What can we infer from cosmology for fundamental laws of physics ?

Three lessons

1) Fundamental "constants" are not constant

2) No conflict between quantum physics and general relativity

3) Time and space are born at the big bang

Fundamental "constants" are not constant

Have coupling constants in the early Universe other values than today ?

Fundamental couplings in quantum field theory

Masses and coupling constants are determined by properties of **vacuum** !

Similar to Maxwell – equations in matter

Condensed matter physics : laws depend on state of the system

Ground state , thermal equilibrium state ...
 Example : Laws of electromagnetism in superconductor are different from Maxwells' laws

Standard model of particle physics :

Electroweak gauge symmetry is spontaneously broken by expectation value of Higgs scalar

Spontaneous symmetry breaking to be confirmed at the LHC

Cosmology:

Universe is not in one fixed state
Dynamical evolution
Laws are expected to depend on time

Restoration of symmetry at high temperature in the early Universe

Low T SSB $\langle \phi \rangle = \phi_0 \neq 0$ High T SYM <φ>=0

high T : Less order More symmetry

Example: Magnets In hot plasma of early Universe :

masses of electron und muon not different!

similar strength of electromagnetic and weak interaction

Varying couplings

only question :

How strong is present variation of couplings ?

Can variation of fundamental "constants" be observed ?

Fine structure constant α (electric charge)

Ratio electron mass to proton mass

Ratio nucleon mass to Planck mass

Time evolution of couplings and scalar fields

Fine structure constant depends on value of cosmon field : α(φ)

in standard model: couplings depend on value of Higgs scalar field

Time evolution of φ Time evolution of α

Jordan,...

Static scalar fields

In Standard Model of particle physics :

- Higgs scalar has settled to its present value around 10⁻¹² seconds after big bang.
- Chiral condensate of QCD has settled at present value after quark-hadron phase transition around 10⁻⁶ seconds after big bang.
- No scalar with mass below pion mass.
- No substantial change of couplings after QCD phase transition.
- Coupling constants are frozen.

Observation of time- or spacevariation of couplings

Physics beyond Standard Model

Particle masses in quintessence cosmology

can depend on value of cosmon field

similar to dependence on value of Higgs field

Dark Energy : Energy density that does not clump

Photons, gravitons: insignificant

Gravitational Lens in Galaxy Cluster Abell 1689 O HUBBLESITE.org

Space between clumps is not empty :

Dark Energy !

Dark Energy : Homogeneously distributed Dark Energy density is the same at every point of space

"homogeneous"

No force in absence of matter – "In what direction should it draw ?" Einstein's equations : almost static Dark Energy predicts accelerated expansion of Universe

Predictions for dark energy cosmologies

The expansion of the Universe accelerates today !

Supernovae 1a Hubble diagram

Riess et al. 2004

Dark Energy: observations fit together !

Composition of the Universe

 $\Omega_{dm} = 0.2$ invisible clumping $\Omega_{h} = 0.75$ invisible homogeneous

What is Dark Energy?

Cosmological Constant or Quintessence ?

Cosmological Constant - Einstein -

Constant λ compatible with all symmetries
 No time variation in contribution to energy density

Why so small ? $\lambda/M^4 = 10^{-120}$

Why important just today ?

Cosmological mass scales

Energy density

 e^{-4} $\sim (2.4 \times 10^{-3} \text{ eV})^{-4}$

 Reduced Planck mass M=2.44 × 10 ²⁷ eV
 Newton's constant

 $G_N = (8\pi M^2)$

Only ratios of mass scales are observable ! homogeneous dark energy: $\rho_h/M^4 = 6.5 \ 10^{-121}$ matter: $\rho_m/M^4 = 3.5 \ 10^{-121}$

Time evolution

Huge age \Rightarrow small ratio Same explanation for small dark energy?

Cosm. Const. | Quintessence static | dynamical

Dynamical dark energy, generated by scalar field (cosmon)

> C.Wetterich,Nucl.Phys.B302(1988)668, 24.9.87 P.J.E.Peebles,B.Ratra,ApJ.Lett.325(1988)L17, 20.10.87

homogeneous dark energy influences recent cosmology

- of same order as dark matter -

Original models do not fit the present observations modifications

Cosmon – Field $\varphi(x,y,z,t)$

similar to electric field, but no direction (scalar field)

Homogeneous und isotropic Universe : $\varphi(x,y,z,t) = \varphi(t)$

Potential und kinetic energy of the cosmon -field contribute to a dynamical energy density of the Universe !

Cosmon

Scalar field changes its value even in the present cosmological epoch Potential und kinetic energy of cosmon contribute to the energy density of the Universe **Time** - variable dark energy : $\varrho_h(t)$ decreases with time !

Evolution of cosmon field

Field equations

$$\ddot{\phi} + 3H\dot{\phi} = -dV/d\phi$$

$$3M^2H^2 = V + \frac{1}{2}\dot{\phi}^2 + \rho$$

Potential $V(\varphi)$ determines details of the model

 $\mathbf{V}(\varphi) = \mathbf{M}^4 \exp(-\alpha \varphi / \mathbf{M})$

for increasing φ the potential decreases towards zero !

$\square m_c \sim H \quad (depends \text{ on time } !)$

New long - range interaction

"Fundamental" Interactions

Strong, electromagnetic, weak interactions

On astronomical length scales:

graviton

cosmon

gravitation cosmodynamics

Time varying constants

- It is not difficult to obtain quintessence potentials from higher dimensional or string theories
- Exponential form rather generic
 - (after Weyl scaling)
- But most models show too strong time dependence of constants !

Bounds on time varying couplings from nucleosynthesis

baryons:

the matter of stars and humans

$\Omega_{\rm b} = 0.045$

Abundancies of primordial light elements from nucleosynthesis

A.Coc

primordial abundances for three GUT models

present observations : 1σ

three GUT models

- unification scale ~ Planck scale
- 1) All particle physics scales $\sim \Lambda_{\text{OCD}}$
- 2) Fermi scale and fermion masses ~ unification scale
- 3) Fermi scale varies more rapidly than Λ_{OCD}

$\Delta \alpha / \alpha \approx 4 \ 10^{-4}$ allowed for GUT 1 and 3, larger for GUT 2 $\Delta \ln(M_n/M_p) \approx 40 \ \Delta \alpha / \alpha \approx 0.015$ allowed

Time variation of coupling constants must be tiny –

would be of very high significance !

Possible signal for Quintessence

"Fundamental" Interactions

Strong, electromagnetic, weak interactions

On astronomical length scales:

graviton

cosmon

gravitation cosmodynamics

"Fifth Force"

Mediated by scalar field

R.Peccei, J.Sola, C.Wetterich, Phys.Lett.B195, 183(1987)

Coupling strength: weaker than gravity (nonrenormalizable interactions $\sim M^{-2}$) Composition dependence violation of equivalence principle Quintessence: connected to time variation of fundamental couplings C.Wetterich, Nucl.Phys.B302,645(1988)

Violation of equivalence principle

Different couplings of cosmon to proton and neutron

Differential acceleration

"Violation of equivalence principle"

only apparent : new "fifth force" !

Differential acceleration

Two bodies with equal mass experience a different acceleration !

$$\eta = (a_1 - a_2) / (a_1 + a_2)$$

bound : $\eta < 3 \ 10^{-14}$

Cosmon coupling to atoms

Tiny !!!

Substantially weaker than gravity.

- Non-universal couplings bounded by tests of equivalence principle.
- Universal coupling bounded by tests of Brans-Dicke parameter ω in solar system.
- Only very small influence on cosmology.

(All this assumes validity of linear approximation)

Apparent violation of equivalence principle

and

time variation of fundamental couplings

measure both the

cosmon – coupling to ordinary matter

Differential acceleration η

For unified theories (GUT):

$$\eta = -1.75 \ 10^{-2} \Delta R_z (\frac{\partial \ln \alpha}{\partial z})^2 \frac{1 + \tilde{Q}}{\Omega_h (1 + w_h)}$$

$$\Delta R_z = \frac{\Delta Z}{Z+N} \approx 0.1$$

η=∆a/2a

Q : time dependence of other parameters

Link between time variation of α

and violation of equivalence principle

typically : $\eta = 10^{-14}$

if time variation of α near Oklo upper bound

to be tested (MICROSCOPE, ...)

No conflict between quantum physics and general relativity

Cosmology and quantum physics

both : Probabilistic theories Correlations are crucial

laws are based on probabilities

determinism as special case :
 probability for event = 1 or 0

law of big numbers
unique ground state ...

Correlations and reality

 Correlations are physical reality, not only the expectation values of certain observables

- Correlations can be non-local (also in classical statistics); causal processes needed only for preparation of non-local correlations at some time in the past
- Correlated subsystems cannot be separated the whole is more that the sum of parts

EPR - Paradoxon

Correlation between two spins is established at time of particle decay

No contradiction to causality or realism if correlations are considered as genuine part of reality

for once : not right)

conditional probability

sequences of events(measurements) are described by conditional probabilities

both in classical statistics and in quantum statistics

not very suitable for statement, if here and now a pointer falls down

Schrödinger's cat

conditional probability : if nucleus decays then cat dead with $w_c = 1$ (reduction of wave function)

Reduction of the wave function

 Convenient way to describe conditional probabilities

Same in classical statistics for the Universe

realized (measured) :

new state for computation of probabilities

Metric and geometry

Quantum field theory :

- Metric is expectation value of fluctuating field
- It transforms as second rank symmetric tensor under diffeomorphisms (general coordinate transformations)
- General relativity : theory with particular symmetry – diffeomorphism symmetry
 That's all

General relativity and quantum theory

No basic contradiction Metric is quantum field with same status as other fields (e.g. photon or Higgs scalar) Ultraviolet regularization : difficulty to implement diffeomorphism symmetry – several concepts : string theory, fixed point, lattice regularizations, lattice spinor gravity Metric needs not to be fundamental

Metric as collective (composite) field

Metric field could be composed from fermions

$$\tilde{g}_{\mu\nu} \sim \partial_{\mu}(\bar{\psi}\psi)\partial_{\nu}(\bar{\psi}\psi)$$

$$\bar{g}_{\mu\nu} = \langle \tilde{g}_{\mu\nu} \rangle$$

Metric as collective (composite) field

or from scalars

Metric ambiguity

given metric

$$g_{\mu
u}$$

collective field with expectation value

$$\tilde{g}_{\mu\nu} \sim \partial_{\mu}(\bar{\psi}\psi)\partial_{\nu}(\bar{\psi}\psi) \ \bar{g}_{\mu\nu} = \langle \tilde{g}_{\mu\nu} \rangle$$

new metric candidate

$$g_{2,\mu\nu} = \alpha g_{\mu\nu} + \beta \bar{g}_{\mu\nu}$$

Which one is physical metric?

Time and space are born at the big bang

Which metric to choose ?

Many candidates in general relativity

$$g_{2,\mu\nu} = \alpha g_{\mu\nu} + \beta R_{\mu\nu} + \gamma R g_{\mu\nu}$$

and quantum field theory

$$\tilde{g}_{\mu\nu} \sim \partial_{\mu}(\bar{\psi}\psi)\partial_{\nu}(\bar{\psi}\psi) \ \bar{g}_{\mu\nu} = \langle \tilde{g}_{\mu\nu} \rangle$$
$$g_{2,\mu\nu} = \alpha g_{\mu\nu} + \beta \bar{g}_{\mu\nu}$$

It does not matter !

for distances large compared to Planck length

Ambiguity close to Planck scale !

no unique metric anymore close to Planck scale different metrics – different definitions of distances no unique geometry

Space and time in the usual sense, with definite geometry, emerge only after the big bang

Theories with two or several metrics

Metric potential for one metric

$$V = \lambda \sqrt{g} , g = |\det g_{\mu\nu}|$$

Space-time independent metric has to obey extremum condition

$$\frac{\partial V}{\partial g_{\mu\nu}} = \frac{1}{2} \lambda \sqrt{g} \, g^{\mu\nu} = 0 \ , \ g^{\mu\nu} g_{\nu\rho} = \delta^{\mu}_{\rho}$$
Metric potential for two metrics

New invariants are possible

 $g_{1,\mu
u}g_2^{\mu
u}$

Simple metric potential

$$V = \alpha_1 \sqrt{g_1} + \alpha_2 \sqrt{g_2} + (\beta_1 \sqrt{g_1} + \beta_2 \sqrt{g_2}) g_{1,\mu\nu} g_2^{\mu\nu} + (\delta_1 \sqrt{g_1} + \delta_2 \sqrt{g_2}) g_{2,\mu\nu} g_1^{\mu\nu}.$$

Proportionality of metrics

ansatz:

$$g_{1,\mu\nu} = \sigma_1 \eta_{\mu\nu} \ , \ g_{2,\mu\nu} = \sigma_2 \eta_{\mu\nu}$$

$$\gamma = \sigma_2 / \sigma_1$$
 $V = \sigma_1^2 \left(\sum_n s_n \gamma^n \right) = \sigma_1^2 W(\gamma).$

Extremum of $W(\gamma)$ at γ_0 with $W(\gamma_0) = W_0$

 $W_0 = 0$ \implies solution with

$$g_{1,\mu\nu} = \eta_{\mu\nu}, \ g_{2,\mu\nu} = \gamma_0 \eta_{\mu\nu}$$

Two metrics are equivalent if

$$g_{2,\mu\nu} = \gamma g_{1,\mu\nu}$$

only units for coordinates differ

Massive tensors

expansion $g_{1,\mu\nu} = g_{\mu\nu} , \ g_{2,\mu\nu} = \gamma (\delta^{\rho}_{\mu} + f_{\mu}{}^{\rho}) g_{\rho\nu}$

tensor fields

$$f = f_{\mu}{}^{\nu} \delta^{\mu}_{\nu}$$

$$\tilde{f}_{\mu}{}^{\nu} = f_{\mu}{}^{\nu} - \frac{1}{4}f\delta^{\nu}_{\mu} , \ \tilde{f}_{\mu}{}^{\nu}\delta^{\mu}_{\nu} = 0,$$

$$V = \sqrt{g} \left\{ \lambda + \frac{1}{2}\mu f^2 + \frac{1}{4}\nu \tilde{f}_{\mu}{}^{\nu} \tilde{f}_{\nu}{}^{\mu} \right\}$$

mass terms

$$\lambda = \alpha_1 + \alpha_2 \gamma^2 + \frac{4}{\gamma} (\beta_1 + \beta_2 \gamma^2) + 4\gamma (\delta_1 + \delta_2 \gamma^2)$$

$$\mu = \frac{\beta_1}{2\gamma} + \frac{\alpha_2}{8} \gamma^2 + \frac{3\delta_2}{2} \gamma^3,$$

$$\nu = 4 \frac{\beta_1}{\gamma} - \alpha_2 \gamma^2 - 4\delta_2 \gamma^3.$$

Kinetic term

$$\mathcal{L}_{\text{kin}} = \sqrt{g} \left\{ -\frac{M^2}{2} R + \frac{1}{2} Z \partial^{\mu} f \partial_{\mu} f + \frac{1}{4} W_1 D^{\rho} \tilde{f}_{\mu}{}^{\nu} D_{\rho} \tilde{f}_{\nu}{}^{\mu} + \frac{1}{2} W_2 D_{\rho} \tilde{f}_{\mu}{}^{\rho} D_{\sigma} \tilde{f}_{\nu}{}^{\sigma} g^{\mu\nu} + \frac{1}{2} W_3 \partial^{\nu} f D_{\mu} \tilde{f}_{\nu}{}^{\mu} \right\}.$$
(1)

Field equation (for $W_2=0, W_3=0$)

$$(W_1\partial^2-\nu)\tilde{f}_{\mu}{}^{\nu}$$

Massive tensor field

$$(W_1\partial^2 - \nu)\tilde{f}_{\mu}{}^{\nu}$$

Typical size of mass : Planck mass , $v/W_1 \sim M^2$

Yukawa type interaction, negligible for distances larger than Planck length

Relevant for distances around Planck length

No unique metric at Planck scale

$$g_{1,\mu\nu} = g_{\mu\nu} , \ g_{2,\mu\nu} = \gamma (\delta^{\rho}_{\mu} + f_{\mu}{}^{\rho}) g_{\rho\nu}$$

Proportionality between both metrics is no longer valid once f plays a role!

Energy density

$$\begin{split} \rho &= \frac{1}{2}\mu f^2 + \frac{1}{4}\nu \left\{ \sum_k (\tilde{f}_k{}^k)^2 + \left(\sum_k \tilde{f}_k{}^k\right)^2 \right\} \\ &+ \frac{1}{2}\nu \sum_k \left\{ \left(\tilde{f}_0{}^k\right)^2 + \sum_{l>k} (\tilde{f}_k{}^l)^2 \right\} \\ &+ \frac{1}{2}Z(\partial_0 f)^2 + \frac{1}{2}Z\sum_i (\partial_i f)^2 \\ &+ \frac{1}{4}W_1 \left\{ \sum_i \left[\sum_k (\partial_i \tilde{f}_k{}^k)^2 + (\partial_i \sum_k \tilde{f}_k{}^k)^2 \right. \\ &+ 2\sum_{k,l>k} (\partial_i \tilde{f}_k{}^l)^2 + 2\sum_k (\partial_i \tilde{f}_0{}^k)^2 \right] \\ &+ \sum_k (\partial_0 \tilde{f}_k{}^k)^2 + (\partial_0 \sum_k \tilde{f}_k{}^k)^2 \\ &+ 2\sum_{k,l>k} (\partial_0 \tilde{f}_k{}^l)^2 - 6\sum_k (\partial_0 \tilde{f}_0{}^k)^2 \right\}. \end{split}$$

Conclusions

1) Fundamental "constants" are not constant

2) No conflict between quantum physics and general relativity

3) Time and space are born at the big bang

Structure formation : One primordial fluctuation spectrum

CMB agrees with Galaxy distribution Lyman – α and Gravitational Lensing !

Power spectrum

Structure formation : One primordial fluctuation- spectrum **Baryon - Peak**

galaxy – correlation – function

