Chiral freedom and the scale of weak interactions proposal for solution of gauge hierarchy problem

model without fundamental scalar
new anti-symmetric tensor fields
local mass term forbidden by symmetry
chiral couplings to quarks and leptons
chiral couplings are asymptotically free
weak scale by dimensional transmutation

antisymmetric tensor fields

two irreducible representations of Lorentz – symmetry : (3,1) + (1,3)
complex representations : (3,1)* = (1,3)
similar to left/right handed spinors

$$\beta_{mn}^{\pm} = \frac{1}{2}\beta_{mn} \pm \frac{i}{4}\epsilon_{mn} \,{}^{pq}\beta_{pq}$$

chiral couplings to quarks and leptons

$$\begin{split} -\mathcal{L}_{ch} &= \bar{u}_R \bar{F}_U \tilde{\beta}_+ q_L - \bar{q}_L \bar{F}_U^{\dagger} \, \widetilde{\beta}_+ \, u_R \\ &+ \bar{d}_R \bar{F}_D \bar{\beta}_- q_L - \bar{q}_L \bar{F}_D^{\dagger} \beta_- d_R \\ &+ \bar{e}_R \bar{F}_L \bar{\beta}_- l_L - \bar{l}_L \bar{F}_L^{\dagger} \beta_- e_R \end{split}$$

$$\beta_{\pm} = \frac{1}{2} \beta_{mn}^{\pm} \sigma^{mn}$$

most general interaction consistent with Lorentz and gauge symmetry : ß are weak doublets with hypercharge
 consistent with chiral parity :

 d_R , e_R , β^- have odd chiral parity

no local mass term allowed for chiral tensors

Lorentz symmetry forbids (B⁺)* B⁺
 Gauge symmetry forbids B⁺ B⁺
 Chiral parity forbids (B⁻)* B⁺

kinetic term

$$-\mathcal{L}^{ch}_{\beta,kin} = \frac{1}{4} \int d^4x \{ (\partial^{\rho}\beta^{\mu\nu})^* \partial_{\rho}\beta_{\mu\nu} - 4(\partial_{\mu}\beta^{\mu\nu})^* \partial_{\rho}\beta^{\rho}_{\nu} \}$$

\Box does not mix β ⁺ and β ⁻

unique possibility consistent with all symmetries, including chiral parity

quartic couplings

$$\begin{split} -\mathcal{L}_{\beta,4} &= \frac{\tau_{+}}{16} [(\beta_{\mu\rho}^{+})^{\dagger} \beta^{+\rho\nu}] [(\beta^{+\mu\sigma})^{\dagger} \beta_{\sigma\nu}^{+}] + (+ \rightarrow -) \\ &+ \frac{\tau_{1}}{16} [(\beta_{\mu\nu}^{+})^{\dagger} \beta^{-\mu\nu}] [(\beta_{\rho\sigma}^{-})^{\dagger} \beta^{+\rho\sigma}] \\ &+ \frac{\tau_{2}}{16} [(\beta_{\mu\nu}^{+})^{\dagger} \beta^{-\mu\nu}] [(\beta_{\rho\sigma}^{-})^{\dagger} \vec{\tau} \beta^{+\rho\sigma}] \\ &+ \frac{\tau_{3}}{64} [(\beta_{\mu\nu}^{+})^{\dagger} \beta^{-\mu\nu}] [(\beta_{\rho\sigma}^{+})^{\dagger} \beta^{-\rho\sigma}] + c.c. \\ &+ \frac{\tau_{4}}{64} [(\beta_{\mu\nu}^{+})^{\dagger} \beta^{-\rho\sigma}] [(\beta^{+\mu\nu})^{\dagger} \beta_{\rho\sigma}^{-\mu\nu}] + c.c. \end{split}$$

add gauge interactions and gauge invariant kinetic term for fermions ...

classical dilatation symmetry

action has no parameter with dimension mass

all couplings are dimensionless

flavor and CP violation

 chiral couplings can be made diagonal and real by suitable phases for fermions
 Kobayashi – Maskawa Matrix

$$\begin{aligned} -\mathcal{L}_{ch} &= \bar{u}_R \bar{F}_U \tilde{\beta}_+ q_L - \bar{q}_L \bar{F}_U^{\dagger} \, \overline{\tilde{\beta}}_+ \, u_R \\ &+ \bar{d}_R \bar{F}_D \bar{\beta}_- q_L - \bar{q}_L \bar{F}_D^{\dagger} \beta_- d_R \\ &+ \bar{e}_R \bar{F}_L \bar{\beta}_- l_L - \bar{l}_L \bar{F}_L^{\dagger} \beta_- e_R \end{aligned}$$

same flavor violation and CP violation as in standard model

 additional CP violation through quartic couplings possible

asymptotic freedom

evolution equations for chiral couplings

$$\begin{split} k \frac{\partial}{\partial k} F_{U} &= -\frac{9}{8\pi^{2}} F_{U} F_{U}^{\dagger} F_{U} - \frac{3}{8\pi^{2}} F_{U} F_{D}^{\dagger} F_{D} \\ &+ \frac{1}{4\pi^{2}} F_{U} tr(F_{U}^{\dagger} F_{U}) - \frac{1}{2\pi^{2}} g_{s}^{2} F_{U} \\ k \frac{\partial}{\partial k} F_{D} &= -\frac{9}{8\pi^{2}} F_{D} F_{D}^{\dagger} F_{D} - \frac{3}{8\pi^{2}} F_{D} F_{U}^{\dagger} F_{U} \\ &+ \frac{1}{4\pi^{2}} F_{D} tr(F_{D}^{\dagger} F_{D} + \frac{1}{3} F_{L}^{\dagger} F_{L}) - \frac{1}{2\pi^{2}} g_{s}^{2} F_{D} \\ k \frac{\partial}{\partial k} F_{L} &= -\frac{9}{8\pi^{2}} F_{L} F_{L}^{\dagger} F_{L} + \frac{1}{4\pi^{2}} F_{L} tr(F_{D}^{\dagger} F_{D} + \frac{1}{3} F_{L}^{\dagger} F_{L}) \end{split}$$

 $F_U = Z_u^{-1/2} \bar{F}_U Z_q^{-1/2} Z_+^{-1/2}$

evolution equations for top coupling

$$k\frac{\partial}{\partial k}F_U = -\frac{9}{8\pi^2}F_UF_U^{\dagger}F_U$$

fermion anomalous dimension

$$+\frac{1}{4\pi^2}F_U tr(F_U^{\dagger}F_U)$$

tensor anomalous dimension

no vertex correction

- 10

asymptotic freedom !

Similar observation in abelian model :Avdeev,Chizhov '93

dimensional transmutation

$$f_t^2(k) = \frac{4\pi^2}{7\ln(k/\Lambda_{ch}^{(t)})}$$

Chiral coupling for top grows large at chiral scale $\Lambda_{\rm ch}$

This sets physical scale : dimensional transmutation - similar to Λ_{OCD} in strong QCD- gauge interaction

spontaneous electroweak symmetry breaking

top – anti-top condensate

large chiral coupling for top leads to large effective attractive interaction for top quark this triggers condensation of top – anti-top pairs electroweak symmetry breaking : effective Higgs mechanism provides mass for weak bosons effective Yukawa couplings of Higgs give mass to quarks and leptons

cf: Miranski; Bardeen, Hill, Lindner

Schwinger - Dyson equation for top quark mass

solve gap equation for top quark propagator

SDE for **B-B-propagator**

gap equation for top quark mass

$$\int_{M_{\beta}^{2}/m_{t}^{2}}^{\infty} \frac{dx}{x(x+1)} \frac{\ln\left(\frac{\Lambda_{t}^{4}}{m_{t}^{4}(1+x/4)^{2}}+1\right)}{\left(\ln\left(\frac{m_{t}^{2}}{\Lambda_{ch}^{(t)}}\right)+\ln x\right)^{2}} = \frac{49}{36}$$

has reasonable solutions for m_t : somewhat above the chiral scale

two loop SDE for top-quark mass

contract B- exchange to pointlike four fermion interaction

effective interactions

introduce composite field for top- antitop bound state

plays role of Higgs field
 new effective interactions involving the composite scalar φ

effective scalar tensor interactions

$$-\mathcal{L}_{M\beta} = \frac{1}{8} tr \{ \sigma_1 [\varphi_t^{\dagger} \varphi_b] [\bar{\beta}_- \beta_+] + \sigma_2 [\varphi_t^{\dagger} \beta_+] [\bar{\beta}_- \varphi_b] + \\ + \sigma_+ [\bar{\beta}_+ \varphi_t] [\bar{\beta}_+ \varphi_t] + \sigma_- [\bar{\beta}_- \varphi_b] [\bar{\beta}_- \varphi_b] \\ + \sigma_{v1} [\varphi_b^{\dagger} \varphi_t] [\bar{\beta}_- \beta_+] + \sigma_{v2} [\varphi_b^{\dagger} \beta_+] [\bar{\beta}_- \varphi_t] \\ + \sigma_{v+} [\bar{\beta}_+ \varphi_b] [\bar{\beta}_+ \varphi_b] + \sigma_{v-} [\bar{\beta}_- \varphi_t] [\bar{\beta}_- \varphi_t] \} + c.c.$$

$$\frac{1}{8}tr\bar{\beta}_{-}\beta_{+} = \frac{1}{4}\beta_{\mu\nu}^{-*}\beta^{+\mu\nu} = B_{k}^{-*}B_{k}^{+} ,$$
$$\frac{1}{8}tr\beta_{\pm}\beta_{\pm} = \frac{1}{4}\beta_{\mu\nu}^{\pm}\beta^{\pm\mu\nu} = B_{k}^{\pm}B_{k}^{\pm}$$

chiral tensor – gauge boson - mixing

$$\begin{aligned} -\mathcal{L}_{F\beta} &= \nu_{y+} [\varphi_{t}^{\dagger} \beta_{\mu\nu}^{+}] Y^{\mu\nu} + \nu_{y+}^{*} [(\beta_{\mu\nu}^{+})^{\dagger} \varphi_{t}] Y^{\mu\nu} \\ &+ \nu_{w+} [\varphi_{t}^{\dagger} \vec{\tau} \beta_{\mu\nu}^{+}] \vec{W}^{\mu\nu} + \nu_{w+}^{*} [(\beta_{\mu\nu}^{+})^{\dagger} \vec{\tau} \varphi_{t}] \vec{W}^{\mu\nu} \\ &+ \nu_{y-} [\varphi_{b}^{\dagger} \beta_{\mu\nu}^{-}] Y^{\mu\nu} + \nu_{y-}^{*} [(\beta_{\mu\nu}^{-})^{\dagger} \varphi_{b}] Y^{\mu\nu} \\ &+ \nu_{w-} [\varphi_{b}^{\dagger} \vec{\tau} \beta_{\mu\nu}^{-}] \vec{W}^{\mu\nu} + \nu_{w-}^{*} [(\beta_{\mu\nu}^{-})^{\dagger} \vec{\tau} \varphi_{b}] \vec{W}^{\mu\nu} \end{aligned}$$

and more ...

massive chiral tensor fields

chirons

irreducible representation for anti-symmetric tensor fields has three components
in presence of mass : little group SO(3)
with respect to SO(3) : anti-symmetric tensor equivalent to vector
massive chiral tensors = massive spin one

particles : chirons

massive spin one particles

new basis of vector fields:

$$S^{\pm}_{\mu} = \frac{\partial_{\nu}}{\sqrt{\partial^2}} \beta^{\pm\nu}_{\mu} , \ \partial_{\mu} S^{\pm\mu} = 0$$

standard action for massive vector fields

$$\begin{split} \Gamma^{ch}_{\beta,kin} &= -\int_q Z(q) q_\mu q_\nu (\beta^{\mu\rho}(q))^\dagger \beta^\nu |_\rho(q) \\ &= \int_q (q^2 + m^2) S^{\mu\dagger}(q) S_\mu(q) \end{split}$$

 $Z(q) = 1 + m^2 / q^2$

classical stability !

classical stability

massive spin one fields : stable free theory for chiral tensors: borderline stability/instability, actually unstable (secular solutions, no ghosts) mass term moves theory to stable region positive energy density for solutions of field equations

consistency of chiral tensors ?

B - basis

$$\beta_{jk}^{+} = \epsilon_{jkl} B_{l}^{+} , \ \beta_{0k}^{+} = i B_{k}^{+} \beta_{jk}^{-} = \epsilon_{jkl} B_{l}^{-} , \ \beta_{0k}^{-} = -i B_{k}^{-}$$

B –fields are unconstrained
six complex doublets
vectors under space – rotations
irreducible under Lorentz -transformations

free propagator

$$\begin{split} -\mathcal{L}^{ch}_{\beta,kin} &= \Omega^{-1} \int \frac{d^4q}{(2\pi)^4} \{ B^{+*}_k(q) P_{kl}(q) B^+_l(q) \\ &+ B^{-*}_k(q) P^*_{kl}(q) B^-_l(q) \} \end{split}$$

inverse propagator has unusual form :

$$\begin{split} P_{kl} &= -(q_0^2 + q_j q_j) \delta_{kl} + 2 q_k q_l - 2 i \epsilon_{klj} q_0 q_j \\ \\ P^\dagger &= P \ , \ PP^* = q^4 \ , \ P^{-1} = \frac{1}{q^4} P^* \end{split}$$

propagator is invertible ! except for pole at $q^2 = 0$

energy density

$$\rho = -T_0^0 = Z_+ \{\partial_0 B_k^{+*} \partial_0 B_k^+ + 2\partial_k B_k^{+*} \partial_l B_l^+ \\ -\partial_l B_k^{+*} \partial_l B_k^+\} + (+ \to -)$$

for plane waves :

$$\rho = 2Z_+ \partial_k b_3^{+*} \partial_k b_3^+ + (+ \rightarrow -)$$

positive for longitudinal mode b_3 vanishes for transversal modes $b_{1,2}$ (borderline to stability) unstable secular classical solutions in free theory quantum theory : free Hamiltonian is not bounded

secular instability

$$b_1 = (B_1 + iB_2)/\sqrt{2}, \ b_2 = (B_1 - iB_2)/\sqrt{2} \qquad b_1 = Q, \pi_1 = P$$

$$\pi_1 = \dot{b}_1 + iqb_1 \qquad h_1 = P^*P - iq(P^*Q - Q^*P)$$

$$\dot{Q} = P - iqQ$$
, $\dot{P} = -iqP$

$$\ddot{Q} + 2iq\dot{Q} - q^2Q = 0$$

$$Q = (Q_0 + P_0 t)e^{-iqt}$$
, $P = P_0 e^{-iqt}$

solutions grow linearly with time !

no consistent free theory !

mechanical analogue

 $dx / dt^2 = \varepsilon x$ $\mathbf{\epsilon} > 0$: exponentially growing mode (tachyon or ghost) $\mathbf{\epsilon} < 0$: stable mode $\mathbf{s} = 0$: borderline (secular solution growing linearly with time) even tiny a decides on stability ! interactions will decide on stability !

interacting chiral tensors can be consistently quantized

- Hamiltonian permits canonical quantization
- Interactions will decide on which side of the borderline between stability and instability the model lies.
- Vacuum not perturbative
- Non perturbative generation of mass:

stable massive spin one particles !

Chirons

chiron mass

non – perturbative mass term

- \square m² : local in S basis , non-local in B basis
- cannot be generated in perturbation theory in absence of electroweak symmetry breaking
- plausible infrared regularization for divergence of inverse quantum propagator as chiral scale is approached
- in presence of electroweak symmetry breaking : generated by loops involving chiral couplings

effective cubic tensor interactions

$$-\mathcal{L}_{3\beta} = \gamma_t \epsilon_{klm} [\varphi_t^{\dagger} B_k^{-}] [(B_l^+)^{\dagger} B_m^{-}] + \gamma_b \epsilon_{klm} [\varphi_b^{\dagger} B_k^{+}] [(B_l^-)^{\dagger} B_m^{+}] + c.c.$$

generated by electroweak symmetry breaking

propagator corrections from cubic couplings

$$iJ_{kl}(q) = \frac{1}{16\pi^2} \frac{P_{kl}(q)}{q^2}$$

non – local !

effective propagator for chiral tensors

$$\tilde{P}_{kl}(q) = P_{kl}(q) + i(|\gamma_t^*\varphi_t|^2 + |\gamma_b^*\varphi_b|^2)J_{kl}(q)$$

$$iJ_{kl}(q)=\frac{1}{16\pi^2}\frac{P_{kl}(q)}{q^2}$$

massive effective inverse propagator : pole for massive field

$$\tilde{P}_{kl}(q) = \frac{P_{kl}(q)}{q^2}(q^2 + m^2)$$

mass term :

$$m^{2} = \frac{1}{16\pi^{2}} (|\gamma_{t}^{*}\varphi_{t}|^{2} + |\gamma_{b}^{*}\varphi_{b}|^{2})$$

phenomenology

new resonances at LHC?

production of massive chirons at LHC ?
signal : massive spin one resonances
rather broad : decay into top quarks
relatively small production cross section : small chiral couplings to lowest generation quarks , no direct coupling to gluons

effects at low energy

mixing with gauge bosons is important
 also direct four fermion interactions with tensor structure

mixing between chiral tensor and photon

$$\begin{split} \Gamma_c^{(2)} &= \begin{pmatrix} q^2 + m_R^2 \ , \ \beta \sqrt{-q^2} \\ \beta \sqrt{-q^2} \ , \ q^2 \end{pmatrix} \cdot \\ \det &= q^2 (q^2 + m_R^2 + \beta^2) \end{split}$$

photon remains massless but acquires new tensor interaction

$$-\mathcal{L}_{ch} \to \alpha_{\gamma} \bar{e}_L F_L^{\dagger} \sigma^{\mu\nu} e_R F_{\mu\nu} + h.c.$$

Pauli term contributes to g-2

$$-\mathcal{L}_{ch} \to \alpha_{\gamma} \bar{e}_L F_L^{\dagger} \sigma^{\mu\nu} e_R F_{\mu\nu} + h.c.$$

suppressed by

inverse mass of chiral tensor

- small chiral coupling of muon and electron
- small mixing between chiral tensor and photon
- for $M_c \approx 300$ GeV and small chiral couplings : $\Delta(g-2) \approx 5 \ 10^{-9}$ for muon larger chiral couplings : $M_c \approx \text{few TeV}$

anomalous magnetic moment of muon

$$\Delta(g-2) = -4 \cdot 10^{-7} c_\beta \sigma f_b^2 \left(\frac{m_t}{M_c}\right)^2 , \ \sigma = \frac{f_\mu m_b}{f_b m_\mu}$$

electroweak precision tests

chiron exchange and mixing: compatible with LEP experiments for M_c > 300 GeV

rough estimate :

$$\Delta \hat{S} \approx -0.05 (m_t/M_c)^2$$

for $M_c = 1$ TeV:

$$\Delta \hat{S} \approx 1.4 \cdot 10^{-3}$$

composite scalars

two composite Higgs doublets expected
mass 400 -500 GeV
loop effects ?

mixing of chiral tensors with *o* - meson

$$\begin{split} \tilde{P}_{\nu\rho} &= \frac{\partial_{\nu}\partial_{\rho}}{\partial^{2}} , \ \tilde{P}_{\nu\rho}\tilde{P}^{\rho}_{\ \mu} = \tilde{P}_{\nu\mu} \\ &- \mathcal{L}_{4F2}^{(\rho)} = -\kappa^{(\rho)}\partial_{\nu}(\bar{\nu}_{L}\sigma^{\mu\nu}e_{R})(\bar{d}\gamma_{\mu}u) + c.c. \\ &\frac{\kappa^{(\rho)}q}{G_{F}} \sim \frac{\nu_{\rho}f_{e}g_{\rho}}{g^{3}}\frac{M_{W}^{3}M_{\pi}}{M_{ch}^{2}M_{\rho}^{2}} \end{split}$$

could contribute to anomaly in radiative pion decays

generation of light fermion masses

involves chiral couplings and chiron – gauge boson mixing

chiron – photon - mixing

effective tensor vertex of photon

$$\begin{split} \Gamma_{\gamma,\mathrm{ch1}} &= \int_p \int_q \alpha_{\gamma}(p,q) \left\{ \bar{e}_R(q+p) F_L \sigma^{\mu\nu} e_L(q) \right. \\ &\quad + \bar{d}_R(q+p) F_D \sigma^{\mu\nu} d_L(q) \right\} F_{\mu\nu}(p) + \mathrm{h.\,c.} \end{split}$$

contributes to g-2

determination of chiral couplings

$$\frac{m_{\mu}}{m_b} = 2 \cdot 10^{-3} f_{\mu} f_b \, \frac{\kappa_{\mu}}{\bar{\kappa}_{\mu}}$$

$$f_{\mu}f_b \approx 5 \frac{\bar{\kappa}_{\mu}}{\kappa_{\mu}}$$

restricts g-2

$$\Delta(g-2) = -\frac{8m_{\mu}^2}{H\kappa_{\mu}e^2m_{-}^2(0)} \approx -2.5 \cdot 10^{-6} \frac{\bar{H}\bar{\kappa}_{\mu}}{H} \frac{1TeV^2}{\kappa_{\mu}} \frac{1}{m_{-}^2(0)}$$

for characteristic value ...

$$\Delta(g-2) = 6 \cdot 10^{-9}$$

and neglecting chiron – mixing large chiron mass above LHC range

$$m_{-}(0) = 20TeV$$

conclusions

- chiral tensor model has good chances to be consistent
- mass generation needs to be understood quantitatively
- interesting solution of gauge hierarchy problem
- phenomenology needs to be explored !
- if quartic couplings play no major role:

less couplings than in standard model predictivity !

end

effective interactions from chiral tensor exchange

$$\begin{split} -\mathcal{L} &= (J^{+\mu})^{\dagger} S^{+}_{\mu} + (J^{-\mu})^{\dagger} S^{-}_{\mu} + h.c. \\ &+ (\partial^{\mu} S^{+\nu})^{*} \partial_{\mu} S^{+}_{\nu} + (\partial^{\mu} S^{-\nu})^{*} \partial_{\mu} S^{-}_{\nu} \\ &+ m^{2}_{+} (S^{\mu}_{+})^{*} S_{+\mu} + m^{2}_{-} (S^{\mu}_{-})^{*} S_{-\mu} \\ &+ \hat{m}^{2} ((S^{\mu}_{+})^{*} S_{-\mu} + (S^{\mu}_{-})^{*} S_{+\mu}) \end{split}$$

$$\begin{split} (J^{+\mu})^{\dagger} &= \epsilon_{+}\sqrt{\partial^{2}}W^{\mu*} + \frac{\partial_{\nu}}{\sqrt{\partial^{2}}}\bar{u}_{R}F_{U}\sigma^{\nu\mu}d_{L} \\ (J^{-\mu})^{\dagger} &= \epsilon_{-}\sqrt{\partial^{2}}W^{\mu*} \\ &+ \frac{\partial_{\nu}}{\sqrt{\partial^{2}}}(\bar{u}_{L}F_{D}^{\dagger}\sigma^{\nu\mu}d_{R} + \bar{\nu}_{L}F_{L}^{\dagger}\sigma^{\nu\mu}e_{R}) \end{split}$$

solve for S_µ in presence of other fields
 reinsert solution

general solution

$$-\mathcal{L}=-(J^{\beta\mu})^{\dagger}G^{\beta\alpha}J^{\alpha}_{\mu}$$

$$\begin{split} (J^{+\mu})^{\dagger} &= \epsilon_{+}\sqrt{\partial^{2}}W^{\mu*} + \frac{\partial_{\nu}}{\sqrt{\partial^{2}}}\bar{u}_{R}F_{U}\sigma^{\nu\mu}d_{L} \\ (J^{-\mu})^{\dagger} &= \epsilon_{-}\sqrt{\partial^{2}}W^{\mu*} \\ &+ \frac{\partial_{\nu}}{\sqrt{\partial^{2}}}(\bar{u}_{L}F_{D}^{\dagger}\sigma^{\nu\mu}d_{R} + \bar{\nu}_{L}F_{L}^{\dagger}\sigma^{\nu\mu}e_{R}) \end{split}$$

propagator for charged chiral tensors

$$\begin{split} G &= (-\partial^2 + m_{R1}^2)^{-1} (-\partial^2 + m_{R2}^2)^{-1} \\ & \begin{pmatrix} -\partial^2 + m_{-}^2 \ , -\hat{m}^2 \\ -\hat{m}^2 \ , -\partial^2 + m_{+}^2 \end{pmatrix} \end{split}$$

effective propagator correction

 $-\mathcal{L} = -\frac{1}{2}G^{(1)}j^{\dagger}_{\mu}j^{\mu} - \frac{1}{2}j^{\dagger}_{\mu}\vec{G}^{(3)}\vec{\tau}j^{\mu}$

$$= \frac{q^2}{2} |\varphi|^2 \{ G^{(1)}[|\nu_y|^2 Y^\mu Y_\mu + |\nu_w|^2 \vec{W}^\mu \vec{W}_\mu + |\nu_w|^2 \vec{W}^\mu \vec{W}_\mu \} \}$$

$$-(\nu_y \nu_w^* + \nu_y^* \nu_w) Y^{\mu} W_{3\mu}]$$

$$j_{\mu} = \sqrt{-q^2} (\nu_y^* Y_{\mu} \varphi + \nu_w^* \vec{W}_{\mu} \vec{\tau} \varphi)$$

 $|\varphi| = 174 \text{GeV}, \text{G}^{(1)} \approx \text{M}_{\text{c}}^{-2}$

 $|\nu\varphi| \approx 0.2m_t$

new four fermion interactions

$$\begin{split} -\mathcal{L}_{4Fch} &= -\{\bar{u}_R F_U \sigma^{\nu\mu} d_L\} G^{++}(-\partial^2) \\ & \tilde{P}_{\nu\rho} \{\bar{d}_L F_U^{\dagger} \sigma^{\rho} \ _{\mu} u_R\} \\ &- \{\bar{u}_L F_D^{\dagger} \sigma^{\nu\mu} d_R + \bar{\nu}_L F_L^{\dagger} \sigma^{\nu\mu} e_R\} G^{--}(-\partial^2) \\ & \tilde{P}_{\nu\rho} \{\bar{d}_R F_D \sigma^{\rho} \ _{\mu} u_L + \bar{e}_R F_L \sigma^{\rho} \ _{\mu} \nu_L\} \\ &- \{\bar{u}_R F_U \sigma^{\nu\mu} d_L\} G^{+-}(-\partial^2) \\ & \tilde{P}_{\nu\rho} \{\bar{d}_R F_D \sigma^{\rho} \ _{\mu} u_L + \bar{e}_R F_L \sigma^{\rho} \ _{\mu} \nu_L\} \\ &- \{\bar{u}_L F_D^{\dagger} \sigma^{\nu\mu} d_R + \bar{\nu}_L F_L^{\dagger} \sigma^{\nu\mu} e_R\} G^{-+}(-\partial^2) \\ & \tilde{P}_{\nu\rho} \{\bar{d}_L F_U^{\dagger} \sigma^{\rho} \ _{\mu} u_R\} \end{split}$$

typically rather small effect for lower generations more substantial for bottom, top !

mixing of charged spin one fields

$$-\mathcal{L}_{F\beta} = -2\sqrt{2}W_d^{-\mu}\sqrt{\partial^2} \left(\frac{\nu_{w+}\varphi_t^*}{\sqrt{Z_+}}S_{\mu}^{+,+} + \frac{\nu_{w-}\varphi_b^*}{\sqrt{Z_-}}S_{\mu}^{-,+}\right) + c.c.$$

$$\Gamma_{C}^{(2)} = \begin{pmatrix} q^{2} + m_{+}^{2}, & \hat{m}^{2}, & \varepsilon_{+}^{*}\sqrt{-q^{2}} \\ \hat{m}^{2}, & q^{2} + m_{-}^{2}, & \varepsilon_{-}^{*}\sqrt{-q^{2}} \\ \varepsilon_{+}\sqrt{-q^{2}}, & \varepsilon_{-}\sqrt{-q^{2}}, & q^{2} + \bar{M}_{w}^{2} \end{pmatrix}$$

modification of W-boson mass
 similar for Z – boson
 watch LEP – precision tests !

momentum dependent Weinberg angle

$$\frac{g^2}{M_W^2 + q^2} \rightarrow \frac{g^2}{\bar{M}_W^2 + q^2(1 + p_W(q^2))} = \frac{g_{eff}^2(q^2)}{M_W^2 + q^2}$$