Functional renormalization —
concepts and prospects



physics at different length scales

B MICrOSCOPIC theories : where the laws are
formulated

B cffective theories : where observations are made

m cffective theory may involve different degrees of
freedom as compared to microscopic theory

m cxample: the motion of the earth around the sun
does not need an understanding of nuclear
burning in the sun



QCD :
Short and long distance
degrees of freedom are different !

Short distances : quarks and gluons
Long distances : baryons and mesons

How to make the transition?

confinement/chiral symmetry breaking



collective
degrees of freedom



Hubbard model

B Electrons on a cubic lattice

here : on planes (d = 2)

m Repulsive local interaction if two electrons are
on the same site

m Hopping interaction between two neighboring
sites



In solid state physics :
“ model for everything

m Antiferromagnetism
m High T_superconductivity
B Metal-insulator transition

B Ferromagnetism



Antiferromagnetism
in d=2 Hubbard model

antiferro-
magnetic
order

parameter j

& 3= c &, 00 ai i

temperature in units of t

T.Baier,
E.Bick,...




Collective degrees of freedom
are crucial !

for T <'T

B nonvanishing otder parameter

m(X) = $(X)FP(X) (@) = as(Q 1)

B oap for fermions

B [ow energy excitations:

antiferromagnetic spin waves



effective theory / microscopic theory

m sometimes only distinguished by different values
of couplings

m sometimes different degrees of freedom



Functional Renormalization Group

describes flow of effective action from small to
large length scales

perturbative renormalization : case where only
couplings change , and couplings are small



How to come from quarks and gluons to
baryons and mesons ?
How to come from electrons to spin waves ?

Find effective description where relevant degrees
of freedom depend on momentum scale or
resolution in space.

Microscope with vatiable resolution:
m [High resolution , small piece of volume:
quarks and gluons

B [Low resolution, large volume : hadrons



From

Microscopic Laws
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Fluctuations!

Macroscopic Observation
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e block spins

Kadanoff, Wilson

e exact renormalization group equations
Wilson, Kogut

Weinberg
Polchinski

. ]
Hasenfratz-

e Lattice finite size scaling
Luscher,...

e coarse grained free energyf/average action




effective average action



Ettective average potential :
Unified picture for scalar field theories
with symmetry O(IN)
in arbitrary dimension d and arbitrary N

linear or nonlinear sigma-model for
chiral symmetry breaking in QCD
of:

scalar model for antiferromagnetic spin waves

(inear O(3) — model )

fermions will be added later



Average potential U,

= scale dependent effective
potential
= coarse grained free energy

Only fluctuations with
momenta ¢° > k* included




Scalar field theory

wa(x): magnetization, density, chemical concentra-

tion, Higgs field, meson field, inflaton, cosmon

O(N )-symmetry:
- d I = g 1
J._CJ = d%x __f—)l'.)_u"r":’ﬁad_u@n + V [_f)) ; P S“t‘-“ﬂ Pa

Vv




Flow equation for average potential




Simple one loop structure —
nevertheless (almost) exact




Infrared cutoff

Rﬁ;: : IR-cutoff
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Flow equation for Uy

QU =35 [ (g a o Partial differential

2

equation for function
U(k,p) depending on
two ( or mote )
variables

[R-cutoff
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Regularisation

Zﬁa:qiz

For suitable R, : T e o

m Momentum integral is ultraviolet and infrared
finite

m Numerical integration possible

m Flow equation defines a regularization scheme
( ERGE —regularization )




Integration by momentum shells

dFUF “}? _22 _l

dd q rfg_ RR(‘I J

(27)4 Zq24 Ry, (¢2 J+u

()

Momentum integral

is dominated by
G ~ k2.

Flow only sensitive to

physics at scale k



Wave function renormalization and
anomalous dimension

Z.. wave function renormalization
kOZr = —iZi

M. anomalous dimension

t =In(k/A)

O)lnZ = —n

for Z, (@,q°) : flow equation is



Flow of ettective potential

Ising model

Critical exponents

(typically +(0.0010 — 0.0020))

Experiment :

T.=304.15 K
p- =73.8.bar
S.Seide ... p. =0.442 g cm-2



Critical exponents , d=3

Critical exponents v and 7

0.590 0.5878 0.039 0.0292
0.6307 0.6308 0.0467 0.0356
0.666 0.6714 0.049 0.0385
0.704 0.7102 0.049 0.0380
0.739 0.7474 0.047 0.0363
0.881 0.886 0.028 0.025
0.990 0.980 0.0030 0.003
T T

“average” of other methods
(typically #(0.0010 — 0.0020))




Solution of partial differential equation :

yields highly nontrivial non-perturbative
results despite the one loop structure !

Example:
Kosterlitz-Thouless phase transition



Essential scaling : d=2,N=2

® Flow equation
contains correctly
the non-
perturbative
information !

B (essential scaling
usually described by

vortices)

0.35 0.36 0.37 0.38 0.39 0.4

Ka ’V(-T;_ o T) + const

Von Gersdorff ...



Kostetrlitz-Thouless phase transition
(d=2,N=2)

Correct description of phase with
Goldstone boson

(infinite correlation length )

for T<T.



Running renormalized d-wave superconducting

order parameter » in Hubbard model

C.Krahl,... -1n (k / A) macroscopic scale 1 cm



Renormalized order parameter » and gap

in electron propagator A




Temperature dependent anomalous dimension 7




Effective average action
and

exact renormalization group equation



Generating functional

generating functional for connected Green’s
functions in presence of quadratic infrared cutoff

Wilj] = In / Dx exp (—5 [x] — AxS[x] + / d'z J\)
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Ettective average action

rlf-' [‘3‘9] = _”Tﬁ [] ] T / (fi:]: ]n‘fjn - -B,ES [‘19]

Loop expansion :
perturbation theory
[';. inc ludf s all fluctuations (quantum, thermal) _Wlth

S k2 infrared cutoff

In propagator

with q

['A specifies microphysics




Quantum etfective action

for Kk — 0
all fluctuations (quantum + thermal)
are included




Exact renormalization group
equation

Exact flow equation

for scale dependence of average action

(2) 8°T';
(F ) (9:9) = mocata®

™Y, [ &

(fermions : STr)




Proof of

exact tlow equation

T {0uRi((90) — (6) ()}

%T‘r { OLR. W L( 2) }

wT® + Ry) =1
(ng(i} = Rk)




Truncations

Functional differential equation —
cannot be solved exactly
Approximative solution by truncation of

most general form of effective action



derivative expansion
Tetradis,...; Morris

O(N )-model:
1

1 ‘
+1Y:&-(PJ8;:-.0@;:-P fpwea §

(N=1: Y:=0)

field expansion
(low eq. for 1PI Vortices)
Weinberg; Ellwanger,

Z /I_Id”rzbJ "1, Ta, . - ., Tn)

nﬂ

H(¢(153) — ®o)

§=0

error estimate?




Expansion in canonical dimension
of couplings

Lowest order:

=4 po,)\,Z

d=3: p03A171Z
5

o1 |
U= A = po)" + 57(p = po)°

)

works well for O(NN') models
Tetradis,...; Tsypin

polynomial expansion of potential converges
if expanded around py
Tetradis,...; Aoki et al.




Exact tlow equation for etfective
potential

m Fvaluate exact flow equation for homogeneous

field @ .

m R.h.s. involves exact propagator in

homogeneous background field @.



Flow equation for average potential




QCD :
Short and long distance
degrees of freedom are different !

Short distances : quarks and gluons
Long distances : baryons and mesons

How to make the transition?

confinement/chirall symmetry breaking



Nambu Jona-Lasinio model

ab = A..M Llavor (/VF = 3,21)

chival Flaver symmn‘ky :

SL{_(NF) £ SUQ (NF)

...and more general guark meson models



Chiral condensate (IN,=2)

(expected for O(4) Heisenberg model)

Univer sal
Ckrbiee/
Cguve beon of

sha te :0((})

Berges,

ickel,...
Explicit link between xPT domain of validity (4d) and Jungnickel,

critical (universal) domain near 7. (3d)




Critical temperature , N.= 2

Lattice simulation

J.Berges,D.Jungnickel,...



temperature
dependent
masses
plon mass

Sigma mass

80

T/ MeV

; My < 2my, for T 2 100 MeV _2

No long pion correlation length in thermal equilibrium!



(ritical behavior 7@# Seconal orpler

phase transitions :

Critical
equation

of

State

Pz - veviormalized Lield vaviahle

Ul ) Aepencts only on g
&= ¢R / %
)

1
Widlonr scalin q f&dvczzf'o/fz,




Scaling
form

of

equation

of state

Berges,
Tetradis,...

L
5

CPIQ / ¢OQ

4 1.
§ =

Clitical egue beom of state

ERGE , (owest ovrer plvrvakive exp. Bevges, 1etrants, ...

ERGE first owr snvtive exp. . Seoe,...
mean fielol”
ﬂ)['gé ~T - serteg, locys expernsioc , £ — eXpars o

Monte Caple




Universal critical equation of state

Is valid near critical temperature
the only light degrees of freedom

are pions + sigma with

O(4) — symmetry.

Not necessarily valid in QCD, even
for two flavors !



conclusions

Flow equation for effective average action:

m Does it work?
m Why does it work?
m When does it work?

m How accurately does it work?
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