
Challenges for 
Functional Renormalization  



Exact renormalization group 
equation 



important success in many areas 

first rate tool if perturbative expansions or 
numerical simulations fail or are difficult 

 
 models with fermions 
 gravity 
 models with largely different length scales 
 non-perturbative renormalizability 



different laws at different scales 

 fluctuations wash out many details of 
microscopic laws 

 new structures as bound states or collective 
phenomena emerge 
 

             key problem in Physics ! 



scale dependent laws 

 scale dependent ( running or flowing ) couplings 
 

 flowing functions 
 

 flowing functionals 



flowing action 

Wikipedia 



flowing action 

microscopic law 

macroscopic law 

infinitely many couplings 



functional renormalization 

 transition from microscopic to effective theory 
is made continuous 

 effective laws depend on scale k 
 flow in space of theories 
 flow from simplicity to complexity if theory is 

simple for large k 
 or opposite , if theory gets simple for small k 

 



challenges for functional 
renormalization 

 reliability and error estimates 
 accessibility 
 exploration of new terrain 
precision and benchmarking 



truncation error 



structure of  
truncated flow equation 

g :  flowing data 
 
ς:  flow generators 



flowing data 

     typically, g can be viewed as functions   
             
 
effective potential U(ρ ) 
inverse relativistic propagator P(p2) 
inverse non-relativistic propagator P( ω , p2) 
momentum dependent four-fermion vertex 
 
 



truncation 

finite number of functions 
functions parameterized by finite set of data 
        e.g. 

   polynomial expansion 
   function values at given arguments 
   ( can be single coupling) 
 
truncation : limitation to restricted set of data 
(finite set for numerical purposes) 



exact flow equations 

   for given set of data : 
 

flow generators ς can be computed exactly   
as formal expressions 



O(N) – scalar model 

first order derivative expansion 

flowing data g : U(ρ ), Z(ρ ), Y(ρ ) 
 
exact generator for U: 



momentum integration 

one loop form of  exact flow equation : 
 
 
 
            σ(q) : input functions 
 
one d-dimensional momentum integration necessary, 
( sometimes analytical integration possible ) 



specification 

For finite set of  data the system of  flow equations is 
not closed ! 
 
σ(q) cannot be computed uniquely from g 
one needs prescription how  σ(q) is determined in 
terms of  g 



specification parameters 

specification typically involves 
           specification parameters s 



Lowest order derivative 
expansion for scalar O(N) model 

 Z(ρ )= Z 
 Y(ρ )=0 
 flowing data : U(ρ ), Z 



Flow equation for average potential 



Simple one loop structure –
nevertheless (almost) exact 



      Scalar field theory 



specification (1) 

one has to specify the exact definition of Z from 
    inverse propagator P(q)  
P: second functional derivative at minimum of 

effective potential - Goldstone mode or radial 
mode 

     Z=∂P/∂q2   at q2=0    or  
     Z=(P(q2=ck2)-P(0))/ck2 

           c is one of the specification parameters 



Which forms of effective action are 
compatible with given data g ? 



specification (2) 

different forms of  inverse propagator are  
compatible with a given definition of  Z 



choice of inverse propagator 



physics knowledge can be put 
into choice of general form of 

input functions ! 



flow parameters  w 

 specification parameters 
 cutoff parameters 
 bosonization parameters 



error estimate 

          vary w within certain priors 



accessibility 



public program with  structure 

for first step :  
individual routines from users / library 



numerical momentum integration 



update of flow 



precision and benchmarking 



benchmarks (1) 

 universal critical physics: 
   O(N)-models : exponents, amplitude ratios, 

equation of state ( including non-perturbative 
physics as Kosterlitz -Thouless transition ) 

 non-abelian non-linear sigma-models in d=2 : 
mass gap, correlation functions 

 Ising model on lattice and other exactly solvable 
models 



benchmarks (2) 

 quantum mechanics 
      a) as d=1 functional integral 
      b) limit n → 0 , T → 0 of many body system,  
          d=3+1 
   scattering length for atoms, dimers,           

Efimov effect with Efimov parameter 
 BCS-BEC crossover for ultracold atoms : 
    all T, n, a 



Floerchinger, Scherer , Diehl,… 
see also Diehl, Gies, Pawlowski,… 

BCS BEC 

free bosons 

interacting bosons 

BCS 

Gorkov 

BCS – BEC crossover 



explore new terrain   

                            up to you ! 



Phase transitions in  
Hubbard Model 

 



Anti-ferromagnetic and 
superconducting order in 

the Hubbard model 

A functional renormalization group study 

T.Baier, E.Bick, … 
C.Krahl, J.Mueller, S.Friederich 



Phase diagram 

AF 
SC 



Mermin-Wagner theorem ? 

No spontaneous symmetry breaking  
    of continuous symmetry in d=2 ! 
 
      not valid in practice ! 



Phase diagram 

Pseudo-critical 
temperature 



challenges for functional 
renormalization 

 reliability and error estimates 
 accessibility 
 exploration of new terrain 
precision and benchmarking 



conclusions 

 

  functional renormalization : 
 
                   bright future 
 
                   substantial work ahead 
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