Spinor Gravity

A.Hebecker,C.Wetterich

Unified Theory of fermions and bosons

Fermions fundamental

Bosons composite

- Alternative to supersymmetry
- Composite bosons look fundamental at large distances, e.g. hydrogen atom, helium nucleus, pions
- Characteristic scale for compositeness : Planck mass
- Graviton, photon, gluons, W-,Z-bosons, Higgs scalar : all composite

massless bound states familiar if dictated by symmetries

In chiral QCD :
Pions are massless bound states of
massless quarks!

Gauge bosons, scalars ...
from vielbein components
in higher dimensions
(Kaluza, Klein)

concentrate first on gravity

Geometrical degrees of freedom

- $\Psi(\mathrm{x})$: spinor field (Grassmann variable)
- vielbein : fermion bilinear

$$
\tilde{E}_{\mu}^{m}=i \bar{\psi} \gamma^{m} \partial_{\mu} \psi
$$

$$
E_{\mu}^{m}(x)=\left\langle\tilde{E}_{\mu}^{m}(x)\right\rangle
$$

Action

$$
S_{E} \sim \int d^{d} x \operatorname{det}\left(\tilde{E}_{\mu}^{m}(x)\right)
$$

$$
\tilde{E}=\frac{1}{d!} \epsilon^{\mu_{1} \ldots \mu_{d}} \epsilon_{m_{1} \ldots m_{d}} \tilde{E}_{\mu_{1}}^{m_{1}} \ldots \tilde{E}_{\mu_{d}}^{m_{d}}=\operatorname{det}\left(\tilde{E}_{\mu}^{m}\right)
$$

contains 2 d powers of spinors

$$
\tilde{E}_{\mu}^{m}=i \bar{\psi} \gamma^{m} \partial_{\mu} \psi
$$ d derivatives contracted with ε - tensor

Symmetries

- General coordinate transformations (diffeomorphisms)
- Spinor

K.Akama,Y.Chikashige,T.Matsuki,H.Terazawa (1978)
K.Akama (1978)
D.Amati, G.Veneziano (1981)
G.Denardo,E.Spallucci (1987)

Lorentz- transformations

Global Lorentz transformations:

- spinor ψ
- vielbein transforms as vector
- action invariant

Local Lorentz transformations:

- vielbein does not transform as vector
- inhomogeneous piece, missing covariant derivative

$$
\tilde{E}_{\mu}^{m}=i \bar{\psi} \gamma^{m} \partial_{\mu} \psi
$$

Two alternatives :

1) Gravity with global and not local Lorentz symmetry?
 Compatible with observation!

2) Action with local Lorentz symmetry? Can be constructed!

How to get gravitational field equations?

How to determine geometry of space-time, vielbein and metric?

Functional integral formulation of gravity

- Calculability
(at least in principle)
- Quantum gravity
- Non-perturbative formulation

Vielbein and metric

$$
E_{\mu}^{m}(x)=\left\langle\hat{E}_{\mu}^{m}(x)\right\rangle
$$

$$
g_{\mu \nu}(x)=E_{\mu}^{m}(x) E_{\nu m}(x)
$$

Generating functional

$$
\begin{gathered}
Z[J]=\int \mathcal{D} \psi \exp \left\{-\left(S+S_{J}\right)\right\} \\
S_{J}=-\int d^{d} x J_{m}^{\tilde{E}} \tilde{E}_{\mu}^{m}
\end{gathered}
$$

$$
E_{\mu}^{m}(x)=\left\langle\tilde{E}_{\mu}^{m}(x)\right\rangle=\frac{\delta \ln Z}{\delta J_{m}^{\mu}(x)}
$$

If regularized functional measure can be defined
(consistent with diffeomorphisms)
Non- perturbative definition of quantum gravity

$$
Z[J]=\int \underline{\mathcal{D} \psi} \exp \left\{-\left(S+S_{J}\right)\right\}
$$

Effective action

$$
\Gamma\left[E_{\mu}^{m}\right]=-W\left[J_{m}^{\mu}\right]+\int d^{d} x J_{m}^{\mu} E_{\mu}^{m}
$$

$W=\ln Z$

Gravitational field equation

$$
\frac{\delta \Gamma}{\delta E_{\mu}^{m}}=J_{m}^{\mu}
$$

Symmetries dictate general form of effective action and gravitational field equation

diffeomorphisms !

Effective action : curvature scalar \boldsymbol{R} + additional terms

Gravitational field equation

 and energy momentum tensor$$
\frac{\delta \Gamma}{\delta E_{\mu}^{m}}=J_{m}^{\mu}
$$

$$
T^{\mu \nu}=E^{-1} E^{m \mu} J_{m}^{\nu}
$$

Special case : effective action depends only on metric

$$
\Gamma_{0}^{\prime}\left[E_{\mu}^{m}\right]=\Gamma_{0}^{\prime}\left[g_{\nu \rho}\left[E_{\mu}^{m}\right]\right]
$$

$$
g_{\mu \nu}=E_{\mu}^{m} E_{\nu m}
$$

$$
T^{\mu \nu}=-E^{-1} E^{m \mu} \frac{\delta \Gamma_{0}^{\prime}}{\delta g_{\rho \sigma}} \frac{\delta g_{\rho \sigma}}{\delta E_{\nu}^{m}}=T_{(g)}^{\mu \nu}
$$

Unified theory in higher dimensions and energy momentum tensor

- Only spinors, no additional fields - no genuine source
- J ${ }_{\mathrm{m}}$: expectation values different from vielbein and incoherent fluctuations
- Can account for matter or radiation in effective four dimensional theory (including gauge fields as higher dimensional vielbein-components)

Approximative computation of field equation

Loop- and Schwinger-Dyson- equations

Terms with two derivatives

$$
\begin{aligned}
\Gamma_{(2)}= & \frac{\mu}{2} \int d^{d} x E\{-R \\
& \left.+\tau\left[D^{\mu} E_{m}^{\nu} D_{\mu} E_{\nu}^{m}-2 D^{\mu} E_{m}^{\nu} D_{\nu} E_{\mu}^{m}\right]\right\}
\end{aligned}
$$

expected

new!
covariant derivative

$$
D_{\mu} E_{\nu}^{m}=\partial_{\mu} E_{\nu}^{m}-\Gamma_{\mu \nu}^{\lambda} E_{\lambda}^{m}
$$

has no spin connection!

Fermion determinant in background field

$$
\begin{aligned}
\Gamma_{(1 l)} & =-\frac{1}{2} \operatorname{Tr} \ln (E \mathcal{D}), \\
\mathcal{D} & =\gamma^{\mu} \partial_{\mu}+\frac{1}{2 E} \gamma^{m} \partial_{\mu}\left(E E_{m}^{\mu}\right)=\gamma^{\mu} \hat{D}_{\mu}, \\
\gamma^{\mu} & =E_{m}^{\mu} \gamma^{m}
\end{aligned}
$$

$$
\mathcal{D}=\gamma^{m}\left(E_{m}^{\mu} \partial_{\mu}-\Omega_{m}\right), \Omega_{m}=-\frac{1}{2 E} \partial_{\mu}\left(E E_{m}^{\mu}\right)
$$

Comparison with Einstein gravity : totally antisymmetric part of spin connection is missing !

$$
\mathcal{D}=\mathcal{D}_{E}[E]+\frac{1}{4} \Omega_{[m n p]}[E] \gamma_{(3)}^{m n p}
$$

$$
\mathcal{D}_{E}[e]=\gamma^{m} e_{m}^{\mu} \partial_{\mu}-\frac{1}{4} \Omega_{[m n p]}[e] \gamma_{(3)}^{m n p}
$$

Ultraviolet divergence

new piece from missing totally antisymmetric spin connection :

$$
\begin{aligned}
\Gamma_{K} & =\frac{\rho^{2}}{64} \operatorname{Tr}\left\{\mathcal{D}_{E}^{-1} A_{K} \mathcal{D}_{E}^{-1} A_{K}\right\}=\tilde{\tau} \int d^{d} x e K_{[m n p]} K^{[m n p]} \\
A_{K} & =K_{[m n p]} \gamma_{(3)}^{m n p}
\end{aligned}
$$

$$
\Omega \rightarrow \mathrm{K}
$$

$$
\begin{aligned}
\Gamma_{K}= & -\frac{\rho^{2}}{64} \Omega_{d} \int \frac{d^{d} p}{(2 \pi)^{d}} \frac{p_{\mu} p_{\nu}}{p^{4}} K_{\left[\rho_{1} \rho_{2 \rho 3}\right]} K^{\left[\sigma_{1} \sigma_{2} \sigma_{3}\right]} \\
& \operatorname{tr}\left\{\gamma^{\mu} \gamma_{(3)}^{\rho_{1} \rho_{2} \rho_{3}} \gamma^{\nu} \gamma_{(3) \sigma_{1} \sigma_{2} \sigma_{3}}\right\}
\end{aligned}
$$

naïve momentum cutoff Λ :

$$
\tilde{\tau}=\frac{v_{d}(d-6) q_{d}}{24 d(d-2)} A_{d-2} \Lambda^{d-2}
$$

Functional measure needs regularizetion!

Assume diffeomorphism symmetry preserved :

relative coefficients become calculable

B. De Witt

$$
\begin{array}{rlrl}
\Gamma_{(2)}= & \frac{\mu}{2} \int d^{d} x E\{-R & \mathrm{d}=4: \\
& \left.+\tau\left[D^{\mu} E_{m}^{\nu} D_{\mu} E_{\nu}^{m}-2 D^{\mu} E_{m}^{\nu} D_{\nu} E_{\mu}^{m}\right]\right\} & & \tau=3
\end{array}
$$

Gravity with global and not local Lorentz symmetty:

Compatible with observation!

No observation constrains additional term in effective action that violates
local Lorentz symmetty $(\sim \tau)$

Action with local Lorentz

symmetry can be constructed!

Time space asymmetry

unified treatment of time and space -

but important difference between time and space due to signature

Origin ?

Time space asymmetry from spontaneous symmetry breaking

C.W. , PRL , 2004

Idea : difference in signature from spontaneous symmetry breaking

With spinors : signature depends on

```
signature of Lorentz group
```

- Unified setting with complex orthogonal group:
- Both euclidean orthogonal group and minkowskian Lorentz group are subgroups
- Realized signature depends on ground state !

Complex orthogonal group

$\mathrm{d}=16, \psi: 256$ - component spinor ,
real Grassmann algebra

$$
\begin{gathered}
\delta \psi=\left(\begin{array}{cc}
\rho, & -\tau \\
\tau, & \rho
\end{array}\right) \psi \\
\rho=-\frac{1}{2} \epsilon_{m n} \hat{\Sigma}^{m n}, \tau=\frac{1}{2} \bar{\epsilon}_{m n} \hat{\Sigma}^{m n}
\end{gathered}
$$

SO (16,C)
ϱ, τ :
antisymmetric
128×128 matrices

$$
\begin{aligned}
\Sigma_{E}^{m n} & =\hat{\Sigma}^{m n} \mathbb{1}, B^{m n}=-\hat{\Sigma}^{m n} I, \\
I & =\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), I^{2}=-1
\end{aligned}
$$

Compact part: @
Non-compact part : τ

vielbein

$$
\begin{gathered}
\tilde{E}_{\mu}^{0}=\psi_{\alpha} \partial_{\mu} \psi_{\alpha}, \tilde{E}_{\mu}^{k}=\psi_{\alpha}\left(\hat{a}^{k} I\right)_{\alpha \beta} \partial_{\mu} \psi_{\beta} \\
\left\{\hat{a}^{k}, \hat{a}^{l}\right\}=-2 \delta^{k l}, k, l=1 \ldots 15 \\
\hat{\sum}^{k l}=\frac{1}{4}\left[\hat{a}^{k}, \hat{a}^{l}\right], \sum^{2}, \ldots=-\frac{1}{2} \hat{a}^{k}
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{E}_{\mu}^{\mathrm{m}}=\delta_{\mu}^{\mathrm{m}}: \\
\mathrm{SO}(1,15)-\text { symmetry }
\end{gathered}
$$

however :

Formulation of action invariant under $\mathrm{SO}(16, C)$

- Even invariant under larger symmetry group
SO(128,C)
- Local symmetry !

complex formulation

so far real Grassmann algebra

 introduce complex structure by$$
\varphi_{\hat{\alpha}}=\psi_{\hat{\alpha}}+i \psi_{128+\hat{\alpha}}, \varphi_{\hat{\alpha}}^{*}=\psi_{\hat{\alpha}}-i \psi_{128+\hat{\alpha}}
$$

$$
\delta \varphi_{\hat{\alpha}}=\sigma_{\hat{\alpha} \hat{\beta}} \varphi_{\hat{\beta}}, \sigma=\rho+i \tau
$$

σ is antisymmetric 128×128 matrix , generates $\operatorname{SO}(128, C)$

Invariant action

(complex orthogonal group, diffeomorphisms)

$S=\alpha \int d^{d} x W[\varphi] R\left(\varphi, \varphi^{*}\right)+c . c .$,

$$
W[\varphi]=\frac{1}{16!} \epsilon^{\mu_{1} \ldots \mu_{16}} \partial_{\mu_{1}} \varphi_{\hat{a}_{1}} \ldots \partial_{\mu_{16}} \varphi_{\hat{a}_{16}} L^{\hat{\alpha}_{1} . . \hat{a}_{16}}
$$

$$
L^{\hat{a}_{11 .} \hat{a}_{16}}=\operatorname{sym}\left\{\delta^{\hat{a}_{1} \hat{a}_{2} \delta^{\hat{a}_{3} \hat{a}_{4}}} \ldots \delta^{\hat{a}_{15}^{a_{0} \hat{1}_{6}}}\right\}
$$

$R\left(\varphi, \varphi^{*}\right)=T(\varphi)+\tau T\left(\varphi^{*}\right)+\kappa T(\varphi) T\left(\varphi^{*}\right)$,

$$
T(\varphi)=\frac{1}{128!} \epsilon^{\hat{\beta}_{1} \ldots \hat{\beta}_{128}} \varphi_{\hat{\beta}_{1}} \ldots \varphi_{\hat{\beta}_{128}}
$$

invariants with respect to SO $(128, C)$
and therefore also
with respect to subgroup SO (16,C)

contractions with δ and $\varepsilon-$ tensors

no mixed terms $\varphi \varphi^{*}$

For $\tau=0$: local Lorentz-symmetry !!

Generalized Lorentz symmetry

- Example $\mathrm{d}=16$: $\mathrm{SO}(128, \mathrm{C})$ instead of $\mathrm{SO}(1,15)$
- Important for existence of chiral spinors in effective four dimensional theory after dimensional reduction of higher dimensional gravity
S.Weinberg

Unification in $\mathrm{d}=16$ or $\mathrm{d}=18$?

- Start with irreducible spinor
- Dimensional reduction of gravity on suitable internal space
- Gauge bosons from Kaluza-Klein-mechanism
- 12 internal dimensions : $\mathrm{SO}(10) \times \mathrm{SO}(3)$ gauge symmetry : unification + generation group
- 14 internal dimensions : more $\mathrm{U}(1)$ gener. sym. ($\mathrm{d}=18$: anomaly of local Lorentz symmetry)

L.Alvarez-Gaume,E.Witten

Ground state with appropriate isometries:

guarantees massless gauge
bosons and graviton in spectrum

Chiral fermion generations

- Chiral fermion generations according to chirality index
C.W. , Nucl.Phys. B223,109 (1983) ;
E. Witten, Shelter Island conference, 1983
- Nonvanishing index for brane geometries (noncompact internal space)
C.W. , Nucl.Phys. B242,473 (1984)
- and wharping
C.W. , Nucl.Phys. B253,366 (1985)
- $\mathrm{d}=4 \bmod 4$ possible for ${ }^{6}$ extended Lorentz symmetry' (otherwise only $d=2 \bmod 8$)

Rather realistic model known

- $\mathrm{d}=18$: first step : brane compactifcation

- $\mathrm{d}=6, \mathrm{SO}(12)$ theory : (anomaly free)
- second step : monopole compactification

- $\mathrm{d}=4$ with three generations, including generation symmetries
- SSB of generation symmetry: realistic mass and mixing hierarchies for quarks and leptons
(except large Cabibbo angle)
C.W., Nucl.Phys. B244,359(1984) ; B260,402 (1985) ; B261,461 (1985) ; B279,711 (1987)

Comparison with string theory

- Unification of bosons and fermions
- Unification of all interactions ($d>4$)
- Non-perturbative
(functional integral)
formulation
- Manifest invariance under diffeomophisms

SStrings

ok Sp.Grav. ok
ok
ok

- ok ?
- ok

Comparison with string theory

SStrings
ok

- Finiteness/regularization
- Uniqueness of ground state/ predictivity
- No dimensionless parameter ok

Sp.Grav.
-
?

Conclusions

- Unified theory based only on fermions seems possible
- Quantum gravity -
if functional measure can be regulated
- Does realistic higher dimensional model exist?
- Local Lorentz symmetry not verified by observation

Local Lorentz symmetry not verified by observation!

Gravity with global and not local Lorentz symmetty:

Compatible with observation!

No observation constrains additional term in effective action that violates
local Lorentz symmetty $(\sim \tau)$

Phenomenology, $\mathrm{d}=4$

Most general form of effective action which is consistent with diffeomorphism and global Lorentz symmetry

Derivative expansion

$$
\Gamma=\epsilon \Gamma_{0}+\mu\left(I_{1}+\tau_{A} I_{2}+\beta_{A} I_{3}\right)
$$

$$
\begin{aligned}
& I_{1}=\frac{1}{2} \int d^{d} x E\left\{D^{\mu} E_{m}^{\nu} D_{\nu} E_{\mu}^{m}-D_{\mu} E_{m}^{\mu} D^{\nu} E_{\nu}^{m}\right\} \\
& I_{2}=\frac{1}{2} \int d^{d} x E\left\{D^{\mu} E_{m}^{\nu} D_{\mu} E_{\nu}^{m}-2 D^{\mu} E_{m}^{\nu} D_{\nu} E_{\mu}^{m}\right\} \\
& I_{3}=\frac{1}{2} \int d^{d} x E D_{\mu} E_{m}^{\mu} D^{\nu} E_{\nu}^{m}
\end{aligned}
$$

$I_{1}=-\frac{1}{2} \int d^{d} x e R[g[e]]$

new

not in one loop SG

New gravitational degree of freedom

$$
E_{\mu}^{n}=e_{\mu}^{m} H_{m}^{n}
$$

for local Lorentz-symmetry:
H is gauge degree of freedom

$$
\bar{E}=\bar{e} H, H \eta H^{T}=\eta, \operatorname{det} H=1
$$

matrix notation :

$$
g=\bar{e} \eta \bar{e}^{T}, E=\operatorname{det} \bar{E}=\operatorname{det} \bar{e}=e
$$

$$
D_{\mu} e_{\nu}^{n}=0
$$

new invariants (only global Lorentz symmetry): derivative terms for H_{mn}

$$
\begin{aligned}
D_{\mu} E_{\nu}^{m} & =e_{\nu}^{n} D_{\mu} H_{n}{ }^{m}, \\
D_{\mu} H_{n}{ }^{m} & =\partial_{\mu} H_{n}{ }^{m}-\omega_{\mu n}^{p}[e] H_{p}{ }^{m}
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}=\frac{1}{2} \int d^{d} x e\left\{D^{p} H^{n m} D_{p} H_{n m}-2 D^{p} H_{n m} D^{n} H_{p}^{m}\right\} \\
& I_{3}=\frac{1}{2} \int d^{d} x e D^{n} H_{n m} D^{p} H_{p}^{m}
\end{aligned}
$$

$$
I_{1}=-\frac{1}{2} \int d^{d} x e R[g[e]]
$$

Gravity with

global Lorentz symmetry has additional massless field!

Local Lorentz symmetry not tested!

loop and SD- approximation : $\beta=0$
new invariant $\sim \tau$
is compatible with all present tests!

Linear approximation (weak gravity)

$$
\begin{gathered}
E_{\mu}^{m}=\delta_{\mu}^{m}+\frac{1}{2}\left(h_{\mu \nu}+a_{\mu \nu}\right) \eta^{\nu^{\prime \prime m}} \\
h_{\mu \nu}=b_{\mu \nu}+\frac{1}{(d-1)}\left(\eta_{\mu \nu}-\frac{\partial_{\mu} \partial_{\nu}}{\partial^{2}}\right) \sigma \\
+\frac{\partial_{\mu} \partial_{\nu} f+\partial_{\mu} v_{\nu}+\partial_{\nu} v_{\mu}}{\partial^{2}} \\
a_{\mu \nu}=c_{\mu \mu}+\partial_{\mu}\left(v_{\nu}+w_{\nu}\right)-\partial_{\nu}\left(v_{\mu}+w_{\mu}\right)
\end{gathered}
$$

$\mathrm{c}_{\mu \nu}$ couples only to spin
(antisymmetric part of energy momentum tensor)
test would need source with macroscopic spin
and test particle with macroscopic spin

Post-Newtonian gravity

No change in lowest nontrivial order in Post-Newtonian-Gravity!

Schwarzschild and cosmological solutions : not modified !

beyond linear gravity!

Second possible invariant ($\sim \beta$)

 strongly constrained by observation !
most general bilinear term :

$$
\begin{aligned}
\Gamma= & \frac{\mu}{8} \int d^{d} x\left\{\partial^{\mu} b^{\nu \rho} \partial_{\mu} b_{\nu \rho}-\left(\frac{d-2}{d-1}-\beta_{A}\right) \partial^{\mu} \sigma \partial_{\mu} \sigma\right. \\
& \left.+\tau_{A} \partial^{\mu} c^{\nu \rho} \partial_{\mu} c_{\nu \rho}+\beta_{A} \partial^{2} w^{\mu} \partial^{2} w_{\mu}\right\}
\end{aligned}
$$

dilatation mode σ is affected !

For $\beta \neq 0$: linear and Post-Newtonian gravity modified !

Newtonian gravity

$$
\Delta \phi=\frac{\rho}{2 \mu} \frac{1-2 \beta_{A}}{1-\frac{3}{2} \beta_{A}}=4 \pi G_{N} \rho=\frac{\rho}{2 \bar{M}^{2}}
$$

$$
\begin{gathered}
\bar{M}^{2}=M_{p}^{2} / 8 \pi \\
\bar{M}^{2}=\frac{1-\frac{3}{2} \beta_{A}}{1-2 \beta_{A}} \mu
\end{gathered}
$$

Schwarzschild solution

$$
d s^{2}=-B(r) d t^{2}+A(r) d r^{2}+r^{2}\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right)
$$

no modification for $\beta=0$! strong experimental bound on β ?

$$
\begin{aligned}
& B=1-\frac{r_{s}}{r}, A^{-1}=1-\gamma \frac{r_{s}}{r} \\
& \gamma-1 \approx \beta=(2.1 \pm 2.3) 10^{-5}
\end{aligned}
$$

Cosmology

general isotropic and homogeneous vielbein :

$$
E_{0}^{0}=1, E_{0}^{i}=0, E_{i}^{0}=0, E_{i}^{j}=a(t) \delta_{i}^{j}
$$

$$
H(t)=\dot{a}(t) / a(t)
$$

only the effective Planck mass differs
between cosmology and Newtonian gravity if $\beta \neq 0$

$$
\frac{\bar{M}_{c}^{2}}{\bar{M}^{2}}=1-2 \beta_{A}
$$

Otherwise : same cosmological equations !

Modifications only for $\beta \neq 0$!

Valid theory with global instead of local Lorentz invariance for $\beta=0$!

General form in one loop / SDE : $\beta=0$
Can hidden symmetry be responsible?

Geometry

One can define new curvature free connection

$$
\tilde{\Gamma}_{\mu \nu}{ }^{\lambda}=\left(\partial_{\mu} E_{\nu}^{m}\right) E_{m}^{\lambda}
$$

Torsion

$$
\begin{gathered}
T_{\mu \nu \rho}=\left(\partial_{\mu} E_{\nu}^{m}-\partial_{\nu} E_{\mu}^{m}\right) E_{\rho m} \\
\Gamma_{(2)}=\frac{\mu}{2} \int d^{d} x e\left\{-R+\tau^{\prime} T_{[\mu \nu \rho]} T^{[\mu \nu \rho]}\right\} \\
\tau^{\prime} \equiv 3 \tau / 4=9 / 4
\end{gathered}
$$

