0.53

Hadron abundancies

Bound for critical temperature

$0.95 T_{c} < T_{ch} < T_{c}$

not : " I have a model where T_c≈ T_{ch}"
 not : " I use T_c as a free parameter and find that in a model simulation it is close to the lattice value (or T_{ch})"

 $T_{ch} \approx 176 \text{ MeV}$ (?)

Estimate of critical temperature

For $T_{ch} \approx 176 \text{ MeV}$:

0.95 < T_{ch}/T_{c} > 176 MeV < T_{c} < 185 MeV 0.75 < T_{ch}/T_{c} > 176 MeV < T_{c} < 235 MeV

Quantitative issue matters!

Key argument

- Two particle scattering rates not sufficient to produce Ω
- "multiparticle scattering for Ω-production ": dominant only in immediate vicinity of T_c

needed :

lower bound on T_{ch}/ T_c

Exclude the hypothesis of a hadronic phase where multistrange particles are produced at T substantially smaller than T_c

Mechanisms for production of multistrange hadrons

Many proposals

Hadronization
 Quark-hadron equilibrium
 Decay of collective excitation (σ – field)
 Multi-hadron-scattering

Different pictures !

Hadronic picture of Ω - production

Should exist, at least semi-quantitatively, if $T_{ch} < T_c$ (for $T_{ch} = T_c$: $T_{ch} > 0.95 T_c$ is fulfilled anyhow)

e.g. collective excitations ≈ multi-hadron-scattering (not necessarily the best and simplest picture)

multihadron -> Ω + X should have sufficient rate

Check of consistency for many models Necessary if $T_{ch} \neq T_c$ and temperature is defined

Way to give quantitative bound on T_{ch}/T_{c}

Rates for multiparticle scattering

2 pions + 3 kaons -> Ω + antiproton

$$r(n_{in}, n_{out}) = \bar{n}(\mathbf{T})^{n_{in}} |\mathcal{M}|^2 \phi$$

$$\phi = \prod_{k=1}^{n_{out}} \left(\int \frac{d^3 p_k}{(2\pi)^3 (2E_k)} \right) (2\pi)^4 \delta^4 \left(\sum_k p_k^\mu \right)$$

$$r_{\Omega} = n_{\pi}^5 (n_K / n_{\pi})^3 |\mathcal{M}|^2 \phi.$$

Very rapid density increase

...in vicinity of critical temperature

Extremely rapid increase of rate of multiparticle scattering processes

(proportional to very high power of density)

Energy density

Lattice simulations Karsch et al

even more dramatic for first order transition

Phase space

 increases very rapidly with energy and therefore with temperature
 effective dependence of time needed to produce Ω

$T_{\Omega} \sim T^{-60}$

This will even be more dramatic if transition is closer to first order phase transition

Production time for \Omega

multi-meson scattering

n+n+n+K+K -> Ω+p

> strong dependence on "pion" density

P.Braun-Munzinger, J.Stachel, CW

extremely rapid change

lowering T by 5 MeV below critical temperature :

rate of Ω – production decreases by factor 10

This restricts chemical freeze out to close vicinity of critical temperature $0.95 < T_{ch}/T_c < 1$

enough time for Ω - production

at T=176 MeV :

$T_{\Omega} \sim 2.3 \text{ fm}$

consistency !

Relevant time scale in hadronic phase

rates needed for equilibration of Ω and kaons:

$$\bar{r}_j = \frac{N_j}{V} = \dot{n}_j + n_j \dot{V} / V.$$

$$\left|\frac{\bar{r}_{\Omega}}{n_{\Omega}} - \frac{\bar{r}_{K}}{n_{K}}\right| = \frac{\ln F_{\Omega K}}{\tau_{T}} \frac{\mathrm{T_{ch}}}{\Delta \mathrm{T}} = (1.10 - 0.55)/\mathrm{fm}$$

$$\Delta T = 5 \text{ MeV},$$
$$F_{\Omega K} = 1.13 ,$$
$$T_T = 8 \text{ fm}$$

two –particle – scattering :

$$\left|\frac{\bar{r}_{\Omega}}{n_{\Omega}}-\frac{\bar{r}_{K}}{n_{K}}\right| = (0.02-0.2)/\text{fm}$$

A possible source of error : temperature-dependent particle masses

Chiral order parameter σ depends on T

chemical freeze out measures T/m !

$$M_j(\mathbf{T}) = h_j(\mathbf{T}, \mu)\sigma(\mathbf{T}, \mu)$$
$$\frac{\sigma(\mathbf{T}_{ch}, \mu)}{\mathbf{T}_{ch}} = \frac{\sigma(0, 0)}{\mathbf{T}_{obs}}.$$
$$\mathbf{T}_c = 176^{+5}_{-18} \text{ MeV}.$$

uncertainty in m(T)

uncertainty in critical temperature

systematic uncertainty :

 $\Delta \sigma / \sigma = \Delta T_c / T_c$

$\Delta \sigma$ is negative

$$\begin{split} M_j(\mathbf{T}) &= h_j(\mathbf{T}, \mu) \sigma(\mathbf{T}, \mu) \\ \frac{\sigma(\mathbf{T}_{\mathrm{ch}}, \mu)}{\mathbf{T}_{\mathrm{ch}}} &= \frac{\sigma(0, 0)}{\mathbf{T}_{\mathrm{obs}}}. \\ \mathbf{T}_c &= 176^{+5}_{-18} \text{ MeV}. \end{split}$$

conclusion

 experimental determination of critical temperature may be more precise than lattice results
 error estimate becomes crucial

Thermal equilibration : occupation numbers

Effective loss of details of initial conditions (thermalization)

• Two different initial conditions (A), (B) with same energy density

Fermion occupation number:

 $\begin{array}{ll} \text{Characteristic damping time:} & t_{\mathrm{damp}}(p/m \simeq 1) \simeq 25 \, m^{-1} \\ & \text{thermalization time:} & t_{\mathrm{eq}} \simeq 95 \, m^{-1} \end{array}$ in units of scalar *thermal* mass $m \quad \left(n(p) \sim \mathrm{tr} \, \frac{p^i \gamma^i}{p} \langle [\psi, \bar{\psi}] \rangle_p \right; 0 \leq n(p) \leq 1 \right)$ $\rightsquigarrow t_{
m pt}$ is of the order of the characteristic inverse mass scale m^{-1}

- consequence of rapid loss of phase information ("dephasing")
- unrelated to the scattering-driven process of thermalization

 $ightarrow t_{
m pt}~\ll~t_{
m damp}~\ll~t_{
m eq}$

Prethermalization of the equation of state occurs on time scales dramatically shorter than the thermal equilibration time!

Given an EOS, the crucial question arises:

- Does a suitable global kinetic temperature $T_{\rm kin}$ also exist at $t_{\rm pt}$?
- \rightsquigarrow "quasi-thermal" description in a far-from-equilibrium situation!

Kinetic vs chemical equilibration:

- $\rightsquigarrow T_{\rm kin}(t)$ prethermalizes on a very short time scale $\sim m^{-1}$ in contrast to chemical equilibration
- \sim late-time chemical equilibration for $t_{\rm ch} \simeq t_{\rm eq}$ ($t_{\rm ch}$ depends on details of particle number changing interactions; deviation from thermal result can become relatively small for $t \ll t_{\rm eq}$)

<u>Prethermalization</u>: *far-from-equilibrium phenomenon* which describes

- very rapid establishment of an approximately constant ratio of pressure over energy density (equation of state)
- as well as a kinetic temperature based on average kinetic energy
- \rightsquigarrow Crucial for the use of efficient hydrodynamic descriptions! $(p = p(e) \text{ important ingredient to close system of equations } \partial_{\mu}T^{\mu\nu} = 0)$

More generally:

Extremely different time scales for loss of initial conditions for

- certain "bulk quantities" which average over all momentum modes
- "mode quantities" characterizing the evolution of individual modes

Compare with 2PI:

time

Effective loss of initial conditions

 \rightsquigarrow dramatic phenomenon for 'arbitrarily' weakly coupled theory!

Chiral symmetry restoration at high temperature

at high T : less order more symmetry

examples: magnets, crystals Order of the phase transition is crucial ingredient for experiments (heavy ion collisions) and cosmological phase transition

Order of the phase transition

First order phase transition

Simple one loop structure – nevertheless (almost) exact

Flow equation for average potential

$$\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$$

$$\bar{M}_{k,ab}^2 = \frac{\partial^2 U_k}{\partial \varphi_a \partial \varphi_b}$$
 : Mass matrix
 $\bar{M}_{k,i}^2$: Eigenvalues of mass matrix

Critical temperature , $N_f = 2$

for for = 93 MeV

Lattice simulation

J.Berges, D.Jungnickel,...