
Functional renormalisation: 
a bridge from 

microphysics to macrophysics



Functional renormalisation:
from microphysical laws

to macrophysical complexity



Functional integral

Wide applications:

■ partition function in statistical physics
■ whenever you deal with a probability distribution
■ also more general complex weight distributions



Microphysics

Formulated as partition function or functional integral

Microphysical laws are encoded in classical action S 
(microphysical action, related to Hamiltonian)
weight factor in probability distribution e - S

atomic interactions, quantum gravity,
standard model of particle physics, …



Macrophysics

Landau type theories for relevant degrees of freedom

extract properties from variation of effective action :     
field equations, correlation function, 1PI-vertices

superconductors, superfluidity …



Macroscopic understanding 
does not need all details of 

underlying microscopic physics

1) motion of planets      :   mi
Newtonian mechanics of point particles

probabilistic atoms  →  deterministic planets

2) thermodynamics :  T, µ,  Gibbs free energy  J(T,µ)

3) antiferromagnetic waves for correlated electrons
Γ[ si(x)]



How to get from microphysics to 
macrophysics ?

1) motion of planets      :   mi

compute or measure mass of objects
( second order more complicated : tides etc. )

2) thermodynamics :   J( T, µ )
integrate out degrees of freedom

3) antiferromagnetic waves for correlated electrons
Γ[ si(x) ]    change degrees of freedom



central role of fluctuations



Classical and effective action

■ classical action : microscopic laws

■ quantum effective action : macroscopic laws
includes all fluctuation effects

(quantum, thermal, whatsoever…)
field equations are exact
Landau type theory
generates 1PI- correlation functions



Effective action



Field equations

■ The field equations we use for electromagnetism, 
gravity, or superfluidity are macroscopic 
equations.

■ They obtain by variation of the effective action, 
not the microscopic action.

■ “Classical field theory” is exact, but only with 
macroscopic field equations



Emergence of macroscopic laws 
with

Functional Renormalisation 



Do it stepwise : 
functional renormalisation

Leo Kadanoff   Kenneth Wilson    Franz Wegner



Scale dependent effective action

■ average effective action, flowing effective action
■ introduces momentum scale k by an 

infrared cutoff
■ all fluctuations with momenta larger k are included
■ fluctuations with momenta smaller k are not yet 

included

effective laws at scale k





Exact renormalisation group equation

Rk : cutoff function
does not affect 
high momentum fluctuations
cuts off
“infrared fluctuations”



Flowing action

Wikipedia



Flowing action

microscopic law

macroscopic law

infinitely many couplings



Effective potential

Effective potential
= 

non – derivative 
part of 
effective action



Effective potential includes all fluctuations



Scalar field theory



Flow equation for average potential

cutoff

propagator
with cutoff



Simple one loop structure –nevertheless 
(almost) exact



Simple differential equation for 
O(N) – models , dimension d

t = ln( k )



Wave function renormalization and 
anomalous dimension

for Zk (φ,q2) : flow equation is exact !



unified approach

■ choose N
■ choose d
■ choose initial form of potential
■ run !



unified description of 
scalar models for all d and N



Flow of effective potential

Ising  model CO2

T* =304.15 K
p* =73.8.bar
ρ* = 0.442 g cm-2

Experiment :

S.Seide …

Critical exponents



Critical exponents , d=3

ERGE     world ERGE                         world



More sophisticated approximations



Solution of partial differential equation :

yields highly nontrivial non-perturbative 
results despite the one loop structure !

Example:
Kosterlitz-Thouless phase transition



Essential scaling : d=2, N=2

■ Flow equation 
contains correctly 
the non-perturbative 
information !

■ (essential scaling 
usually described by 
vortices)

Von Gersdorff …



Kosterlitz-Thouless phase transition (d=2, N=2)

Correct description of phase with
Goldstone boson 

( infinite correlation length ) 
for T<Tc



Temperature dependent anomalous dimension η

T/Tc

η



Running renormalized d-wave superconducting 
order parameter κ in doped Hubbard (-type ) model

κ

- ln (k/Λ)

Tc

T>Tc

T<Tc

C.Krahl,… macroscopic scale 1 cm

location
of
minimum
of u

local disorder
pseudo gap



Renormalized order parameter κ and gap in electron 
propagator Δ

in doped Hubbard model

100 Δ / t 

κ 

T/Tc

jump



Anti-ferromagnetic and
superconducting order in 

the Hubbard model

A functional renormalization group study

T. Baier, E. Bick,
C. Krahl, J. Mueller, S. Friederich, …



Action for Hubbard model



Truncation for flowing action



Additional bosonic fields

■ anti-ferromagnetic
■ charge density wave
■ s-wave superconducting
■ d-wave superconducting

initial values for flow : bosons are decoupled 
auxiliary fields ( microscopic action )



Effective potential for bosons

SYM

SSB

microscopic :
only “mass terms”



Yukawa coupling between 
fermions and bosons

Microscopic Yukawa couplings vanish !



Kinetic terms for bosonic fields
anti-ferromagnetic 
boson

d-wave superconducting
boson



Phase diagram

AF
SC



Anti-ferromagnetism 
in Hubbard model

■ SO(3) – symmetric scalar model coupled to 
fermions

■ For low enough k : fermion degrees of freedom 
decouple effectively

■ crucial question : running of κ ( location  of 
minimum of effective potential , renormalized , 
dimensionless )



Critical temperature
For T<Tc : κ remains positive for k/t > 10-9

size of probe > 1 cm

-ln(k/t)

κ

Tc=0.115

T/t=0.05

T/t=0.1

local disorder
pseudo gap

SSB



Below the pseudocritical temperature

the reign of the 
goldstone bosons

effective nonlinear O(3) – σ - model



critical behavior

for interval Tc < T < Tpc 
evolution as for classical Heisenberg model

cf. Chakravarty,Halperin,Nelson



Mermin-Wagner theorem ?

No spontaneous symmetry breaking 
of continuous symmetry in d=2 !

not valid in practice !



Below the critical temperature :

temperature in units of  t

antiferro-
magnetic 
order
parameter Tc/t = 0.115

U = 3

Infinite-volume-correlation-length becomes larger than sample size

finite sample ≈ finite k   :   order remains effectively



Flow of four point function
Hubbard model



Many applications

■ Ultracold atoms ( quantum statistics )
■ Disorder
■ Turbulence ( non-equilibrium physics )
■ Density functional
■ Active matter ( biophysics )
■ Economics



Conclusions

■ Functional renormalisation has worked out in 
many areas of physics, 
even biology and economics…

■ try it out !



end


