Dark Energy and Neutrinos

Quintessence

C.Wetterich

A.Hebecker, M.Doran, M.Lilley, J.Schwindt,
C.Müller, G.Schäfer, E.Thommes,
R.Caldwell, M.Bartelmann, K.Kharwan, G.Robbers,
T.Dent, S.Steffen, L.Amendola, M.Baldi, N.Brouzakis, N.Tetradis,
D.Mota, V.Pettorino, T.Krüger, M.Neubert

What is our universe made of?

Dark Energy dominates the Universe

Energy - density in the Universe

 \equiv

Matter + Dark Energy

What is Dark Energy?

Composition of the universe

$$\Omega_{\rm b} = 0.045$$

$$\Omega_{\rm dm} = 0.225$$

$$\Omega_{\rm h} = 0.73$$

critical density

- Q_c = 3 H² M²
 critical energy density of the universe
 (M: reduced Planck-mass, H: Hubble parameter)
- $Ω_b = Q_b/Q_c$ $H = \dot{a}/a$ fraction in baryons energy density in baryons over critical energy density

Atoms: the dust in the Universe

Abell 2255 Cluster ~300 Mpc

$\Omega_{\rm b} = 0.045$

from
nucleosynthesis,
cosmic
background
radiation

Matter: Everything that clumps

Dark Matter

$$\square \Omega_{\rm m} = 0.27$$

total "matter"

- Most matter is dark!
- So far tested only through gravity
- Every local mass concentration gravitational potential
- Orbits and velocities of stars and galaxies measurement of gravitational potential
 - and therefore of local matter distribution

spatially flat universe

$$\Omega_{\text{tot}} = 1$$

theory (inflationary universe)

$$\Omega_{\text{tot}} = 1.0000....x$$

observation (WMAP)

$$\Omega_{\text{tot}} = 1.02 \ (0.02)$$

Wilkinson Microwave Anisotropy Probe

A partnership between NASA/GSFC and Princeton

Science Team:

NASA/GSFC

Michael Greason Bob Hill

Nils Odegard Janet Weiland

Brown

UCLA

UBC

Princeton Chris Barnes

Enchiro Komatsu Michael Nolta

Lyman Page Hiranya Peiris Licia Verde

mean values

$$\Omega_{\text{tot}} = 1.02$$

$$\Omega_{\rm tot} = 1.02$$
 $\Omega_{\rm m} = 0.27$

$$\Omega_{\rm b} = 0.045$$

$$\Omega_{\rm dm} = 0.225$$

Dark Energy

$$\Omega_{\rm m} + X = 1$$

$$\Omega_{\rm m}:27\%$$

h : homogenous , often Ω_{Λ} instead of $\Omega_{\rm h}$

Space between clumps is not empty:

Dark Energy!

Dark Energy density is the same at every point of space

"homogeneous "

No force in absence of matter – "In what direction should it draw?"

Predictions for dark energy cosmologies

The expansion of the Universe accelerates today!

Supernovae 1a Hubble diagram

Structure formation: One primordial fluctuation spectrum

CMB agrees with

Galaxy distribution

Lyman – α

and

Gravitational Lensing!

consistent cosmological model!

Composition of the Universe

$$\Omega_{\rm b} = 0.045$$

visible

clumping

$$\Omega_{\rm dm} = 0.22$$

invisible

clumping

$$\Omega_{\rm h} = 0.73$$

invisible

homogeneous

Dark Energy – a cosmic mystery

What is Dark Energy?

Cosmological Constant
or
Omintessence 2

Cosmological Constant - Einstein -

- Constant λ compatible with all symmetries
- No time variation in contribution to energy density

- Why so small? $\lambda/M^4 = 10^{-120}$
- Why important just today?

Cosm. Const. static

Quintessence dynamical

Cosmological mass scales

Energy density

$$\rho \sim (2.4 \times 10^{-3} \text{ eV})^{-4}$$

- Reduced Planck mass M=2.44×10 ²⁷ eV
- Newton's constant $G_N=(8\pi M^2)$

Only ratios of mass scales are observable!

homogeneous dark energy: $\rho_h/M^4 = 6.5 \cdot 10^{-121}$

matter: $\rho_{\rm m}/{\rm M}^4=3.5\ 10^{-121}$

Time evolution

 $\rho_r/M^4 \sim a^{-4} \sim t^{-2}$ radiation dominated universe

Huge age ⇒ small ratio

Same explanation for small dark energy?

Quintessence

Dynamical dark energy, generated by scalar field (cosmon)

Prediction:

homogeneous dark energy influences recent cosmology

- of same order as dark matter -

Original models do not fit the present observations modifications

Quintessence

Cosmon – Field $\varphi(x,y,z,t)$

similar to electric field, but no direction (scalar field)

Homogeneous und isotropic Universe : $\varphi(x,y,z,t) = \varphi(t)$

Potential und kinetic energy of the cosmon -field contribute to a dynamical energy density of the Universe!

Cosmon

- Scalar field changes its value even in the present cosmological epoch
- Potential und kinetic energy of cosmon contribute to the energy density of the Universe
- Time variable dark energy:

 oh(t) decreases with time!

Evolution of cosmon field

Field equations

$$\ddot{\phi} + 3H\dot{\phi} = -dV/d\phi$$

$$3M^2H^2 = V + \frac{1}{2}\dot{\phi}^2 + \rho$$

Potential $V(\varphi)$ determines details of the model

$$V(\varphi) = M^4 \exp(-\alpha \varphi/M)$$

for increasing φ the potential decreases towards zero!

Cosmon

□ Tiny mass

 $_{c}$ $_{c}$ $\sim H$ (depends on time!)

■ New long - range interaction

"Fundamental" Interactions

Strong, electromagnetic, weak interactions

gravitation cosmodynamics

On astronomical length scales:

graviton

+

cosmon

observation will decide!

Time dependence of dark energy

cosmological constant : $\Omega_h \sim t^2 \sim (1+z)^{-3}$

Cosmic Attractors

Solutions independent of initial conditions

typically V~t -2

$$\varphi \sim \ln (t)$$

 $\Omega_{\rm h} \sim {\rm const.}$

details depend on $V(\phi)$ or kinetic term

exponential potential constant fraction in dark energy

$$\Omega_{\rm h} = 3/\alpha^2$$

can explain order of magnitude of dark energy!

effects of early dark energy

- modifies cosmological evolution (CMB)
- slows down the growth of structure

observational bounds on $\Omega_{\rm h}$

realistic quintessence

fraction in dark energy has to increase in "recent time"!

Quintessence becomes important "today"

two key features

1) Exponential cosmon potential and scaling solution

$$V(\varphi) = M^4 \exp(-\alpha \varphi/M)$$

$$V(\varphi \to \infty) \to 0 !$$

2) Stop of cosmon evolution by cosmological trigger

coincidence problem

What is responsible for increase of Ω_h for z < 6?

Why now?

growing neutrino mass triggers transition to almost static dark energy

L.Amendola, M.Baldi,...

effective cosmological trigger for stop of cosmon evolution: neutrinos get non-relativistic

- this has happened recently!
- sets scales for dark energy!

cosmological selection

present value of dark energy density set by cosmological event:

neutrinos become non – relativistic

not given by ground state properties!

connection between dark energy and neutrino properties

$$[\rho_h(t_0)]^{\frac{1}{4}} = 1.07 \left(\frac{\gamma m_{\nu}(t_0)}{eV}\right)^{\frac{1}{4}} 10^{-3} eV$$

present dark energy density is determined by neutrino mass!

present equation of state given by neutrino mass!

$$w_0 \approx -1 + \frac{m_{\nu}(t_0)}{12 \text{eV}}$$

dark energy fraction determined by neutrino mass

$$\Omega_h(t_0) \approx \frac{\gamma m_{\nu}(t_0)}{16eV}$$

$$\gamma = -\frac{\beta}{\alpha}$$

constant neutrino - cosmon coupling β

$$\Omega_h(t_0) \approx -\frac{\epsilon}{\alpha} \, \frac{m_\nu(t_0)}{\bar{m}_\nu} \, \frac{m_\nu(t_0)}{16 eV}$$

variable neutrino - cosmon coupling

basic ingredient:

cosmon coupling to neutrinos

Cosmon coupling to neutrinos

can be large!

Fardon, Nelson, Weiner

- interesting effects for cosmology if neutrino mass is growing
- growing neutrinos can stop the evolution of the cosmon
- transition from early scaling solution to cosmological constant dominated cosmology

L.Amendola, M.Baldi, ...

crossover to dark energy dominated universe

starts at time when "neutrino force" becomes important for the evolution of the cosmon field

cosmological selection!

crossover from early scaling solution to effective cosmological constant

early scaling solution (tracker solution)

$$V(\varphi) = M^4 \exp\left(-\alpha \frac{\varphi}{M}\right)$$

$$\varphi = \varphi_0 + (2M/\alpha) \ln(t/t_0)$$

$$\Omega_{h,e} = \frac{n}{\alpha^2}$$

neutrino mass unimportant in early cosmology

growing neutrinos change cosmon evolution

$$\ddot{\varphi} + 3H\dot{\varphi} = -\frac{\partial V}{\partial \varphi} + \frac{\beta(\varphi)}{M}(\rho_{\nu} - 3p_{\nu}),$$

$$\beta(\varphi) = -M\frac{\partial}{\partial \varphi} \ln m_{\nu}(\varphi) = \frac{M}{\varphi - \varphi_{t}}$$

modification of conservation equation for neutrinos

$$\dot{\rho}_{\nu} + 3H(\rho_{\nu} + p_{\nu}) = -\frac{\beta(\varphi)}{M}(\rho_{\nu} - 3p_{\nu})\dot{\varphi}$$
$$= -\frac{\dot{\varphi}}{\varphi - \varphi_{t}}(\rho_{\nu} - 3p_{\nu})$$

effective stop of cosmon evolution

cosmon evolution almost stops once

- neutrinos get non –relativistic
- ß gets large

$$\ddot{\varphi} + 3H\dot{\varphi} = -\frac{\partial V}{\partial \varphi} + \frac{\beta(\varphi)}{M}(\rho_{\nu} - 3p_{\nu})$$

$$\beta(\varphi) = -M \frac{\partial}{\partial \varphi} \ln m_{\nu}(\varphi) = \frac{M}{\varphi - \varphi_t}$$

$$m_{\nu}(\varphi) = \frac{\beta(\varphi)}{\epsilon} \bar{m}_{\nu}$$

This always happens for $\phi \rightarrow \phi_t$!

effective cosmological trigger for stop of cosmon evolution: neutrinos get non-relativistic

- this has happened recently!
- sets scales for dark energy!

dark energy fraction determined by neutrino mass

$$\Omega_h(t_0) \approx \frac{\gamma m_{\nu}(t_0)}{16eV}$$

$$\gamma = -\frac{\beta}{\alpha}$$

constant neutrino - cosmon coupling β

$$\Omega_h(t_0) \approx -\frac{\epsilon}{\alpha} \, \frac{m_\nu(t_0)}{\bar{m}_\nu} \, \frac{m_\nu(t_0)}{16 eV}$$

variable neutrino - cosmon coupling

cosmon evolution

Hubble parameter

as compared to ΛCDM

Hubble parameter (z < z_c)

$$H^{2} = \frac{1}{3M^{2}} \left\{ V_{t} + \rho_{m,0} a^{-3} + 2\tilde{\rho}_{\nu,0} a^{-\frac{3}{2}} \right\}$$

only small difference from $\Lambda CDM!$

Can time evolution of neutrino mass be observed?

 Experimental determination of neutrino mass may turn out higher than upper bound in model for cosmological constant

(KATRIN, neutrino-less double beta decay)

GERDA

neutrino fluctuations

neutrino structures become nonlinear at z~1 for supercluster scales D.Mota, G.Robbers, V.Pettorino, ...

stable neutrino-cosmon lumps exist

N.Brouzakis, N.Tetradis,...

Conclusions

- Cosmic event triggers qualitative change in evolution of cosmon
- Cosmon stops changing after neutrinos become non-relativistic
- Explains why now
- Cosmological selection
- Model can be distinguished from cosmological constant

How to distinguish Q from Λ ?

- A) Measurement $\Omega_h(z) \iff H(z)$
 - i) $\Omega_h(z)$ at the time of structure formation , CMB emission or nucleosynthesis
 - ii) equation of state $w_h(today) > -1$
- B) Time variation of fundamental "constants"
- C) Apparent violation of equivalence principle
- D) Possible coupling between Dark Energy and Dark Matter

Quintessence and time variation of fundamental constants

Generic prediction

Strength unknown

Strong, electromagnetic, weak interactions

C.Wetterich , Nucl.Phys.B302,645(1988)

gravitation cosmodynamics

Time varying constants

- It is not difficult to obtain quintessence potentials from higher dimensional or string theories
- Exponential form rather generic (after Weyl scaling)
- But most models show too strong time dependence of constants!

Are fundamental "constants" time dependent?

Fine structure constant α (electric charge)

Ratio electron mass to proton mass

Ratio nucleon mass to Planck mass

Quintessence and Time dependence of "fundamental constants"

■ Fine structure constant depends on value of cosmon field : $\alpha(\phi)$

(similar in standard model: couplings depend on value of Higgs scalar field)

Time evolution of φ \Longrightarrow Time evolution of α

Jordan,...

baryons:

the matter of stars and humans

$$\Omega_{\rm b} = 0.045$$

Abundancies of primordial light elements from nucleosynthesis

primordial abundances for three GUT models

present observations: 1σ

T.Dent, S.Stern,...

three GUT models

- unification scale ~ Planck scale
- 1) All particle physics scales $\sim \Lambda_{\rm QCD}$
- 2) Fermi scale and fermion masses ~ unification scale
- \blacksquare 3) Fermi scale varies more rapidly than $\Lambda_{\rm QCD}$

 $\Delta\alpha/\alpha \approx 4~10^{-4}$ allowed for GUT 1 and 3 , larger for GUT 2

 $\Delta \ln(M_n/M_p) \approx 40 \Delta \alpha/\alpha \approx 0.015 \text{ allowed}$

Time variation of coupling constants must be tiny —

would be of very high significance!

Possible signal for Quintessence

Summary

$$_{0} \Omega_{h} = 0.73$$

• Q/Λ : dynamical und static dark energy will be distinguishable

- o growing neutrino mass can explain why now problem
- Q: time varying fundamental coupling "constants" violation of equivalence principle

Are dark energy and dark matter related?

Can Quintessence be explained in a fundamental unified theory?

Quintessence and solution of cosmological constant problem should be related!

Cosmodynamics

Cosmon mediates new long-range interaction

Range: size of the Universe – horizon

Strength: weaker than gravity

photon electrodynamics

graviton gravity

cosmon cosmodynamics

Small correction to Newton's law

"Fifth Force"

Mediated by scalar field

R.Peccei, J.Sola, C.Wetterich, Phys.Lett.B195,183(1987)

- Coupling strength: weaker than gravity
 (nonrenormalizable interactions ~ M⁻²)
- Composition dependence
 - violation of equivalence principle
- Quintessence: connected to time variation of fundamental couplings

C.Wetterich , Nucl. Phys. B302,645(1988)

Violation of equivalence principle

Different couplings of cosmon to proton and neutron

Differential acceleration

"Violation of equivalence principle"

only apparent: new "fifth force"!

Differential acceleration

Two bodies with equal mass experience a different acceleration!

$$\eta = (a_1 - a_2) / (a_1 + a_2)$$

bound : $\eta < 3 \ 10^{-14}$

Cosmon coupling to atoms

- **■** Tiny !!!
- Substantially weaker than gravity.
- Non-universal couplings bounded by tests of equivalence principle.
- Universal coupling bounded by tests of Brans-Dicke parameter ω in solar system.
- Only very small influence on cosmology.

(All this assumes validity of linear approximation)

Apparent violation of equivalence principle

and

time variation of fundamental couplings

measure both the

cosmon — coupling to ordinary matter

Differential acceleration η

For unified theories (GUT):

$$\eta = -1.75 \ 10^{-2} \Delta R_z \left(\frac{\partial \ln \alpha}{\partial z}\right)^2 \frac{1 + \tilde{Q}}{\Omega_h (1 + w_h)}$$

$$\Delta R_z = rac{\Delta Z}{Z+N} pprox exttt{0.1}$$
 η=Δa/2a

Q: time dependence of other parameters

Link between time variation of α

and violation of equivalence principle

typically: $\eta = 10^{-14}$

if time variation of α near Oklo upper bound

to be tested (MICROSCOPE, ...)

Cosmon and fundamental mass scale

- Assume all mass parameters are proportional to scalar field χ (GUTs, superstrings,...)
- \blacksquare $M_p \sim \chi$, $m_{proton} \sim \chi$, $\Lambda_{QCD} \sim \chi$, $M_W \sim \chi$,...

- χ may evolve with time : cosmon
- m_n/M : (almost) constant <u>observation</u>!

Only ratios of mass scales are observable

Equation of state

$$p=T-V$$
 $\varrho=T+V$

pressure

energy density

kinetic energy

$$T = \frac{1}{2}\dot{\phi}^2$$

Equation of state

$$w = \frac{p}{\rho} = \frac{T - V}{T + V}$$

Depends on specific evolution of the scalar field

Negative pressure

$$\mathbf{w} < 0$$

 Ω_h increases (with decreasing z)

late universe with small radiation component:

$$w_h = \frac{1}{3\Omega_h(1-\Omega_h)} \frac{\partial \Omega_h}{\partial \ln(1+z)}$$

- w < -1/3

expansion of the Universe is accelerating

 $\mathbf{v} = -1$

cosmological constant

A few references

- C.Wetterich , Nucl.Phys.B302,668(1988) , received 24.9.1987
- P.J.E.Peebles,B.Ratra, Astrophys.J.Lett.325,L17(1988), received 20.10.1987
- B.Ratra, P.J.E. Peebles , Phys. Rev. D37, 3406(1988) , received 16.2.1988
- J.Frieman,C.T.Hill,A.Stebbins,I.Waga , Phys.Rev.Lett.75,2077(1995)
- P.Ferreira, M.Joyce, Phys.Rev.Lett.79,4740(1997)
- C. Wetterich, Astron. Astrophys. 301, 321 (1995)
- P. Viana, A. Liddle, Phys. Rev. D57,674(1998)
- E.Copeland, A.Liddle, D.Wands, Phys. Rev. D57, 4686 (1998)
- R.Caldwell,R.Dave,P.Steinhardt , Phys.Rev.Lett.80,1582(1998)
- P.Steinhardt, L. Wang, I. Zlatev, Phys. Rev. Lett. 82,896 (1999)

varying neutrino – cosmon coupling

- specific model
- can naturally explain why neutrino cosmon coupling is much larger than atom – cosmon coupling

neutrino mass

$$M_{\nu} = M_D M_R^{-1} M_D^T + M_L$$

$$M_L = h_L \gamma \frac{d^2}{M_t^2}$$

seesaw and cascade mechanism

triplet expectation value ~ doublet squared

$$m_{\nu} = \frac{h_{\nu}^2 d^2}{m_R} + \frac{h_L \gamma d^2}{M_t^2}$$

omit generation structure

cascade mechanism

$$U = U_0(\varphi) + \frac{\lambda}{2}(d^2 - d_0^2)^2 + \frac{1}{2}M_t^2(\varphi)t^2 - \gamma d^2t$$

triplet expectation value $\sim \gamma \frac{d^2}{M_c^2}$

$$\gamma \frac{d^2}{M_t^2}$$

M.Magg, ... G.Lazarides, Q.Shafi, ...

$$M_t^2(\varphi) = \bar{M}_t^2 \left[1 - \exp\left(-\frac{\epsilon}{M}(\varphi - \varphi_t)\right) \right]$$

varying neutrino mass

$$M_t^2 = c_t M_{GUT}^2 \left[1 - \frac{1}{\tau} \exp\left(-\epsilon \frac{\varphi}{M}\right) \right]$$

 $\epsilon \approx -0.05$

triplet mass depends on cosmon field φ

$$m_{\nu}(\varphi) = \bar{m}_{\nu} \left\{ 1 - \exp\left[-\frac{\epsilon}{M} (\varphi - \varphi_t) \right] \right\}^{-1}$$

--> neutrino mass depends on φ

"singular" neutrino mass

$$M_t^2 = c_t M_{GUT}^2 \left[1 - \frac{1}{\tau} \exp\left(-\epsilon \frac{\varphi}{M}\right) \right]$$

triplet mass vanishes for $\phi \rightarrow \phi_t$

$$\frac{\varphi_t}{M} = -\frac{\ln \tau}{\epsilon}$$

$$m_{\nu}(\varphi) = \frac{\bar{m}_{\nu}M}{\epsilon(\varphi - \varphi_t)}$$

 \longrightarrow neutrino mass diverges for $\varphi \rightarrow \varphi_t$

strong effective neutrino – cosmon coupling for $\phi \rightarrow \phi_t$

$$\beta(\varphi) = -M \frac{\partial}{\partial \varphi} \ln m_{\nu}(\varphi) = \frac{M}{\varphi - \varphi_t}$$

oscillating neutrino mass

neutrino fluctuations

- time when neutrinos become non relativistic
- sets free streaming scale

$$a_R = \left(\frac{\tilde{m}_{\nu}(t_0)}{3T_{\nu,0}}\right)^{-\frac{2}{5}} = 0.05 \left(\frac{\tilde{m}_{\nu}(t_0)}{eV}\right)^{-2/5}$$

■ neutrino structures become nonlinear at z~1 for supercluster scales

D.Mota, G.Robbers, V.Pettorino, ...

stable neutrino-cosmon lumps exist

N.Brouzakis, N.Tetradis,...

picture of the big bang

Mean values WMAP 2003

$$\Omega_{\rm tot} = 1.02$$

$$\Omega_{\rm m} = 0.27$$

$$2_{\rm b} = 0.045$$

$$\Omega_{\rm dm} = 0.225$$

$$\Omega_{\text{tot}} = 1$$

WMAP 2006

Polarization

Power spectrum

Structure formation:

One primordial

fluctuation-spectrum

Baryon - Peak

galaxy – correlation – function

baryon acoustic peak

