Chiral freedom and the scale of weak interactions proposal for solution of gauge hierarchy problem

model without fundamental scalar

- non-local interaction in chiral tensor channel
- no mass terms

chiral couplings to quarks and leptons

chiral couplings are asymptotically free

weak scale by dimensional transmutation

Non-local interaction in chiral tensor channel

$$-S_{4} = 4f^{2} \int \frac{d^{4}q \, d^{4}p \, d^{4}p'}{(2\pi)^{12}} \, \frac{P_{kl}^{*}(q)}{q^{4}} \left\{ \begin{bmatrix} \bar{t}(q+p)\sigma_{+}^{k}t(p) \end{bmatrix} \left[\bar{t}(p')\sigma_{-}^{l}t(p'+q) \right] + \left[\bar{t}(q+p)\sigma_{+}^{k}b(p) \right] \left[\bar{b}(p')\sigma_{-}^{l}t(p'+q) \right] \right\}$$

non – local interaction

$$P_{kl}(q) = -(q_0^2 + q_j q_j)\delta_{kl} + 2q_k q_l - 2i\epsilon_{klj}q_0 q_j$$

f: chiral coupling for top and bottom quarks

$$-S_2 = -\int \frac{d^4q}{(2\pi)^4} \left(\bar{t}(q)\gamma^{\mu}q_{\mu}t(q) + \bar{b}(q)\gamma^{\mu}q_{\mu}b(q)\right)$$

non-local interactions in chiral tensor channel

Lorentz invariant

Could be generated by exchange of chiral tensor fields - not necessary and not used here

Chiral coupling \mathbf{f} is dimensionless

Generalization to chiral couplings for lighter quarks : chiral couplings described by 3x3 matrices, similar to Yukawa couplings in SM

classical dilatation symmetry

action has no parameter with dimension mass

all couplings are dimensionless

flavor and CP violation

 chiral couplings can be made diagonal and real by suitable phases for fermions
 Kobayashi – Maskawa Matrix

same flavor violation and CP violation as in standard model

asymptotic freedom

evolution equations for top coupling

$$k\frac{\partial}{\partial k}F_U = -\frac{9}{8\pi^2}F_UF_U^{\dagger}F_U$$

 $+\frac{1}{4\pi^2}F_U tr(F_U^{\dagger}F_U)$

fermion anomalous dimension

tensor anomalous dimension

no vertex correction

asymptotic freedom !

Similar observation in abelian model for chiral tensors : Avdeev, Chizhov '93

dimensional transmutation

$$f_t^2(k) = \frac{4\pi^2}{7\ln(k/\Lambda_{ch}^{(t)})}$$

Chiral coupling for top grows large at chiral scale $\Lambda_{\rm ch}$

This sets physical scale : dimensional transmutation - similar to Λ_{OCD} in strong QCD- gauge interaction

spontaneous electroweak symmetry breaking

top – anti-top condensate

large chiral coupling for top leads to large effective attractive interaction for top quark this triggers condensation of top – anti-top pairs electroweak symmetry breaking : effective Higgs mechanism provides mass for weak bosons effective Yukawa couplings of Higgs give mass to quarks and leptons

cf : Miranski , Tanabashi , Yamawaki; Bardeen , Hill, Lindner

Induced interactions in scalar channel

$$\Delta\Gamma^{(1)} = \frac{f^4}{2\pi^2 k^2} [\bar{t}_R t_L] [\bar{t}_L t_R] + \frac{3f^4}{4\pi^2 k^2} [\bar{t}_R^c T_{cd}^z t_L^d] [\bar{t}_L^{c'} T_{c'd'}^z t_R^{d'}].$$

NJL – type interaction

$$\Gamma_k^{(S)} = \frac{\lambda}{2} \int d^4x \left[(\bar{\psi}\psi)^2 - (\bar{\psi}\gamma^5\psi)^2 \right] = 2\lambda(\bar{\psi}_L\psi_R)(\bar{\psi}_R\psi_L)$$

$$\lambda(k) = \frac{f^4(k)}{4\pi^2 k^2}.$$

effective interactions

- introduce composite field for top- antitop bound state
- plays role of Higgs field
- new effective interactions involving the composite scalar φ
- effective scalar-top Yukawa coupling

$$\bar{h}^2 = \frac{f^4}{2\pi^2}.$$

Running effective couplings

Ratio between top quark mass and W-boson mass is predictable in this model

phenomenology

chirons

- possibility of observable bound states in chiral tensor channel
- irreducible representation for anti-symmetric tensor fields has three components
- in presence of mass : little group SO(3)
- with respect to SO(3) : anti-symmetric tensor equivalent to vector
- massive chiral tensors = massive spin one particles : chirons

new resonances at LHC?

- production of massive chirons at LHC ?
- signal : massive spin one resonances
- rather broad : decay into top quarks
- relatively small production cross section : small chiral couplings to lowest generation quarks , no direct coupling to gluons
- perhaps no resonances just additional effective interactions in chiral tensor channel

composite scalars

two composite Higgs doublets expected
mass 400 -500 GeV
loop effects ?

conclusions

chiral tensor model interactions offer interesting solution of gauge hierarchy problem
phenomenology needs to be explored !
less couplings than in standard model predictivity !