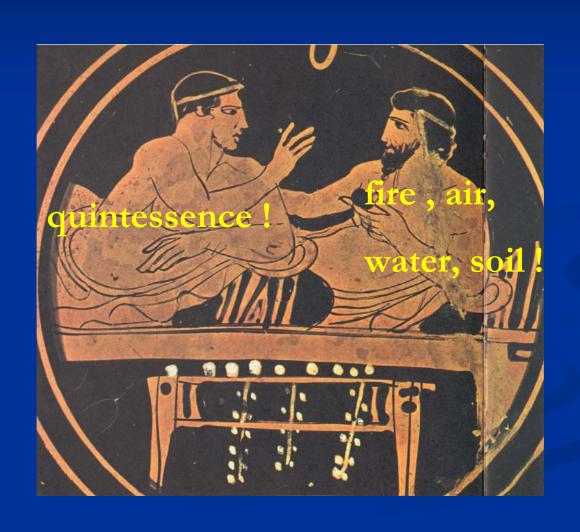

Growing neutrinos and cosmological selection

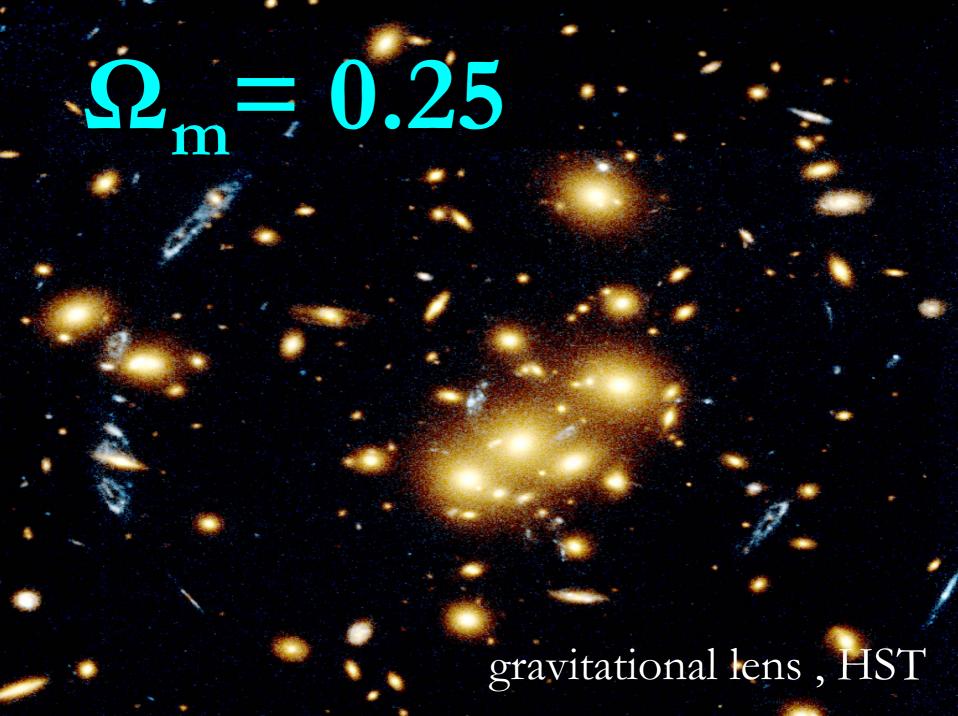


Quintessence

C.Wetterich

A.Hebecker, M.Doran, M.Lilley, J.Schwindt, C.Müller, G.Schäfer, E.Thommes, R.Caldwell, M.Bartelmann, K.Kharwan, G.Robbers, T.Dent, S.Steffen, L.Amendola, M.Baldi

What is our universe made of?


Dark Energy dominates the Universe

Energy - density in the Universe

=

Matter + Dark Energy

25 % + 75 %

Wilkinson Microwave Anisotropy Probe

A partnership between NASA/GSFC and Princeton

Science Team:

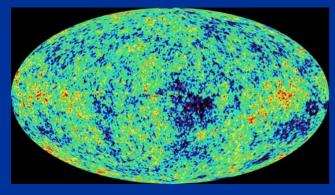
NASA/GSFC

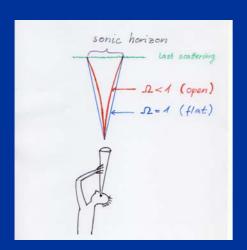
Michael Greason Bob Hill

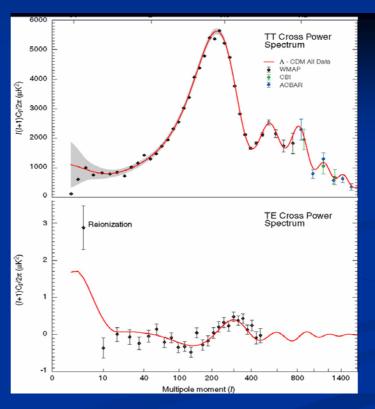
Nils Odegard Janet Weiland

Brown

Chicago UBC


UCLA




Princeton

Chris Barnes Enchiro Komatsu Michael Nolta

Lyman Page Hiranya Peiris Licia Verde

mean values

$$\Omega_{\text{tot}} = 1.02$$

$$\Omega_{\rm tot} = 1.02$$
 $\Omega_{\rm m} = 0.27$

$$\Omega_{\rm b} = 0.045$$

$$\Omega_{\rm dm} = 0.225$$

Matter: everything that clumps

Dark Energy density is the same at every point of space

" homogeneous "

Space between clumps is not empty

Composition of the Universe

$$\Omega_{\rm b} = 0.045$$

visible

clumping

$$\Omega_{\rm dm} = 0.2$$

invisible

clumping

$$\Omega_{\rm h} = 0.75$$

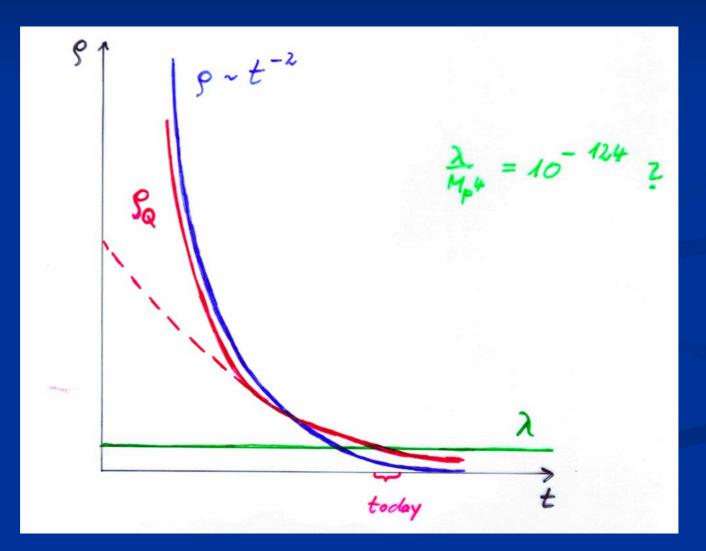
invisible

homogeneous

What is Dark Energy?

Cosmological Constant or Quintessence?

Cosmological Constant - Einstein -


- Constant λ compatible with all symmetries
- No time variation in contribution to energy density

Why so small? $\lambda/M^4 = 10^{-120}$

Why important just today?

Cosm. Const. static

Quintessence dynamical

Cosmological mass scales

Energy density

$$\rho \sim (2.4 \times 10^{-3} \text{ eV})^{-4}$$

- Reduced Planck mass M=2.44×10¹⁸GeV
- Newton's constant $G_N=(8\pi M^2)$

Only ratios of mass scales are observable!

homogeneous dark energy: $\rho_h/M^4 = 6.5 \cdot 10^{-121}$

matter: $\rho_{\rm m}/{\rm M}^4=3.5\ 10^{-121}$

Time evolution

 $\rho_r/M^4 \sim a^{-4} \sim t^{-2}$ radiation dominated universe

Huge age ⇒ small ratio

Same explanation for small dark energy?

Quintessence

Dynamical dark energy, generated by scalar field

(cosmon)

C.Wetterich, Nucl. Phys. B302(1988)668, 24.9.87 P.J.E. Peebles, B.Ratra, ApJ. Lett. 325(1988)L17, 20.10.87

Prediction:

homogeneous dark energy influences recent cosmology

- of same order as dark matter -

Original models do not fit the present observations modifications

Quintessence

Cosmon – Field $\varphi(x,y,z,t)$

Homogeneous und isotropic Universe : $\varphi(x,y,z,t) = \varphi(t)$

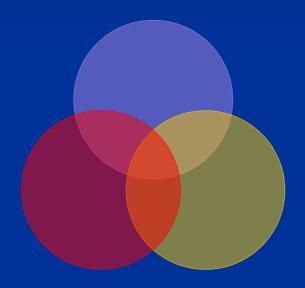
Potential und kinetic energy of the cosmon -field contribute to a dynamical energy density of the Universe!

Cosmon

- Scalar field changes its value even in the present cosmological epoch
- Potential und kinetic energy of cosmon contribute to the energy density of the Universe
- □ Time variable dark energy :

 oh(t) decreases with time!

Cosmon


■ Tiny mass

 $-m_c \sim H$

■ New long - range interaction

"Fundamental" Interactions

Strong, electromagnetic, weak interactions

gravitation cosmodynamics

On astronomical length scales:

graviton

+

cosmon

Evolution of cosmon field

Field equations

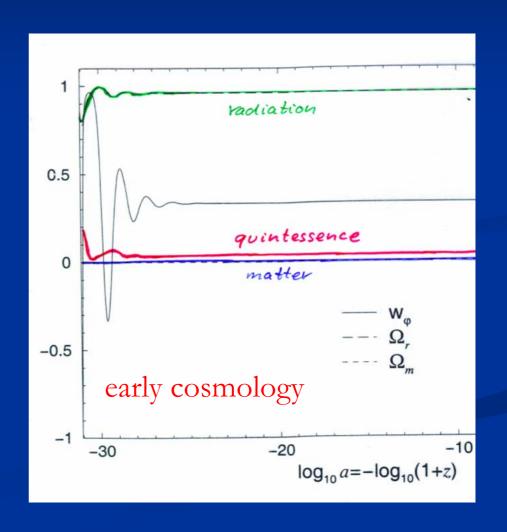
$$\ddot{\phi} + 3H\dot{\phi} = -dV/d\phi$$

$$3M^2H^2 = V + \frac{1}{2}\dot{\phi}^2 + \rho$$

Potential V(ϕ) determines details of the model e.g. V(ϕ) =M⁴ exp(- $\alpha\phi/M$)

for increasing φ the potential decreases towards zero!

Cosmic Attractors


Solutions independent of initial conditions

typically V~t -2

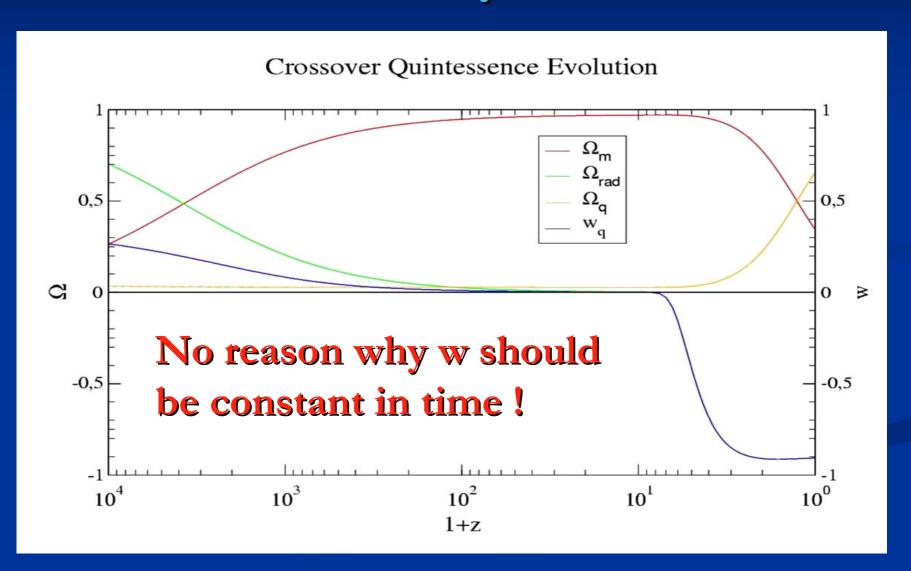
$$\varphi \sim \ln (t)$$

 $\Omega_{\rm h} \sim {
m const.}$

details depend on $V(\phi)$ or kinetic term

exponential potential constant fraction in dark energy

$$\Omega_{\rm h} = n/\alpha^2$$


can explain order of magnitude of dark energy!

realistic quintessence

fraction in dark energy has to increase in "recent time"!

cosmic coincidence

Quintessence becomes important "today"

coincidence problem

What is responsible for increase of Ω_h for z < 6?

a) Properties of cosmon potential or kinetic term

Late quintessence

- w close to -1
- Ω_h negligible in early cosmology

needs tiny parameter,
 similar to cosmological
 constant

Early quintessence

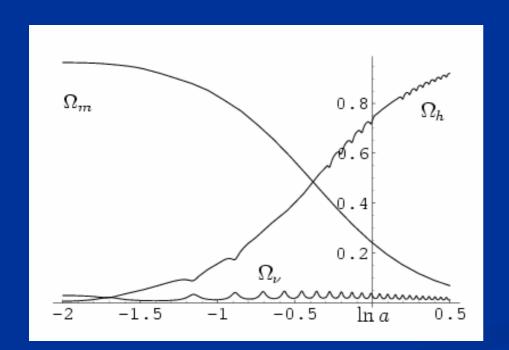
- \square $\Omega_{\rm h}$ changes only modestly
- w changes in time

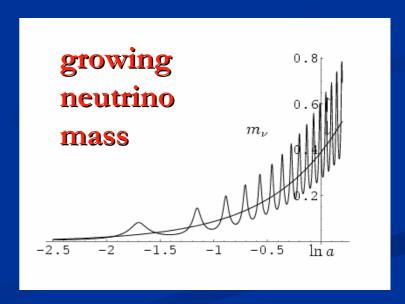
transition

- special feature in cosmon potential or kinetic term becomes important "now"
- tuning at ‰ level

b) Quintessence reacts to some special event in cosmology

Onset of matter dominance Appearance of non-linear structure


K- essence


Amendariz-Picon, Mukhanov, Steinhardt Back-reaction effect

needs higher derivative kinetic term

needs coupling between
Dark Matter and
Dark Energy

growing neutrino mass triggers transition to almost static dark energy

L.Amendola, M.Baldi, ...

connection between dark energy and neutrino properties

$$[\rho_h(t_0)]^{\frac{1}{4}} = 1.07 \left(\frac{\gamma m_{\nu}(t_0)}{eV}\right)^{\frac{1}{4}} 10^{-3} eV$$

present dark energy density given by neutrino mass

present equation of state given by neutrino mass!

$$w_0 \approx -1 + \frac{m_{\nu}(t_0)}{12 \text{eV}}$$

dark energy fraction determined by neutrino mass

$$\Omega_h(t_0) \approx \frac{\gamma m_{\nu}(t_0)}{16eV}$$

$$\gamma = 1 - \frac{\beta}{\alpha}$$

constant neutrino - cosmon coupling β

$$\Omega_h(t_0) \approx -\frac{\epsilon}{\alpha} \, \frac{m_\nu(t_0)}{\bar{m}_\nu} \, \frac{m_\nu(t_0)}{16 eV}$$

variable neutrino - cosmon coupling

basic ingredient:

cosmon coupling to neutrinos

Cosmon coupling to atoms

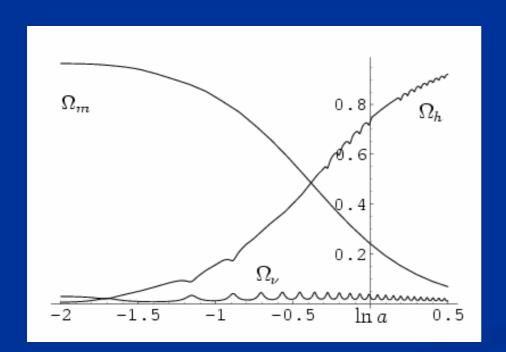
- **■** Tiny !!!
- Substantially weaker than gravity.
- Non-universal couplings bounded by tests of equivalence principle.
- Universal coupling bounded by tests of Brans-Dicke parameter ω in solar system.
- Only very small influence on cosmology.

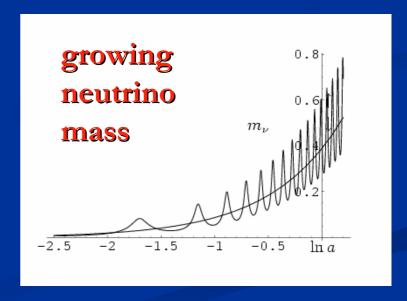
Cosmon coupling to Dark Matter

- Only bounded by cosmology
- Substantial coupling possible
- Can modify scaling solution and late cosmology
- Role in clustering of extended objects?

L. Amendola

Cosmon coupling to neutrinos


can be large!


Fardon, Nelson, Weiner

- interesting effects for cosmology if neutrino mass is growing
- growing neutrinos can stop the evolution of the cosmon
- transition from early scaling solution to cosmological constant dominated cosmology

L.Amendola, M.Baldi, ...

growing neutrino mass triggers transition to almost static dark energy

cosmological selection

 present value of dark energy density set by cosmological event

(neutrinos become non – relativistic)

not given by ground state properties!

growing neutrinos

end of matter domination

growing mass of neutrinos

at some moment energy density of neutrinos becomes more important than energy density of dark matter

- end of matter dominated period
- similar to transition from radiation domination to matter domination
- this transition happens in the recent past

neutrino mass

$$M_{\nu} = M_D M_R^{-1} M_D^T + M_L$$

 $M_L = h_L \gamma \frac{d^2}{M_t^2}$

seesaw and cascade mechanism

triplet expectation value ~ doublet squared

$$m_{\nu} = \frac{h_{\nu}^2 d^2}{m_R} + \frac{h_L \gamma d^2}{M_t^2}$$

omit generation structure

cascade mechanism

$$U = U_0(\varphi) + \frac{\lambda}{2}(d^2 - d_0^2)^2 + \frac{1}{2}M_t^2(\varphi)t^2 - \gamma d^2t$$

triplet expectation value $\sim \gamma \frac{d^2}{M_c^2}$

$$\gamma \frac{d^2}{M_t^2}$$

M.Magg, ... G.Lazarides, Q.Shafi, ...

$$M_t^2(\varphi) = \bar{M}_t^2 \left[1 - \exp\left(-\frac{\epsilon}{M}(\varphi - \varphi_t)\right) \right]$$

varying neutrino mass

$$M_t^2 = c_t M_{GUT}^2 \left[1 - \frac{1}{\tau} \exp\left(-\epsilon \frac{\varphi}{M}\right) \right]$$

 $\varepsilon \approx -0.05$

triplet mass depends on cosmon field φ

$$m_{\nu}(\varphi) = \bar{m}_{\nu} \left\{ 1 - \exp\left[-\frac{\epsilon}{M} (\varphi - \varphi_t) \right] \right\}^{-1}$$

--> neutrino mass depends on φ

singular neutrino mass

$$M_t^2 = c_t M_{GUT}^2 \left[1 - \frac{1}{\tau} \exp\left(-\epsilon \frac{\varphi}{M}\right) \right]$$

$$\frac{\varphi_t}{M} = -\frac{\ln \tau}{\epsilon}$$

triplet mass vanishes for $\varphi \rightarrow \varphi_t$

$$m_{\nu}(\varphi) = \frac{\bar{m}_{\nu}M}{\epsilon(\varphi - \varphi_t)}$$

 \longrightarrow neutrino mass diverges for $\varphi \rightarrow \varphi_t$

early scaling solution (tracker solution)

$$V(\varphi) = M^4 \exp\left(-\alpha \frac{\varphi}{M}\right)$$

$$\varphi = \varphi_0 + (2M/\alpha) \ln(t/t_0)$$

$$\Omega_{h,e} = \frac{n}{\alpha^2}$$

neutrino mass unimportant in early cosmology

growing neutrinos change cosmon evolution

$$\ddot{\varphi} + 3H\dot{\varphi} = -\frac{\partial V}{\partial \varphi} + \frac{\beta(\varphi)}{M}(\rho_{\nu} - 3p_{\nu}),$$

$$\beta(\varphi) = -M\frac{\partial}{\partial \varphi} \ln m_{\nu}(\varphi) = \frac{M}{\varphi - \varphi_{t}}$$

modification of conservation equation for neutrinos

$$\dot{\rho}_{\nu} + 3H(\rho_{\nu} + p_{\nu}) = -\frac{\beta(\varphi)}{M}(\rho_{\nu} - 3p_{\nu})\dot{\varphi}$$
$$= -\frac{\dot{\varphi}}{\varphi - \varphi_{t}}(\rho_{\nu} - 3p_{\nu})$$

effective stop of cosmon evolution

cosmon evolution almost stops once

- neutrinos get non –relativistic
- ß gets large

$$\ddot{\varphi} + 3H\dot{\varphi} = -\frac{\partial V}{\partial \varphi} + \frac{\beta(\varphi)}{M}(\rho_{\nu} - 3p_{\nu})$$

$$\beta(\varphi) = -M \frac{\partial}{\partial \varphi} \ln m_{\nu}(\varphi) = \frac{M}{\varphi - \varphi_t}$$

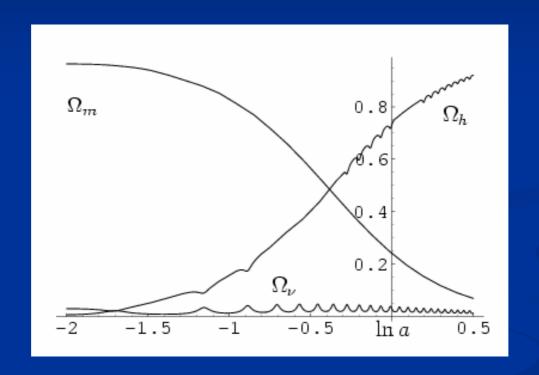
$$m_{\nu}(\varphi) = \frac{\beta(\varphi)}{\epsilon} \bar{m}_{\nu}$$

This always happens for $\phi \rightarrow \phi_{t}$!

effective cosmological trigger for stop of cosmon evolution: neutrinos get non-relativistic

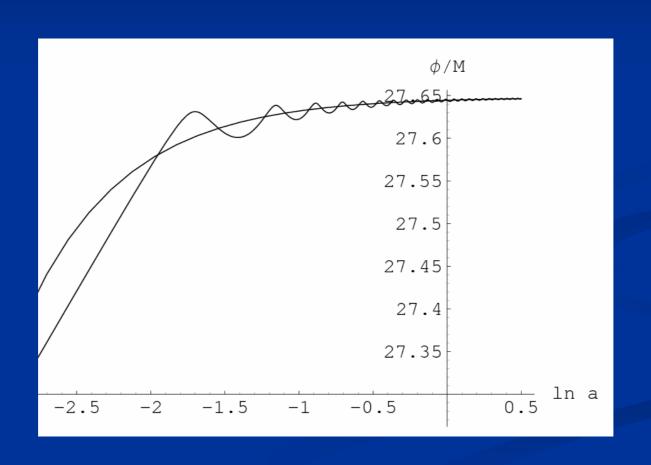
- this has happened recently!
- sets scales for dark energy!

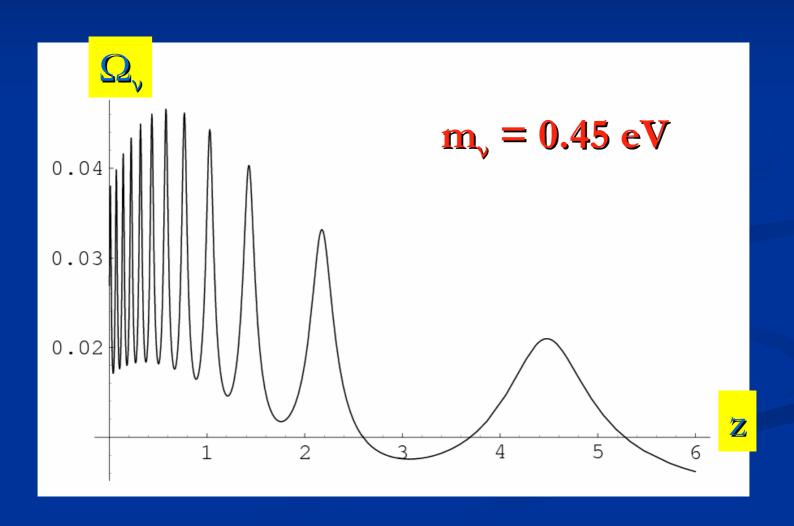
effective cosmological constant at late time


$$V_t = M^4 \exp\left(-\alpha \frac{\varphi_t}{M}\right)$$

realistic value for $\alpha \varphi_{+} / M \approx 276$

$$\epsilon = -\frac{\alpha \ln \tau}{276}$$


crossover to dark energy dominated universe

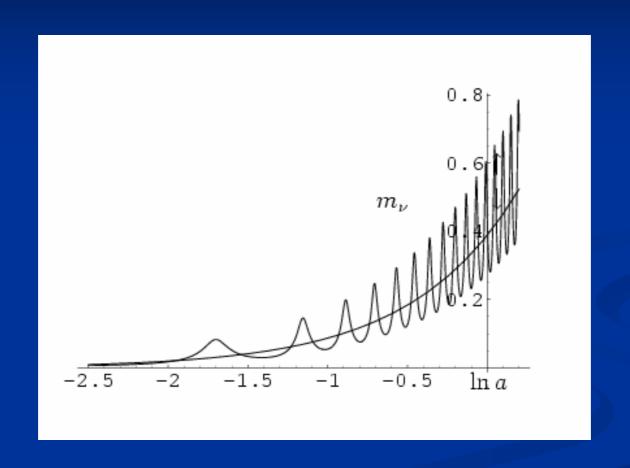

starts at time when "neutrino force" becomes important for the evolution of the cosmon field

cosmological selection!

cosmon evolution

neutrino fraction remains small

equation of state



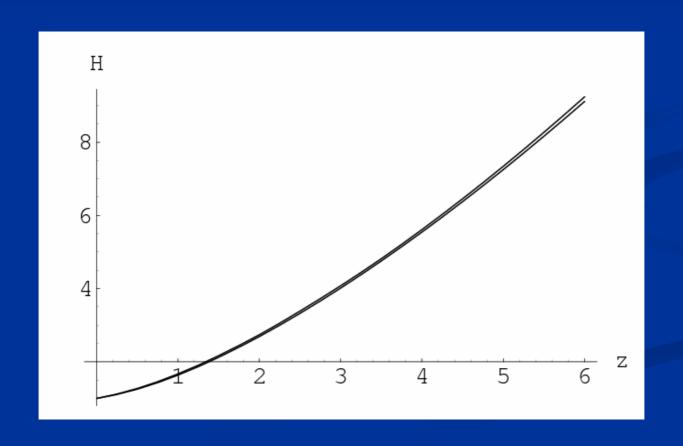
$$w = \frac{T - V + w_{\nu} \rho_{\nu}}{T + V + \rho_{\nu}} \approx -1 + \frac{\rho_{\nu}}{V} \approx -1 + \frac{\Omega_{\nu}}{\Omega_{h}}$$

present equation of state given by neutrino mass!

$$w_0 \approx -1 + \frac{m_{\nu}(t_0)}{12 \text{eV}}$$

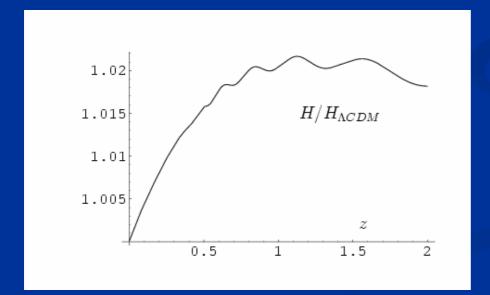
oscillating neutrino mass

crossing time


from matching between early solution and late solution

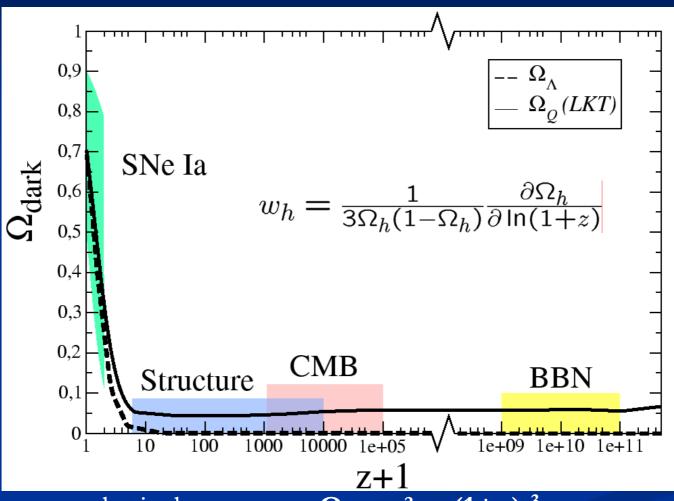
$$V_t \approx V(t_c) \approx \frac{3}{2} \Omega_{h,e} M^2 H^2(t_c)$$
$$= \frac{9}{2\alpha^2} M^2 H^2(t_c) = \frac{2M^2}{\alpha^2 t_c^2}$$

$$t_c^2 H_0^2 = \frac{2}{3\Omega_{h,0}\alpha^2} \approx \frac{8}{9\alpha^2}$$


Hubble parameter

as compared to ΛCDM

Hubble parameter (z < z_c)


$$H^{2} = \frac{1}{3M^{2}} \left\{ V_{t} + \rho_{m,0} a^{-3} + 2\tilde{\rho}_{\nu,0} a^{-\frac{3}{2}} \right\}$$

only small difference from $\Lambda CDM!$

How can quintessence be distinguished from a cosmological constant?

Time dependence of dark energy

cosmological constant : $\Omega_h \sim t^2 \sim (1+z)^{-3}$

small early and large present dark energy

fraction in dark energy has substantially increased since end of structure formation

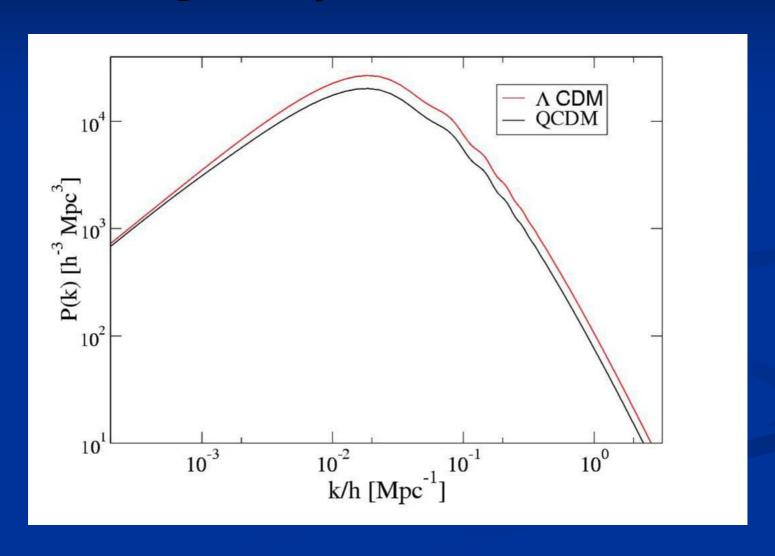
expansion of universe accelerates in present epoch

$$w_h = \frac{1}{3\Omega_h(1-\Omega_h)} \frac{\partial \Omega_h}{\partial \ln(1+z)}$$

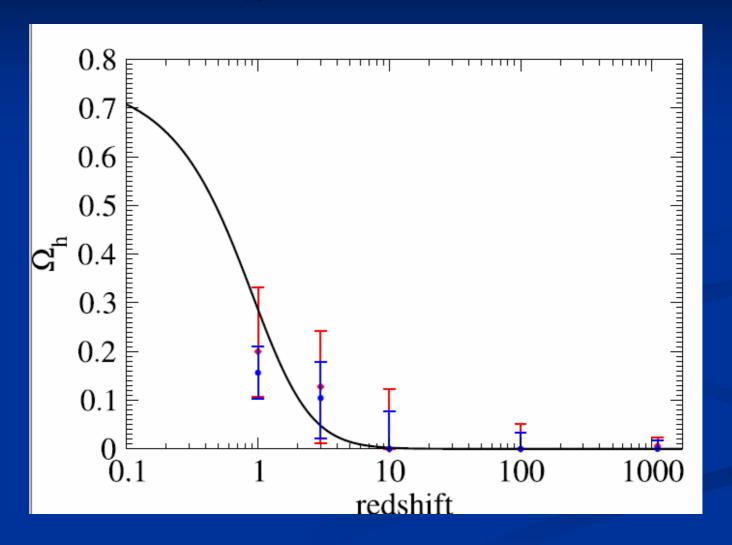
effects of early dark energy

- modifies cosmological evolution (CMB)
- slows down the growth of structure

Growth of density fluctuations


■ Matter dominated universe with constant Ω_h :

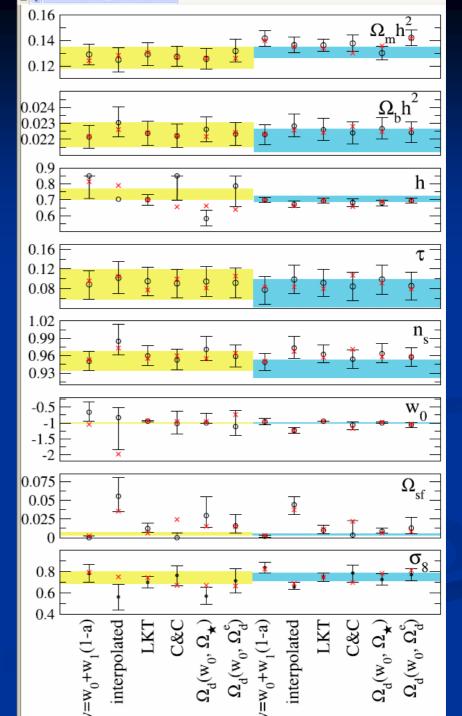
$$\Delta
ho \sim a^{1-\frac{\epsilon}{2}} \; , \; \epsilon = \frac{5}{2} (1 - \sqrt{1 - \frac{24}{25}\Omega_h})$$


P.Ferreira, M.Joyce

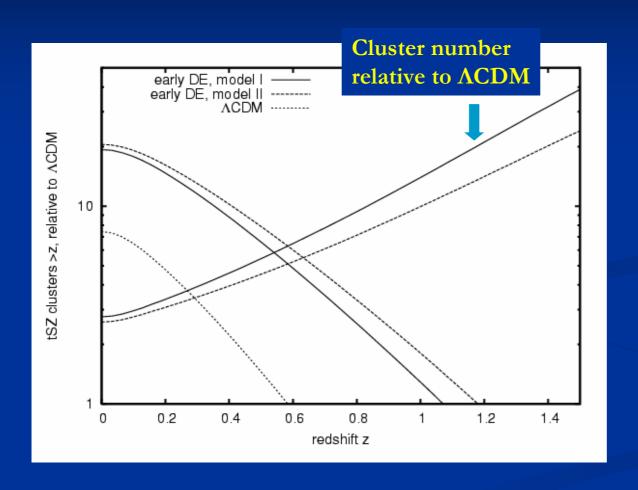
- Dark energy slows down structure formation
 - $\implies \Omega_h < 10\%$ during structure formation

Early quintessence slows down the growth of structure

interpolation of $\Omega_{ m h}$



G.Robbers, M.Doran,...


bounds on
Early Dark Energy
after WMAP'06

G.Robbers, M.Doran, ...

Little Early Dark Energy can make large effect! Non – linear enhancement

Two models with 4% Dark Energy during structure formation

Fixed σ₈ (normalization dependence!)

More clusters at high redshift!

Bartelmann, Doran, ...

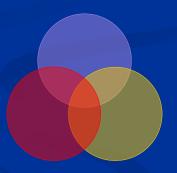
How to distinguish Q from Λ ?

- A) Measurement $\Omega_h(z) \iff H(z)$
 - i) $\Omega_h(z)$ at the time of structure formation , CMB emission or nucleosynthesis
 - ii) equation of state $w_h(today) > -1$
- B) Time variation of fundamental "constants"
- C) Apparent violation of equivalence principle
- D) Possible coupling between Dark Energy and Dark Mater

Cosmodynamics

Cosmon mediates new long-range interaction

Range: size of the Universe – horizon

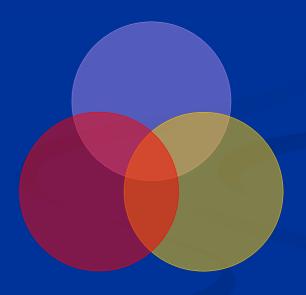

Strength: weaker than gravity

photon electrodynamics

graviton gravity

cosmon cosmodynamics

Small correction to Newton's law



Quintessence and time variation of fundamental constants

Generic prediction

Strength unknown

C.Wetterich , Nucl.Phys.B302,645(1988) Strong, electromagnetic, weak interactions

gravitation cosmodynamics

Time varying constants

- It is not difficult to obtain quintessence potentials from higher dimensional or string theories
- Exponential form rather generic (after Weyl scaling)
- But most models show too strong time dependence of constants!

Are fundamental "constants" time dependent?

Fine structure constant α (electric charge)

Ratio electron mass to proton mass

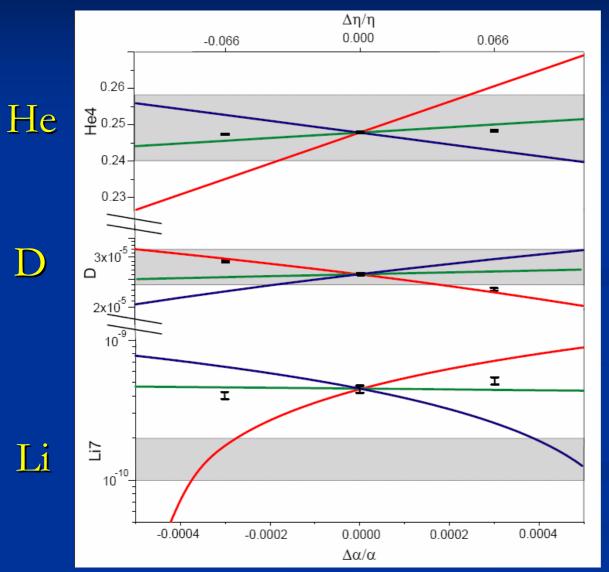
Ratio nucleon mass to Planck mass

Quintessence and Time dependence of "fundamental constants"

■ Fine structure constant depends on value of cosmon field : $\alpha(\phi)$

(similar in standard model: couplings depend on value of Higgs scalar field)

Time evolution of φTime evolution of α


Jordan,...

baryons:

the matter of stars and humans

 $\Omega_{\rm b} = 0.045$

primordial abundances for three GUT models

present observations : 1σ

T.Dent, S.Stern,...

three GUT models

- unification scale ~ Planck scale
- 1) All particle physics scales $\sim \Lambda_{\rm QCD}$
- 2) Fermi scale and fermion masses ~ unification scale
- \blacksquare 3) Fermi scale varies more rapidly than $\Lambda_{\rm QCD}$

 $\Delta\alpha/\alpha \approx 4~10^{-4}$ allowed for GUT 1 and 3 , larger for GUT 2

 $\Delta \ln(M_n/M_p) \approx 40 \Delta \alpha/\alpha \approx 0.015 \text{ allowed}$

time varying Fermi scale

$$U = U_0(\varphi) + \frac{\lambda}{2}(d^2 - d_0^2)^2 + \frac{1}{2}M_t^2(\varphi)t^2 - \gamma d^2t$$

$$M_t^2(\varphi) = \bar{M}_t^2 \left[1 - \exp\left(-\frac{\epsilon}{M}(\varphi - \varphi_t)\right) \right]$$

yields triplet expectation value as function of doublet

$$\mathbf{t} = \gamma \frac{d^2}{M_t^2}$$

$$d^2(\varphi) = d_0^2 \left(1 - \frac{\gamma^2}{\lambda M_t^2(\varphi)}\right)^{-1}$$

 $U(\varphi, d, t(d, \varphi)) = U_0(\varphi) + \frac{\lambda}{2} (d^2 - d_0^2)^2 - \frac{\gamma^2 d^4}{2M_c^2(\varphi)}$

time varying electron mass

$$\partial_t \ln m_e \approx -\frac{R}{2} \partial_t \ln s \approx -\frac{R}{2} \partial_t \ln \rho_\nu \approx \frac{3R}{4} H$$
 $R = \gamma^2/(\lambda M_t^2)$

$$R = \gamma^2 / (\lambda M_t^2)$$

time variation of quantities not related to triplet

$$\frac{\delta X}{X} = -\frac{m_{\nu}(t_0)}{12\text{eV}} \frac{\delta}{\alpha} ((1+z)^{3/2} - 1)$$

Time variation of coupling constants must be tiny —

would be of very high significance!

Possible signal for Quintessence

Summary

$$_{0} \Omega_{h} = 0.75$$

• Q/Λ : dynamical und static dark energy will be distinguishable

- o growing neutrino mass can explain why now problem
- Q: time varying fundamental coupling "constants" violation of equivalence principle

Are dark energy and dark matter related?

Can Quintessence be explained in a fundamental unified theory?

Quintessence and solution of cosmological constant problem should be related!

A few references

- C.Wetterich , Nucl.Phys.B302,668(1988) , received 24.9.1987
- P.J.E.Peebles,B.Ratra, Astrophys.J.Lett.325,L17(1988), received 20.10.1987
- B.Ratra, P.J.E. Peebles , Phys. Rev. D37, 3406 (1988) , received 16.2.1988
- J.Frieman, C.T.Hill, A.Stebbins, I.Waga, Phys. Rev. Lett. 75, 2077 (1995)
- P.Ferreira, M.Joyce, Phys.Rev.Lett.79,4740(1997)
- C. Wetterich, Astron. Astrophys. 301, 321 (1995)
- P. Viana, A. Liddle, Phys. Rev. D57,674(1998)
- E.Copeland, A.Liddle, D.Wands, Phys. Rev. D57, 4686 (1998)
- R.Caldwell,R.Dave,P.Steinhardt , Phys.Rev.Lett.80,1582(1998)
- P.Steinhardt, L. Wang, I. Zlatev, Phys. Rev. Lett. 82,896 (1999)

approximate late solution

variables:

$$s = -\alpha(\varphi - \varphi_t)/M,$$

$$x = \ln a$$

$$\partial_x \ln \rho_\nu + \partial_x \ln s = -3$$
, $\partial_x \ln \rho_m = -3$
 $\rho_\nu = \frac{c_\nu}{sa^3}$, $\rho_m = \frac{\rho_{m,0}}{a^3}$

approximate smooth solution (averaged over oscillations)

$$s^{(0)}(x) = \left(\frac{c_{\nu}}{V_t}\right)^{1/2} e^{-\frac{3x}{2}} = \frac{\tilde{\rho}_{\nu}(x)}{V_t}$$

$$s_0^{(0)} = \left(\frac{c_{\nu}}{V_t}\right)^{1/2} = \frac{\tilde{\rho}_{\nu,0}}{V_t} \approx \frac{\Omega_{\nu}(t_0)}{\Omega_h(t_0)}$$

dark energy fraction

$$\tilde{\Omega}_h(a) = \begin{cases} \frac{\tilde{\Omega}_{h,0}a^3 + 2\Omega_{\nu,0}(a^{3/2} - a^3)}{1 - \tilde{\Omega}_{h,0}(1 - a^3) + 2\Omega_{\nu,0}(a^{3/2} - a^3)} & \text{for } a > a_c \\ \frac{3}{\alpha^2} & \text{for } a < a_c \end{cases}$$

neutrino fluctuations

- time when neutrinos become non relativistic
- sets free streaming scale

$$a_R = \left(\frac{\tilde{m}_{\nu}(t_0)}{3T_{\nu,0}}\right)^{-\frac{2}{5}} = 0.05 \left(\frac{\tilde{m}_{\nu}(t_0)}{eV}\right)^{-2/5}$$

fixed point behaviour: apparent tuning

$$V(\varphi) = U_0(\varphi) - \frac{\lambda d_0^4 \gamma^2}{2(\lambda M_t^2(\varphi) - \gamma^2)}$$

$$V(\varphi) = U_0(\varphi) - \frac{m_{\nu}(\varphi)d^2\gamma}{2h_L}$$