Functional renormalization – concepts and prospects

physics at different length scales

- microscopic theories : where the laws are formulated
- effective theories : where observations are made
 effective theory may involve different degrees of freedom as compared to microscopic theory
 example: the motion of the earth around the sun does not need an understanding of nuclear burning in the sun

QCD : Short and long distance degrees of freedom are different !

> Short distances : quarks and gluons Long distances : baryons and mesons

How to make the transition?

confinement/chiral symmetry breaking

collective degrees of freedom

Hubbard model

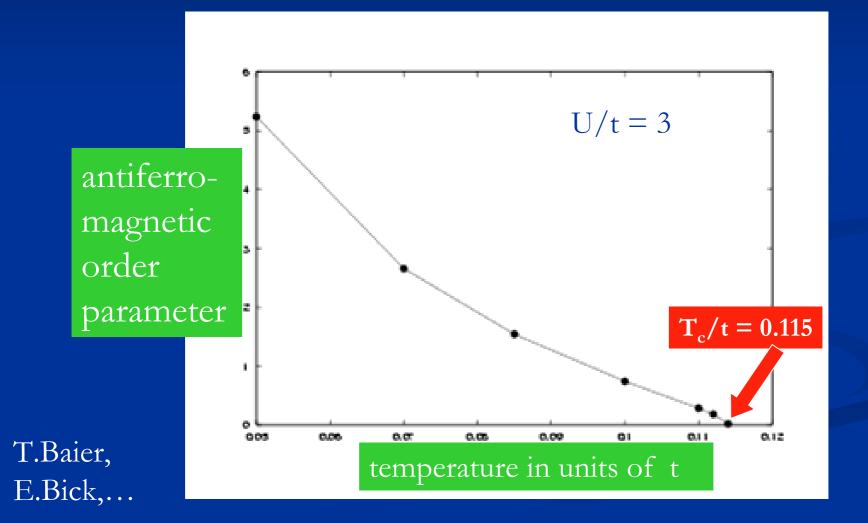
Electrons on a cubic lattice here : on planes (d = 2)

- Repulsive local interaction if two electrons are on the same site
- Hopping interaction between two neighboring sites

In solid state physics : " model for everything "

Antiferromagnetism
 High T_c superconductivity
 Metal-insulator transition
 Ferromagnetism

Antiferromagnetism in d=2 Hubbard model



Collective degrees of freedom are crucial !

for T < T_c

nonvanishing order parameter

$$\tilde{\vec{m}}(X) = \hat{\psi}^{\dagger}(X) \vec{\sigma} \hat{\psi}(X)$$

$$\hat{\vec{m}}(Q) \rightarrow \vec{a}\delta(Q-\Pi)$$

gap for fermions

 low energy excitations: antiferromagnetic spin waves

effective theory / microscopic theory

 sometimes only distinguished by different values of couplings
 sometimes different degrees of freedom

Functional Renormalization Group

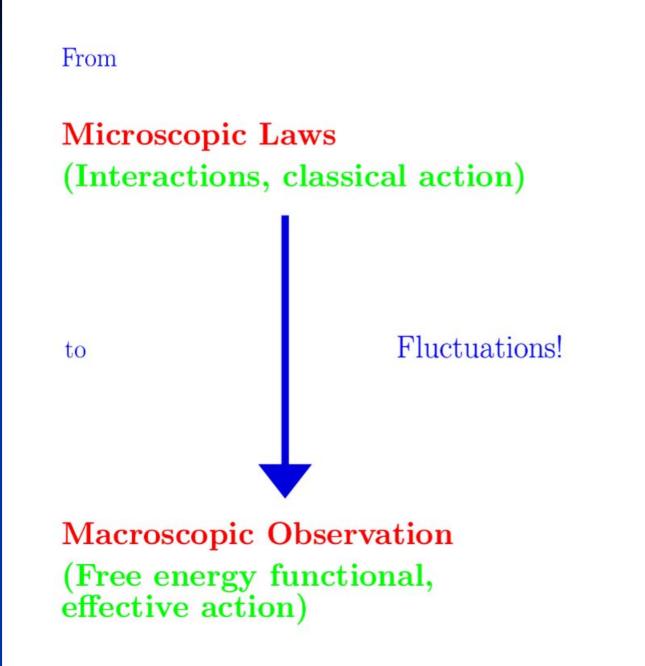
describes flow of effective action from small to large length scales

perturbative renormalization : case where only couplings change , and couplings are small

How to come from quarks and gluons to baryons and mesons ? How to come from electrons to spin waves ?

Find effective description where relevant degrees of freedom depend on momentum scale or resolution in space.

Microscope with variable resolution:
High resolution, small piece of volume: quarks and gluons
Low resolution, large volume : hadrons



block spins

 Kadanoff, Wilson

 exact renormalization group equations
 Wilson, Kogut
 Wegner, Houghton
 Weinberg
 Polchinski
 Hasenfratz²

• Lattice finite size scaling Lüscher,...

• coarse grained free energy/average action

effective average action

Effective average potential : Unified picture for scalar field theories with symmetry O(N) in arbitrary dimension d and arbitrary N

linear or nonlinear sigma-model for chiral symmetry breaking in QCD or: scalar model for antiferromagnetic spin waves

(linear O(3) - model)

fermions will be added later

Effective potential includes all fluctuations

Average potential U_k

 $\equiv scale dependent effective$ potential $\equiv coarse grained free energy$

Only fluctuations with momenta $q^2 > k^2$ included

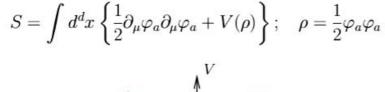
k: infrared cutoff for fluctuations, "average scale" Λ : characteristic scale for microphysics

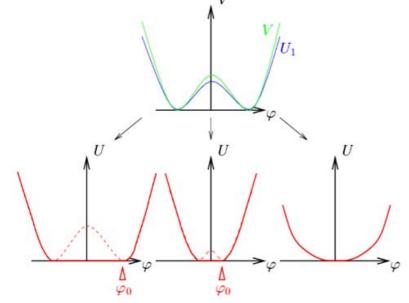
 $U_{\Lambda} \approx S \to U_0 \equiv U$

Scalar field theory

 $\varphi_a(x)$: magnetization, density, chemical concentration, Higgs field, meson field, inflaton, cosmon

O(N)-symmetry:



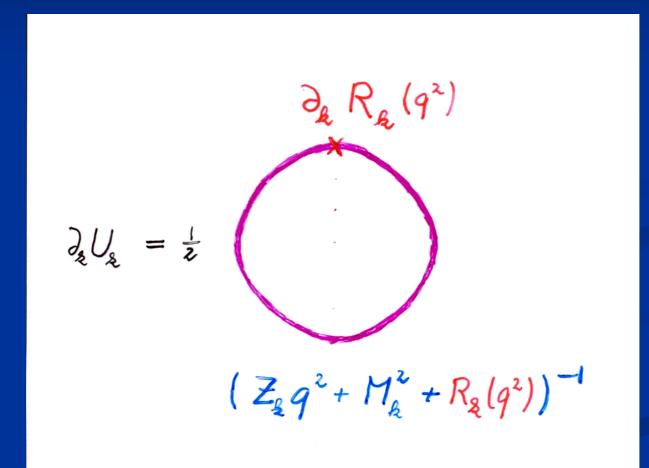


Flow equation for average potential

$$\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$$

$$ar{M}_{k,ab}^2 = rac{\partial^2 U_k}{\partial \varphi_a \partial \varphi_b}$$
: Mass matrix
 $ar{M}_{k,i}^2$: Eigenvalues of mass matrix

Simple one loop structure – nevertheless (almost) exact



Infrared cutoff

 $R_k : \text{IR-cutoff}$ e.g $R_k = \frac{Z_k q^2}{e^{q^2/k^2} - 1}$ or $R_k = Z_k (k^2 - q^2) \Theta(k^2 - q^2) \quad \text{(Litim)}$

 $\lim_{k \to 0} R_k = 0$ $\lim_{k \to \infty} R_k \to \infty$

Flow equation for U_k

$$\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$$

'91

 $\bar{M}_{k,ab}^2 = \frac{\partial^2 U_k}{\partial \varphi_a \partial \varphi_b}$: Mass matrix $\bar{M}_{k,i}^2$: Eigenvalues of mass matrix

 R_k : IR-cutoff

e.g
$$R_k = \frac{Z_k q^2}{e^{q^2/k^2} - 1}$$

or $R_k = Z_k (k^2 - q^2) \Theta(k^2 - q^2)$ (Litim)

 $\lim_{k \to 0} R_k = 0$ $\lim_{k \to \infty} R_k \to \infty$

Partial differential equation for function U(k,φ) depending on two (or more) variables

 $Z_{k} = c k^{-\eta}$

Regularisation

For suitable R_k :

$$egin{aligned} R_k &= rac{Z_k q^2}{e^{q^2/k^2} - 1} \ R_k &= Z_k (k^2 - q^2) \Theta(k^2 - q^2) \end{aligned}$$

Momentum integral is ultraviolet and infrared finite

Numerical integration possible
 Flow equation defines a regularization scheme (ERGE –regularization)

$$\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$$

Integration by momentum shells

$$\boxed{\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}}$$

Momentum integral is dominated by $q^2 \sim k^2$.

Flow only sensitive to physics at scale k

Wave function renormalization and anomalous dimension

 Z_k : wave function renormalization

 $k\partial_k Z_k = -\eta_k Z_K$

 η_k : anomalous dimension

 $t = \ln(k/\Lambda)$

 $\partial_t \ln Z = -\eta$

for $Z_k(\phi,q^2)$: flow equation is exact !

Flow of effective potential

Ising model

Critical exponents

 η

0.0292

0.0356

0.0385

0.0380

0.0363

0.025

0.003

1

d = 3

N

0 0.590

1 0.6307

2 0.666

3 0.704

4 0.739

10 0.881

100 0.990

Critical exponents ν and η

V

0.5878 0.039

0.6308 0.0467

0.6714 0.049

0.7102 0.049

0.7474 0.047

0.028

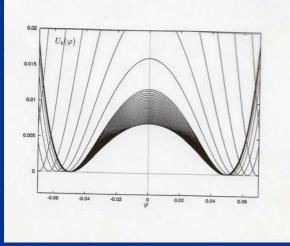
0.0030

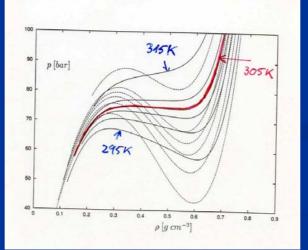
"average" of other methods

 $(typically \pm (0.0010 - 0.0020))$

0.886

0.980 ↑





Experiment :

T_{*} =304.15 K p_{*} =73.8.bar ρ_{*} = 0.442 g cm-2

S.Seide ...

Critical exponents, d=3

Critical exponents ν and η

N		ν		η	
0	0.590	0.5878	0.039		0.0292
1	0.6307	0.6308	0.0467		0.0356
2	0.666	0.6714	0.049		0.0385
3	0.704	0.7102	0.049		0.0380
4	0.739	0.7474	0.047		0.0363
10	0.881	0.886	0.028		0.025
100	0.990	0.980	0.0030		0.003
		\uparrow			\uparrow

"average" of other methods (typically $\pm (0.0010 - 0.0020)$)

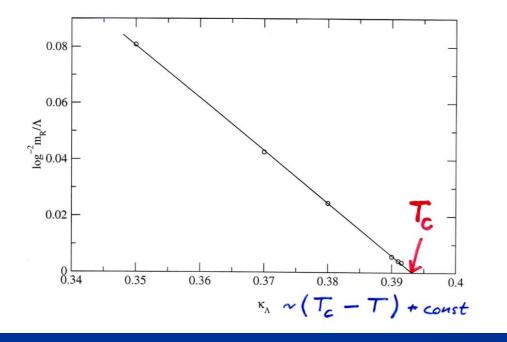
Solution of partial differential equation :

yields highly nontrivial non-perturbative results despite the one loop structure !

Example: Kosterlitz-Thouless phase transition

Essential scaling : d=2,N=2

MR ~ exp{- 1/2}, T>To



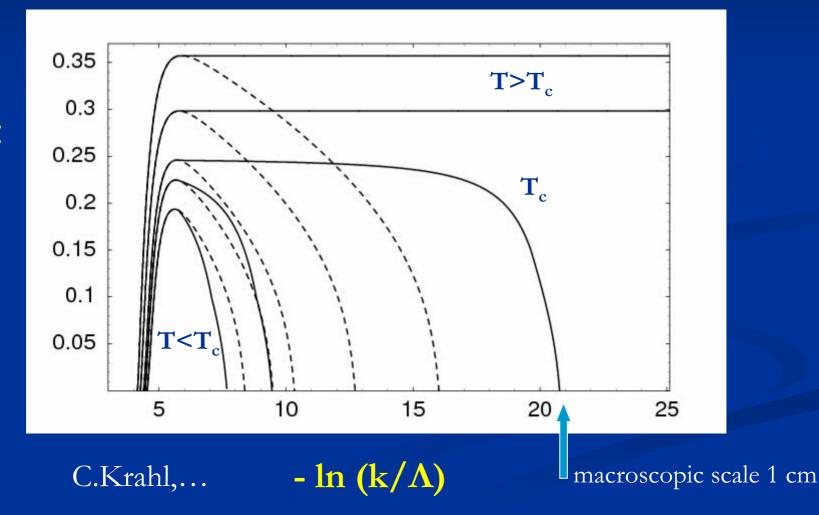
 Flow equation contains correctly the nonperturbative information !
 (essential scaling usually described by vortices)

Von Gersdorff ...

Kosterlitz-Thouless phase transition (d=2,N=2)

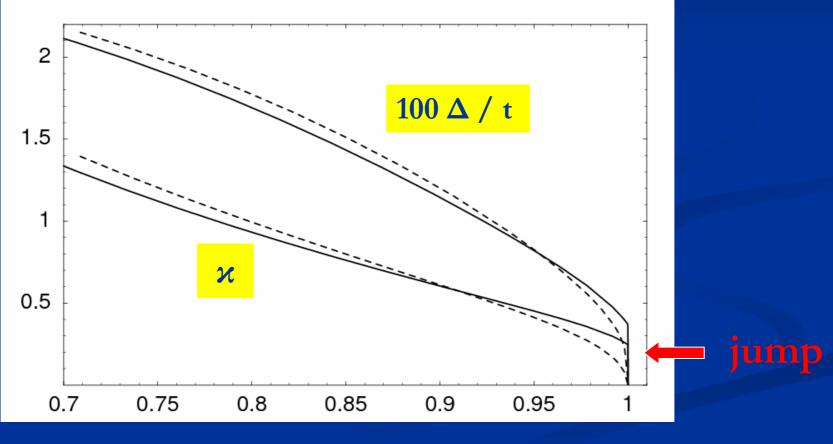
Correct description of phase with Goldstone boson (infinite correlation length) for T<T_c

Running renormalized d-wave superconducting order parameter x in Hubbard model



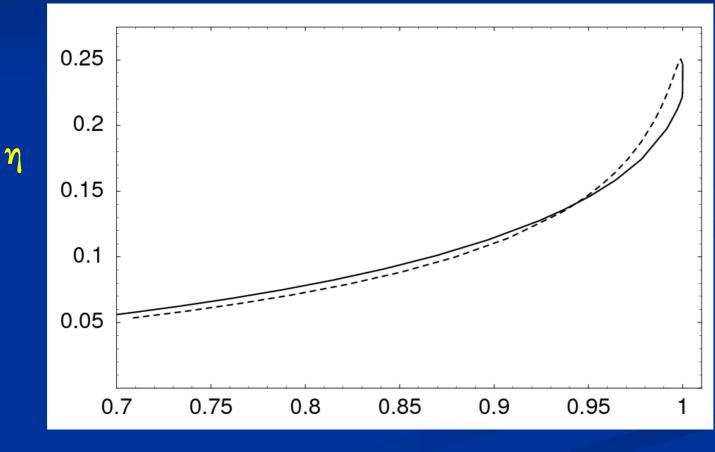
K

Renormalized order parameter \varkappa and gap in electron propagator Δ



 T/T_{c}

Temperature dependent anomalous dimension η



 T/T_{c}

Effective average action

and

exact renormalization group equation

Generating functional

generating functional for connected Green's functions in presence of quadratic infrared cutoff

$$W_{\mathbf{k}}[j] = \ln \int \mathcal{D}\chi \, \exp\left(-S[\chi] - \Delta_{\mathbf{k}}S[\chi] + \int d^d x \, j_a \chi_a\right)$$

$$\Delta_{\boldsymbol{k}}S = \frac{1}{2} \int \frac{d^d q}{(2\pi)^d} R_{\boldsymbol{k}}(q^2) \chi_a(-q) \chi_a(q)$$

e.g.
$$R_k = \frac{Z_k q^2}{e^{q^2/k^2} - 1}$$

$$\lim_{k \to 0} R_k = 0$$

 $R_{k\to\infty}\to\infty$

Effective average action

$$\Gamma_{\mathbf{k}}[\varphi] = -W_{\mathbf{k}}[j] + \int d^d x \, j_a \varphi_a - \Delta_{\mathbf{k}} S[\varphi]$$

 $\Gamma_0[\varphi]$: quantum effective action generates 1PI vertices free energy: $F = \Gamma T + \mu nV$

 Γ_k includes all fluctuations (quantum, thermal) with $q^2 > k^2$

 Γ_{Λ} specifies microphysics

$$\varphi_a = \langle \chi_a \rangle = \frac{\delta W_k}{\delta j_a}$$

Loop expansion : perturbation theory with infrared cutoff in propagator

Quantum effective action

for $k \to 0$ all fluctuations (quantum + thermal) are included

knowledge of $\Gamma_{k\to 0} =$ solution of model

Exact renormalization group equation

Exact flow equation

for scale dependence of average action

$$\partial_k \Gamma_k[\varphi] = \frac{1}{2} \operatorname{Tr} \left\{ \left(\Gamma_k^{(2)}[\varphi] + R_k \right)^{-1} \partial_k R_k \right\}$$

'92

$$\left(\Gamma_k^{(2)} \right)_{ab} (q, q') = \frac{\delta^2 \Gamma_k}{\delta \varphi_a(-q) \delta \varphi_b(q')}$$

Tr : $\sum_a \int \frac{d^d q}{(2\pi)^d}$

(fermions : STr)

Proof of exact flow equation

$$egin{aligned} \partial_k \left.\Gamma
ight|_{\phi} &= \left.-\partial_k \left.W
ight|_j - \partial_k \Delta_k S[arphi] \ &= rac{1}{2} ext{Tr} \left\{\partial_k R_k (\langle \phi \phi
angle - \langle \phi
angle \langle \phi
angle)
ight\} \ &= rac{1}{2} ext{Tr} \left\{\partial_k R_k W_k^{(2)}
ight\} \end{aligned}$$

 $W_k^{(2)}(\Gamma_k^{(2)} + R_k) = \mathbb{1}$ $(\Delta_k S^{(2)} \equiv R_k)$

$$\Longrightarrow$$
$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{Tr} \left\{ \partial_k R_k (\Gamma_k^{(2)} + R_k)^{-1} \right\}$$

Truncations

Functional differential equation – cannot be solved exactly Approximative solution by truncation of most general form of effective action

derivative expansion

Tetradis,...; Morris

O(N)-model:

$$\Gamma_{k} = \int d^{d}x \{ U_{k}(\rho) + \frac{1}{2} Z_{k}(\rho) \partial_{\mu} \varphi_{a} \partial_{\mu} \varphi_{a} + \frac{1}{4} Y_{k}(\rho) \partial_{\mu} \rho \partial_{\mu} \rho + \cdots \}$$
$$(N = 1: \quad Y_{k} \equiv 0)$$

field expansion (flow eq. for 1PI vertices)

Weinberg; Ellwanger,...

$$\Gamma_{k} = \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{j=0}^{n} d^{d}x_{j} \Gamma_{k}^{(n)}(x_{1}, x_{2}, \dots, x_{n})$$
$$\prod_{j=0}^{n} (\phi(x_{j}) - \phi_{0})$$

error estimate?

Expansion in canonical dimension of couplings

Lowest order:

$$\begin{split} d &= 4: \quad \rho_0, \bar{\lambda}, Z \\ d &= 3: \quad \rho_0, \bar{\lambda}, \bar{\gamma}, Z \\ U &= \frac{1}{2} \bar{\lambda} (\rho - \rho_0)^2 + \frac{1}{6} \bar{\gamma} (\rho - \rho_0)^3 \end{split}$$

works well for O(N) models Tetradis,...; Tsypin

polynomial expansion of potential converges if expanded around ρ_0 Tetradis,...; Aoki et al.

Exact flow equation for effective potential

 \blacksquare Evaluate exact flow equation for homogeneous field ϕ .

 R.h.s. involves exact propagator in homogeneous background field φ.

Flow equation for average potential

$$\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$$

$$ar{M}_{k,ab}^2 = rac{\partial^2 U_k}{\partial \varphi_a \partial \varphi_b}$$
: Mass matrix
 $ar{M}_{k,i}^2$: Eigenvalues of mass matrix

QCD : Short and long distance degrees of freedom are different !

> Short distances : quarks and gluons Long distances : baryons and mesons

How to make the transition?

confinement/chiral symmetry breaking

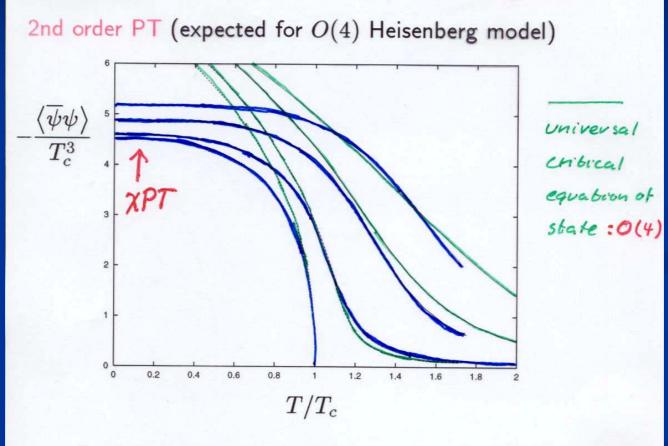
Nambu Jona-Lasinio model

$$S = \int d^{4}x \left\{ i \overline{\psi}_{a}^{i} g^{\mu} \partial_{\mu} \psi_{a}^{i} + 2\lambda_{G} \left(\overline{\psi}_{Lb}^{i} \psi_{Ra}^{i} \right) \left(\overline{\psi}_{Ra}^{j} \psi_{Lb}^{j} \right) \right\}$$
$$\psi_{LR} = \frac{1 \pm \chi^{5}}{2} \psi$$

 $i_{j} = 1 \dots N_{E} \quad color \quad (N_{E} = 3)$ $a_{j}b = 1 \dots N_{F} \quad flavor \quad (N_{F} = 3, 2)$ $chival \quad flavor \quad symmetry :$ $SU(N_{F}) \times SU_{R}(N_{F})$

...and more general quark meson models

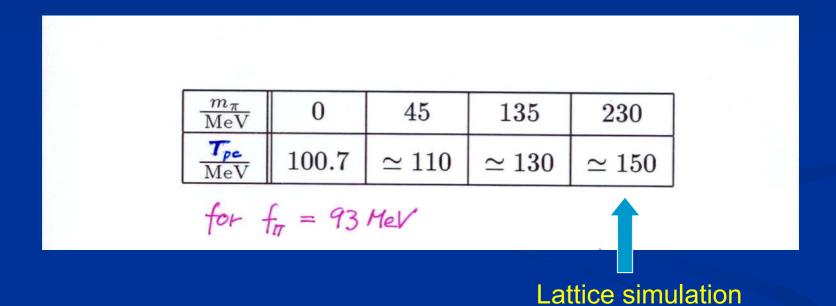
Chiral condensate ($N_f=2$)



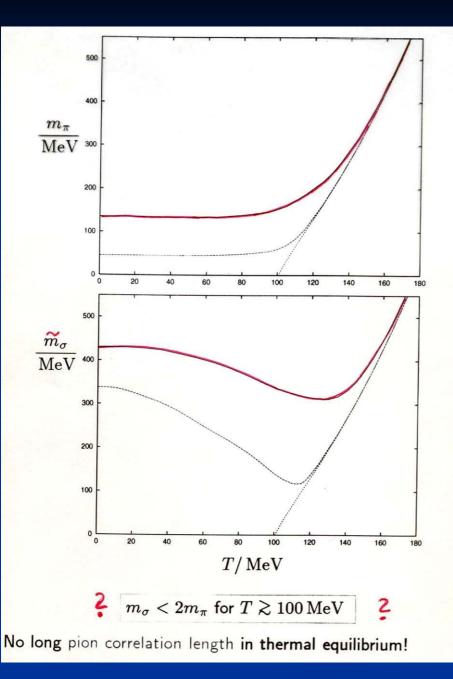
 \implies Explicit link between χ PT domain of validity (4d) and critical (universal) domain near T_c (3d)

Berges, Jungnickel,...

Critical temperature , $N_f = 2$



J.Berges, D.Jungnickel,...



temperature dependent masses pion mass

sigma mass

Critical equation of state Critical behavior for second order phase transitions:

correlation length $\xi = m_R^{-1}$

only relevant length scale

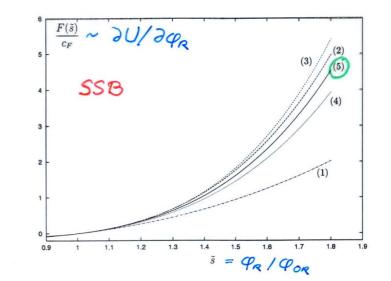
QR: renormalized field variable

U(qR) depends only on mR

 $B \sim \frac{\partial U}{\partial \varphi_R} = F\left(\frac{\varphi_R}{\varpi_R}\right) m_R^{5/2}$ $\frac{1}{Widom \ scaling \ function}$

Scaling form of equation of state

Berges, Tetradis,...



critical equation of state

(2) ERGE, lowest order derivative exp.; Berges, Tetradis,...
(5) ERGE, first order derivative exp.; Scide,...
(1) mean field
(4) high-T-series, loop expansion, E-expansion

(3) Monte Carlo

Universal critical equation of state is valid near critical temperature if the only light degrees of freedom are pions + sigma with O(4) – symmetry.

Not necessarily valid in QCD, even for two flavors !

conclusions

Flow equation for effective average action:

Does it work?

- Why does it work?
- When does it work?
- How accurately does it work?