Emergence of macroscopic laws with **Functional Renormalization**

Macroscopic understanding does not need all details of underlying microscopic physics

motion of planets : m_i
 Newtonian mechanics of point particles
 probabilistic atoms → deterministic planets

2) thermodynamics : T, μ , Gibbs free energy **J**(**T**, μ)

 antiferromagnetic waves for correlated electrons Γ[s_i(x)]

How to get from microphysics to macrophysics ?

1) motion of planets : m_i compute or measure mass of objects (second order more complicated : tides etc.) 2) thermodynamics : $J(T, \mu)$ integrate out degrees of freedom 3) antiferromagnetic waves for correlated electrons $\Gamma[s_i(x)]$ change degrees of freedom

Do it stepwise : functional renormalization

Leo Kadanoff Kenneth Wilson Franz Wegner

Exact renormalization group equation

Exact flow equation

for scale dependence of average action

$$\partial_k \Gamma_k[\varphi] = \frac{1}{2} \text{Tr} \left\{ \left(\Gamma_k^{(2)}[\varphi] + R_k \right)^{-1} \partial_k R_k \right\}$$

'92

$$\left(\Gamma_k^{(2)}\right)_{ab}(q,q') = \frac{\delta^2 \Gamma_k}{\delta \varphi_a(-q) \delta \varphi_b(q')}$$

Tr : $\sum_a \int \frac{d^d q}{(2\pi)^d}$

(fermions : STr)

From

Microscopic Laws (Interactions, classical action)

 to

Fluctuations!

Macroscopic Observation (Free energy functional, effective action)

different laws at different scales

- fluctuations wash out many details of microscopic laws
- new structures as bound states or collective phenomena emerge
- elementary particles earth Universe : key problem in Physics !

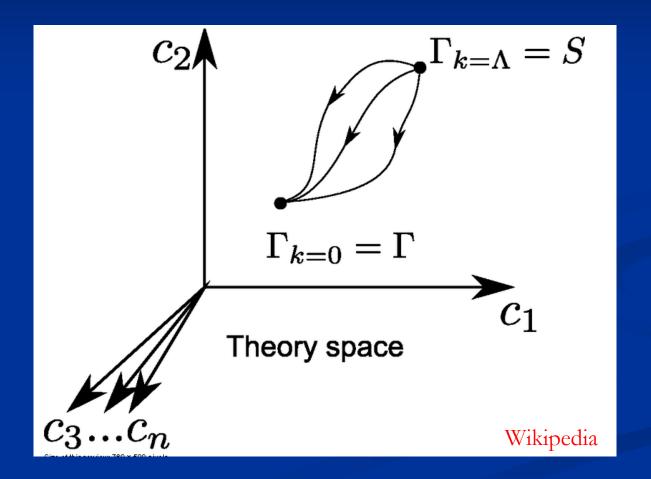
scale dependent laws

scale dependent (running or flowing) couplings

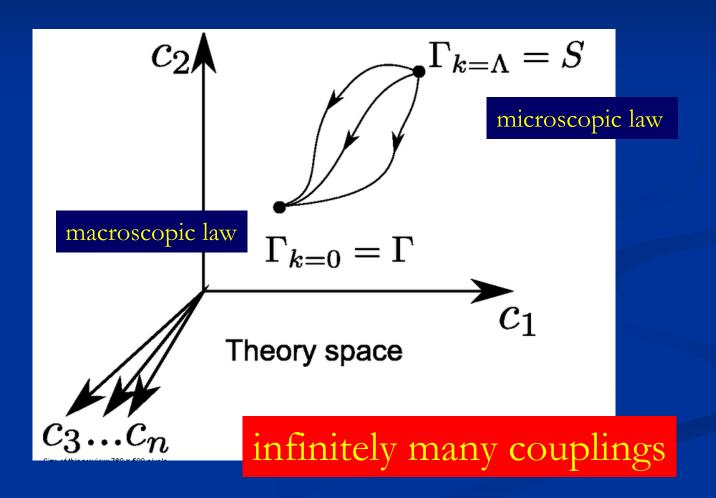
flowing functions

flowing functionals

flowing action



flowing action



flow of functions

Effective potential includes all fluctuations

Average potential U_k

 $\equiv scale dependent effective$ potential $\equiv coarse grained free energy$

Only fluctuations with momenta $q^2 > k^2$ included

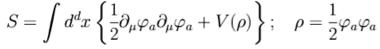
k: infrared cutoff for fluctuations, "average scale" Λ : characteristic scale for microphysics

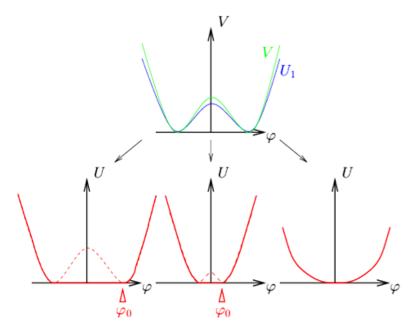
 $U_{\Lambda} \approx S \to U_0 \equiv U$

Scalar field theory

 $\varphi_a(x)$: magnetization, density, chemical concentration, Higgs field, meson field, inflaton, cosmon

O(N)-symmetry:





Flow equation for average potential

 $\frac{\partial_k U_k(\varphi)}{\partial_k U_k(\varphi)} = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$

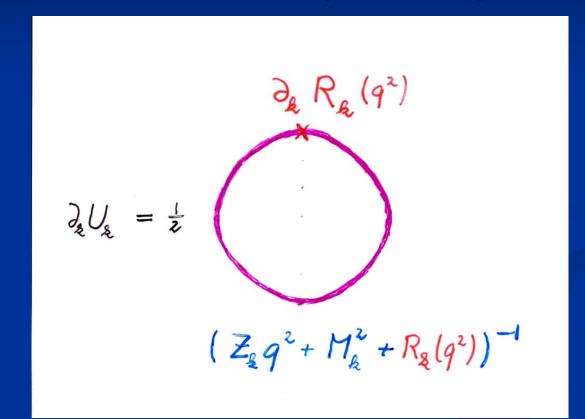
propagator with cutoff

$$ar{M}_{k,ab}^2 = rac{\partial^2 U_k}{\partial \varphi_a \partial \varphi_b}$$
: Mass matrix
 $ar{M}_{k,i}^2$: Eigenvalues of mass matrix

 $\begin{array}{lll} R_k &: & \text{IR-cutoff} \\ \text{e.g} & & R_k \,=\, \frac{Z_k q^2}{e^{q^2/k^2}-1} \\ \text{or} & & R_k \,=\, Z_k (k^2-q^2) \Theta(k^2-q^2) & \text{(Litim)} \end{array}$

 $\lim_{k \to 0} R_k = 0$ $\lim_{k \to \infty} R_k \to \infty$

Simple one loop structure – nevertheless (almost) exact



 $\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k\,i}^2(\varphi)}$

Simple differential equation for O(N) – models , dimension d

$$\partial_t u|_{\tilde{\rho}} = -\frac{du}{du} + (\frac{d}{du} - 2 + \eta)\tilde{\rho}u' + 2v_d \{l_0^d(u' + 2\tilde{\rho}u'';\eta) + (N-1)l_0^d(u';\eta)\}$$

linear cutoff:

$$egin{aligned} u &= rac{U_k}{k^d} \ ilde{
ho} &= Z_k k^{2-d}
ho \ u' &= rac{\partial u}{\partial ilde{
ho}} \ ext{ etc.} \end{aligned}$$

$$l_0^d(w;\eta) = \frac{2}{d}\left(1-\frac{\eta}{d+2}\right)\frac{1}{1+w}$$

$$v_d^{-1} = 2^{d+1} \pi^{d/2} \Gamma\left(\frac{d}{2}\right)$$

 $t = \ln(k)$

Wave function renormalization and anomalous dimension

 Z_k : wave function renormalization

 $k\partial_k Z_k = -\eta_k Z_K$

 η_k : anomalous dimension

 $t = \ln(k/\Lambda)$

 $\partial_t \ln Z = -\eta$

for $Z_k(\varphi,q^2)$: flow equation is **exact** !

Scaling form of evolution equation

$$egin{aligned} u &= rac{U_k}{k^d} \ ilde{
ho} &= Z_k k^{2-d}
ho \ u' &= rac{\partial u}{\partial ilde{
ho}} \ ext{ etc.} \end{aligned}$$

$$\partial_t u|_{\tilde{\rho}} = -du + (d - 2 + \eta)\tilde{\rho}u' + 2v_d \{ l_0^d(u' + 2\tilde{\rho}u''; \eta) + (N - 1) l_0^d(u'; \eta) \}$$

$$v_d^{-1} = 2^{d+1} \pi^{d/2} \Gamma\left(\frac{d}{2}\right)$$

linear cutoff:

$$l_0^d(w;\eta) = \frac{2}{d} \left(1 - \frac{\eta}{d+2}\right) \frac{1}{1+w}$$

On r.h.s. : neither the scale k nor the wave function renormalization Z appear explicitly.

Scaling solution: no dependence on t; corresponds to second order phase transition.

Tetradis ...

unified approach

choose N
choose d
choose initial form of potential
run !

(quantitative results : systematic derivative expansion in second order in derivatives)

unified description of scalar models for all d and N

Flow of effective potential

Ising model

Critical exponents

 η

0.0292

0.0356

0.0385

0.0380

0.0363

0.025

0.003

↑

d = 3

N

0 0.590

1 0.6307

2 0.666

3 0.704

4 0.739

10 0.881

100 0.990

Critical exponents ν and η

ν

0.5878 0.039

0.6308 0.0467

0.6714 0.049

0.7102 0.049

0.7474 0.047

0.886 0.028

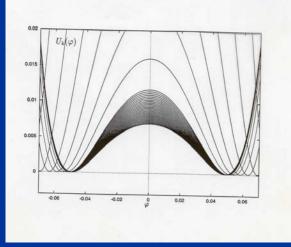
0.0030

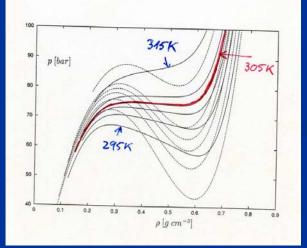
"average" of other methods

 $(typically \pm (0.0010 - 0.0020))$

0.980

↑





Experiment :

S.Seide ...

Critical exponents, d=3

N		ν		η
			0.000	0.0202
0	0.590	0.5878	0.039	0.0292
1	0.6307	0.6308	0.0467	0.0356
2	0.666	0.6714	0.049	0.0385
3	0.704	0.7102	0.049	0.0380
4	0.739	0.7474	0.047	0.0363
10	0.881	0.886	0.028	0.025
100	0.990	0.980	0.0030	0.003
	ERGE	world	ERGE	world

"average" of other methods (typically $\pm (0.0010 - 0.0020)$)

critical exponents, BMW approximation

r							
	N	η	η (other)	ν	ν (other)	ω	ω
						(prelim.)	(other)
	0	0.033(3)	0.028(3) [1]	0.588	0.588(1) [1]	0.80	
	1	0.039(3)	0.0364(2) [2]	0.6298(4)	0.6301(2) [2]	0.78	0.79(1) [1]
			0.0368(2) [3]		0.6302(1) [3]		.,
			0.033(3) [1]		0.630(1) [1]		
	2	0.041(3)	0.0381(2) [4]	0.6719(4)	0.6717(1) [4]	0.78	0.79(1) [1]
			0.035(3) [1]		0.670(2) [1]		
	3	0.040(3)	0.0375(5) [5]	0.709	0.7112(5) [5]	0.73	
			0.036(3) [1]		0.707(4) [1]		
	4	0.038(3)	0.035(5)[1]	0.738	0.741(6) [1]	0.74	0.77(2) [1]
			0.037(1) [6]		0.749(2) [6]		
	5	0.035(3)	0.031(3) [8]	0.768	0.764(4) [8]	0.73	0.77(2) [1]
			0.034(1) [7]		0.779(3) [7]		
	10	0.022(2)	0.024 [9]	0.860	0.859 [9]	0.81	
	20	0.012(1)	0.014 [9]	0.929	0.930 [9]	0.94	
	100	0.0023(2)	0.0027 [10]		0.989 [10]	0.99	

[1] R. Guida and J. Zinn-Justin '98. [2] M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari '02.

[3] Y. Deng and H. W. J. Blote '03. [4] M. Campostrini, M. Hasenbusch, A. Pelissetto, E. Vicari '06.

[5] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari '02. [6] M. Hasenbusch '01.

[7] M. Hasenbusch, A. Pelissetto, E. Vicari '05. [8] A. Butti and F. Parisen Toldin '05.

[9] S. A. Antonenko and A. I. Sokolov '95. [10] M. Moshe and J. Zinn-Justin '03.

Blaizot, Benitez, ..., Wschebor

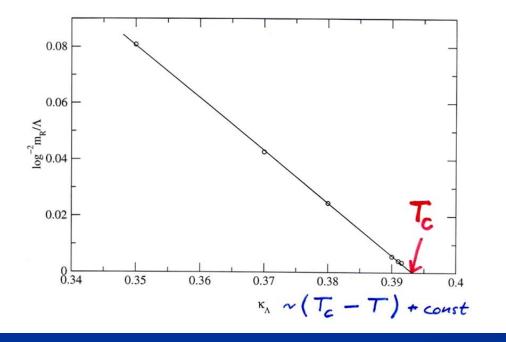
Solution of partial differential equation :

yields highly nontrivial non-perturbative results despite the one loop structure !

Example: Kosterlitz-Thouless phase transition

Essential scaling : d=2, N=2

MR ~ exp{- 1/2}, T>To



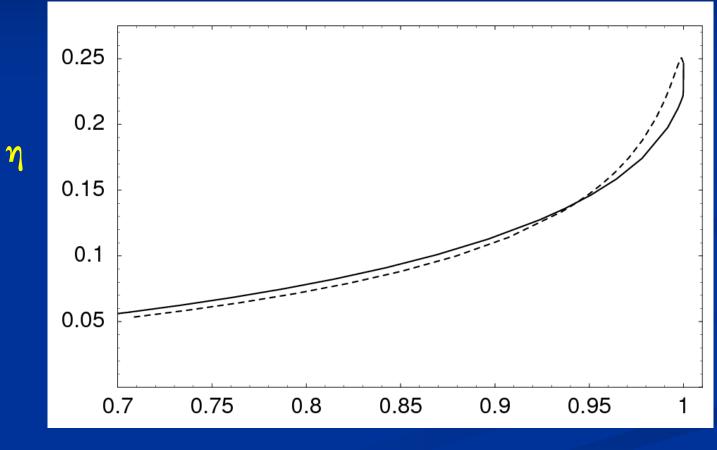
 Flow equation contains correctly the nonperturbative information !
 (essential scaling usually described by vortices)

Von Gersdorff ...

Kosterlitz-Thouless phase transition (d=2,N=2)

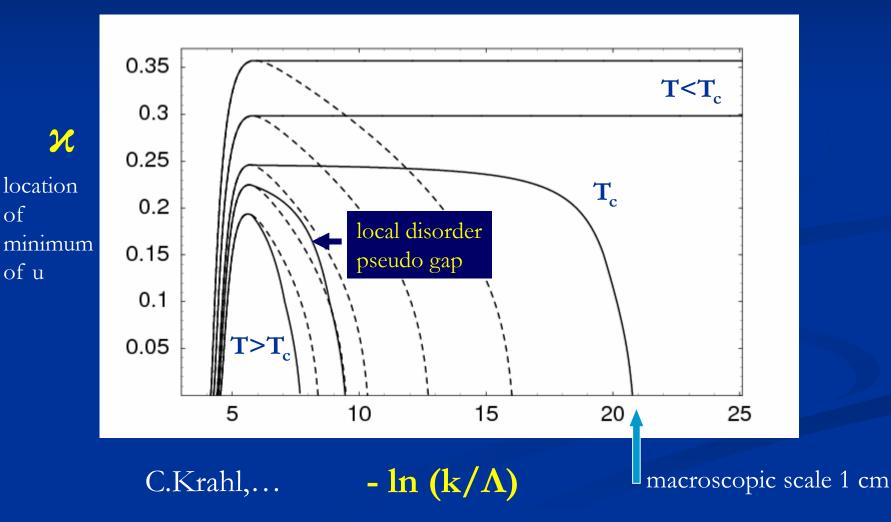
Correct description of phase with Goldstone boson (infinite correlation length) for T<T_c

Temperature dependent anomalous dimension η

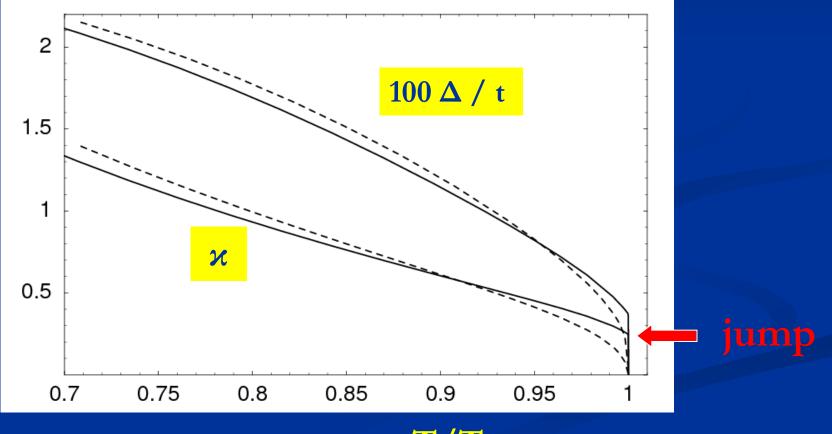


 T/T_{c}

Running renormalized d-wave superconducting order parameter \varkappa in doped Hubbard (-type) model

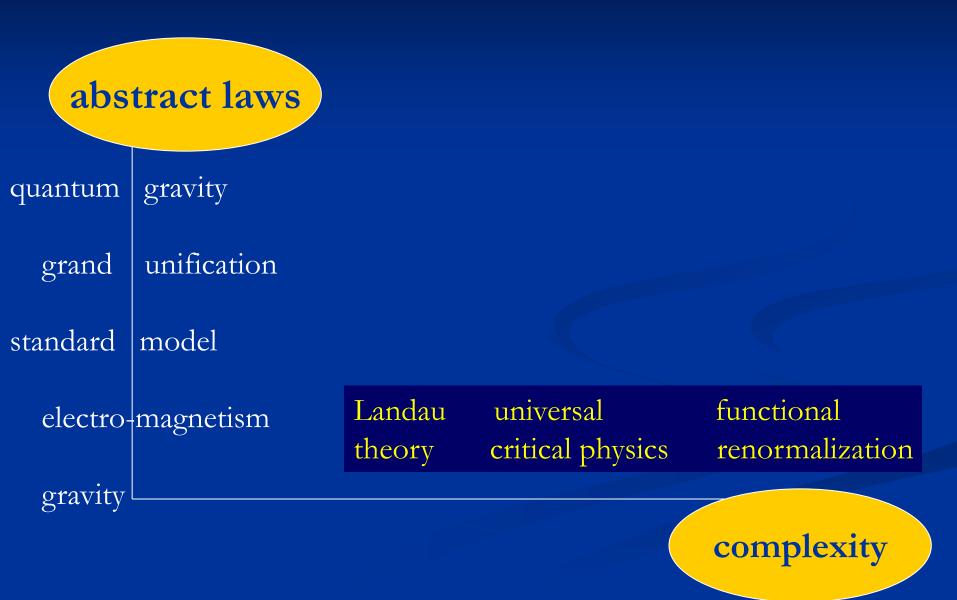


Renormalized order parameter \varkappa and gap in electron propagator Δ in doped Hubbard model



 T/T_{c}

unification



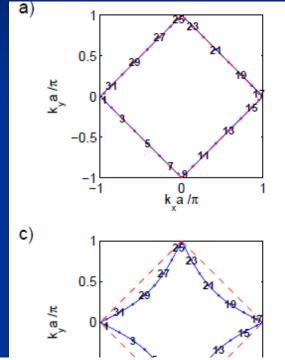
unification: functional integral / flow equation

simplicity of average action
explicit presence of scale
differentiating is easier than integrating...

Unification from Functional Renormalization

- fluctuations in d=0,1,2,3,...
- linear and non-linear sigma models
- vortices and perturbation theory
- bosonic and fermionic models
- relativistic and non-relativistic physics
- classical and quantum statistics
- non-universal and universal aspects
- homogenous systems and local disorder
- equilibrium and out of equilibrium

Flow of four point function Hubbard model



Walter Metzner

Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany

Manfred Salmhofer

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany

Carsten Honerkamp

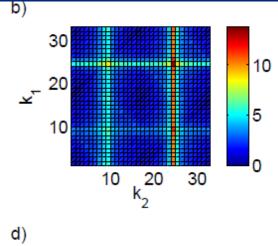
Institut für Theoretische Festkörperphysik and JARA-Fundamentals of Future Information Technology, RWTH Aachen University, D-52056 Aachen, Germany

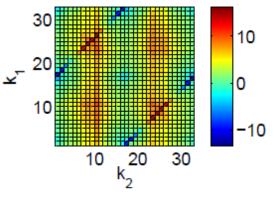
Volker Meden

Institut für Theorie der Statistischen Physik and JARA-Fundamentals of Future Information Technology, RWTH Aachen University, D-52056 Aachen, Germany

Kurt Schönhammer

Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany





FRG for disordered systems

flow of functionals

Exact renormalization group equation

Exact flow equation

for scale dependence of average action

$$\partial_k \Gamma_k[\varphi] = \frac{1}{2} \text{Tr} \left\{ \left(\Gamma_k^{(2)}[\varphi] + R_k \right)^{-1} \partial_k R_k \right\}$$

'92

$$\left(\Gamma_k^{(2)} \right)_{ab} (q, q') = \frac{\delta^2 \Gamma_k}{\delta \varphi_a(-q) \delta \varphi_b(q')}$$

Tr : $\sum_a \int \frac{d^d q}{(2\pi)^d}$

(fermions : STr)

exact inverse propagator, depends on field configuration $\varphi(x) \text{ or } \varphi(q)$

some history ... (the parents)

exact RG equations :

Symanzik eq., Wilson eq., Wegner-Houghton eq., Polchinski eq., mathematical physics

1PI : RG for 1PI-four-point function and hierarchy Weinberg formal Legendre transform of Wilson eq. Nicoll, Chang

non-perturbative flow :

d=3 : sharp cutoff , no wave function renormalization or momentum dependence Hasenfratz²

functional renormalization

- transition from microscopic to effective theory is made continuous
- effective laws depend on scale k
- flow in space of theories
- flow from simplicity to complexity if theory is simple for large k
- or opposite, if theory gets simple for small k

Truncation

equation is exact

$$\partial_k \Gamma_k[\varphi] = \frac{1}{2} \text{Tr} \left\{ \left(\Gamma_k^{(2)}[\varphi] + R_k \right)^{-1} \partial_k R_k \right\}$$

solution needs truncation

systematic expansions sometimes , not always possible
that's where experience , knowledge or intuition enter
not a black box !

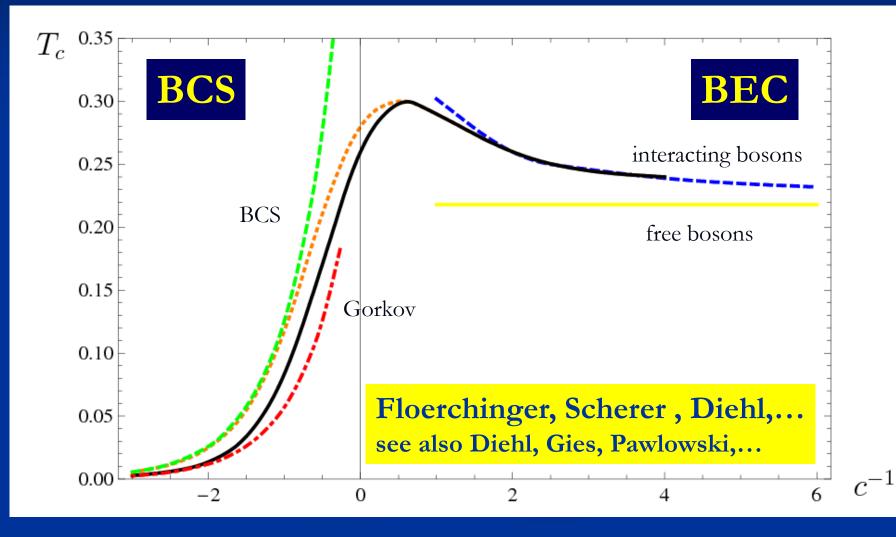
QCD : Short and long distance degrees of freedom are different !

Short distances : quarks and gluons Long distances : baryons and mesons

How to make the transition?

confinement/chiral symmetry breaking

BCS – BEC crossover in ultracold Fermi gases



how to change continuously degrees of freedom ?

add in and remove !

Anti-ferromagnetic order in the Hubbard model

A functional renormalization group study

T.Baier, E.Bick, ... C.Krahl, J.Mueller, S.Friederich

Fermion bilinears

 $\begin{array}{ll} \tilde{\rho}(X) \ = \ \hat{\psi}^{\dagger}(X) \hat{\psi}(X), \\ \tilde{\vec{m}}(X) \ = \ \hat{\psi}^{\dagger}(X) \vec{\sigma} \hat{\psi}(X) \end{array}$

are described by " composite " bosons

fermion interactions can be partially accounted for by exchange of (composite) bosons

Initial fermion – boson action

fermion kinetic term + local interaction ~ U

$$S_{F,\text{kin}} = \sum_{Q} \hat{\psi}^{\dagger}(Q)(i\omega_F - \mu - 2t(\cos q_1 + \cos q_2))\hat{\psi}(Q),$$

boson quadratic term ("classical propagator")

$$S_{B} = \frac{1}{2} \sum_{Q} \left(U_{\rho} \hat{\rho}(Q) \hat{\rho}(-Q) + U_{m} \hat{\vec{m}}(Q) \hat{\vec{m}}(-Q) \right)$$

Yukawa coupling

$$S_Y = -\sum_{QQ'Q''} \delta(Q - Q' + Q'') \times (U_\rho \hat{\rho}(Q) \hat{\psi}^{\dagger}(Q') \hat{\psi}(Q'') + U_m \hat{\vec{m}}(Q) \hat{\psi}^{\dagger}(Q') \vec{\sigma} \hat{\psi}(Q''))$$

no boson dynamics in absence of Yukawa coupling , typical initial situation , bosons only auxiliary fields

Flowing fermion – boson action

$$\begin{split} \Gamma_k[\psi,\psi^*,\phi] &= \sum_Q \psi^*(Q) P_{\psi,k} \psi(Q) \\ &+ \frac{1}{2} \sum_Q \phi(-Q) P_{\phi,k}(Q) \phi(Q) \\ &- \sum_Q h_k(Q) \phi(Q) \tilde{\phi}(-Q) \\ &+ \sum_Q \lambda_{\psi,k}(Q) \tilde{\phi}(Q) \tilde{\phi}(-Q) \end{split}$$

what generates Yukawa coupling?

Flowing bosonisation

k-dependent field redefinition (variable change)

$$\phi_k(Q) = \phi_{\bar{k}}(Q) + \Delta \alpha_k(Q)\tilde{\phi}(Q)$$

 $\partial_k \phi_k(Q) = - \partial_k \alpha_k(Q) \tilde{\phi}(Q)$

shuffles parts of four – fermion interaction generated by the flow into boson exchange interaction exact formalism !

Flowing bosonisation

Evolution with k-dependent field variables

$$\begin{aligned} \partial_k \Gamma_k[\psi, \psi^*, \phi_k] &= \partial_k \Gamma_k[\psi, \psi^*, \phi_k]|_{\phi_k} \\ &+ \sum_Q \left(\frac{\delta}{\delta \phi_k} \Gamma[\psi, \psi^*, \phi_k] \right) \partial_k \phi_k \\ &= \partial_k \Gamma_k[\psi, \psi^*, \phi_k]|_{\phi_k} \\ &+ \sum_Q \left(-\partial_k \alpha_k(Q) P_{\phi,k}(Q) \phi_k(Q) \tilde{\phi}(-Q) \right) \\ &+ h_k(Q) \partial_k \alpha_k(Q) \tilde{\phi}(Q) \tilde{\phi}(-Q)) \end{aligned}$$

modified flow of couplings

$$\begin{aligned} \partial_k h_k(Q) &= \partial_k h_k(Q)|_{\phi_k} + \partial_k \alpha_k(Q) P_{\phi,k}(Q), \\ \partial_k \lambda_{\psi,k}(Q) &= \partial_k \lambda_{\psi,k}(Q)|_{\phi_k} + h_k(Q) \partial_k \alpha_k(Q). \end{aligned}$$

Choose α_k in order to absorb the four fermion coupling in corresponding channel

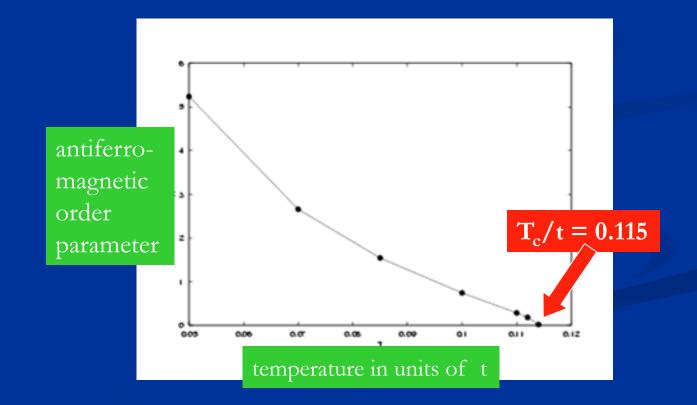
$$\partial_k h_k(Q) = \partial_k h_k(Q)|_{\phi_k} - \frac{P_{\phi,k}(Q)}{h_k(Q)} \partial_k \lambda_{\psi,k}(Q)|_{\phi_k}$$

variable change exploits the freedom of functionals

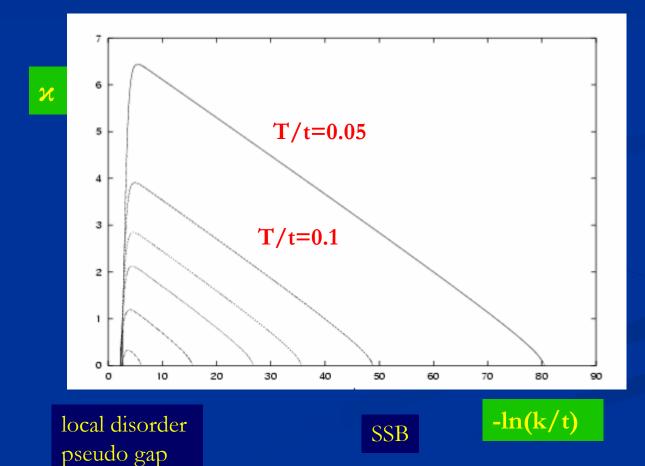
Below the critical temperature :

Infinite-volume-correlation-length becomes larger than sample size

finite sample \approx finite k : order remains effectively



Critical temperature For T<T_c: x remains positive for k/t > 10⁻⁹ size of probe > 1 cm



$$\kappa_a = \frac{Z_a t^2}{T} \alpha_0$$

 $T_c = 0.115$

Pseudo-critical temperature T_{pc}

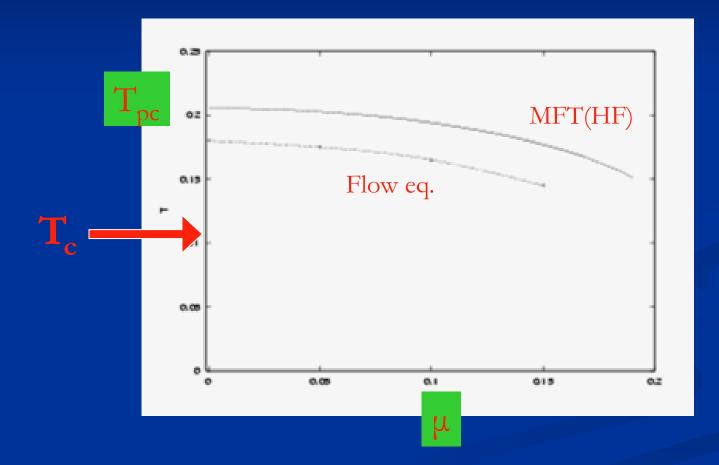
Limiting temperature at which bosonic mass term vanishes (x becomes nonvanishing)

It corresponds to a diverging four-fermion coupling

This is the "critical temperature" computed in MFT !

Pseudo-gap behavior below this temperature

Pseudocritical temperature



Below the pseudocritical temperature

the reign of the goldstone bosons

effective nonlinear $O(3) - \sigma$ - model

critical behavior

for interval $T_c < T < T_{pc}$ evolution as for classical Heisenberg model

cf. Chakravarty, Halperin, Nelson

$$k\partial_k\kappa = \frac{1}{4\pi} + \frac{1}{16\pi^2\kappa} + 0(\kappa^{-2})$$

critical correlation length

$$\xi t = c(T) \exp\left\{20.7\beta(T)\frac{T_c}{T}\right\}$$

 c,β : slowly varying functions

exponential growth of correlation length compatible with observation !

at T_c: correlation length reaches sample size !

Mermin-Wagner theorem ?

No spontaneous symmetry breaking of continuous symmetry in d=2!

not valid in practice !

change of degrees of freedom is crucial for simple picture qualitative changes that make non-perturbative physics accessible :

(1) basic object is simple

average action ~ classical action ~ generalized Landau theory

direct connection to thermodynamics (coarse grained free energy) qualitative changes that make non-perturbative physics accessible :

(2) Infrared scale k instead of Ultraviolet cutoff Λ

short distance memory not lost no modes are integrated out , but only part of the fluctuations is included simple one-loop form of flow simple comparison with perturbation theory

infrared cutoff k

cutoff on momentum resolution or frequency resolution e.g. distance from pure anti-ferromagnetic momentum or from Fermi surface

intuitive interpretation of k by association with physical IR-cutoff, i.e. finite size of system : arbitrarily small momentum differences cannot be resolved ! qualitative changes that make non-perturbative physics accessible :

(3) only physics in small momentum range around k matters for the flow

ERGE regularization

simple implementation on lattice

artificial non-analyticities can be avoided

qualitative changes that make non-perturbative physics accessible :

(4) flexibility

change of fields

microscopic or composite variables

simple description of collective degrees of freedom and bound states

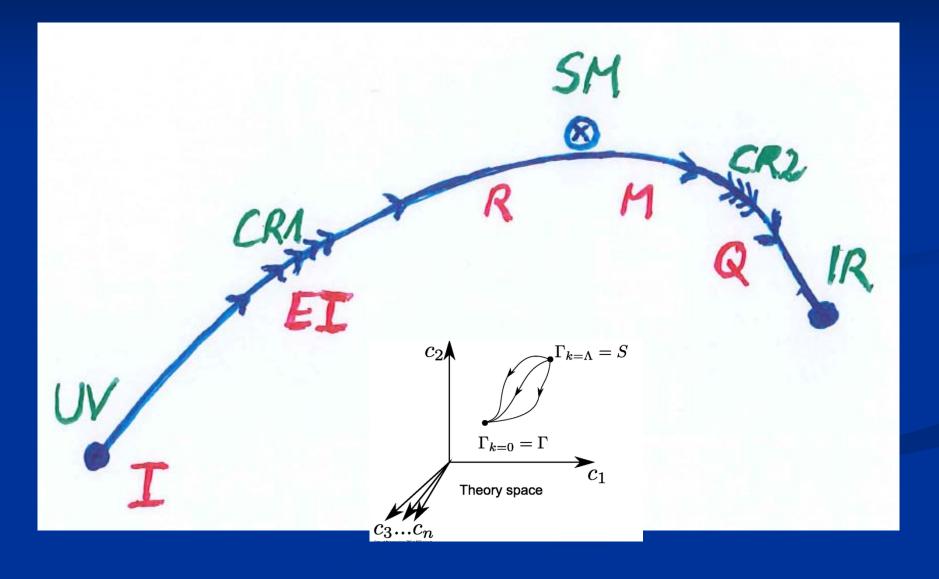
many possible choices of "cutoffs"

The more you want, the more complicated it gets

 works well and conceptually simple for scalars and fermions, including chiral fermions, in equilibrium

- more complex for local gauge
 - theories, gravity
- non- equilibrium : first successes
- disorder : a challenge
- biology, finance?

Crossover in quantum gravity



Variable Gravity

$$\Gamma = \int_x \sqrt{g} \left\{ -\frac{1}{2}\chi^2 R + \mu^2 \chi^2 + \frac{1}{2} \left(B(\chi/\mu) - 6 \right) \partial^\mu \chi \partial_\mu \chi \right\}$$

quantum effective action, variation yields field equations

Einstein gravity : $\Gamma = \int_x \sqrt{g} \left\{ -\frac{1}{2} \mid M^2 \mid R \right\}$

Variable Gravity

- Scalar field coupled to gravity
- Effective Planck mass depends on scalar field
- Simple quadratic scalar potential involves intrinsic mass μ
- Nucleon and electron mass proportional to dynamical Planck mass

$$\Gamma = \int_x \sqrt{g} \left\{ -\frac{1}{2}\chi^2 R + \mu^2 \chi^2 + \frac{1}{2} \left(B(\chi/\mu) - 6 \right) \partial^\mu \chi \partial_\mu \chi \right\}$$

Cosmological solution : crossover from UV to IR fixed point

Dimensionless functions as B depend only on ratio μ/χ.
IR: μ→0 , χ→∞
UV: μ→∞ , χ→0

Cosmology makes crossover between fixed points by variation of χ.

SM

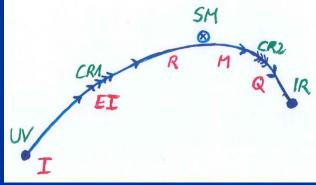
renormalization flow and cosmological evolution

renormalization flow as function of μ
is mapped by dimensionless functions to
 field dependence of effective action on scalar
field χ
translates by solution of field equation to
 dependence of cosmology an time t or η

Origin of mass

UV fixed point : scale symmetry unbroken all particles are massless

 IR fixed point : scale symmetry spontaneously broken, massive particles , massless dilaton



crossover : explicit mass scale μ important

approximate SM fixed point : approximate scale symmetry spontaneously broken, massive particles , almost massless cosmon, tiny cosmon potential Spontaneous breaking of scale symmetry

- expectation value of scalar field breaks scale symmetry spontaneously
- massive particles are compatible with scale symmetry
- in presence of massive particles : sign of exact scale symmetry is exactly massless Goldstone boson – the dilaton

Approximate scale symmetry near fixed points

UV : approximate scale invariance of primordial fluctuation spectrum from inflation

 IR : cosmon is pseudo Goldstone boson of spontaneously broken scale symmetry, tiny mass,
 responsible for dynamical Dark Energy

Simplicity

simple description of all cosmological epochs

natural incorporation of Dark Energy :inflation

Early Dark Energy

present Dark Energy dominated epoch

Asymptotic safety

if UV fixed point exists :

quantum gravity is

non-perturbatively renormalizable !

S. Weinberg, M. Reuter

Fundamental setting

several relevant directions at UV – fixed point crossover to IR fixed points in several steps ■ 1) decoupling of gravity, end of inflation 2) Fermi scale, decoupling of weak interactions ■ 3) QCD- scale, decoupling of hadrons 4) Beyond standard model physics : crossover in neutrino sector \rightarrow onset of dark energy domination

end