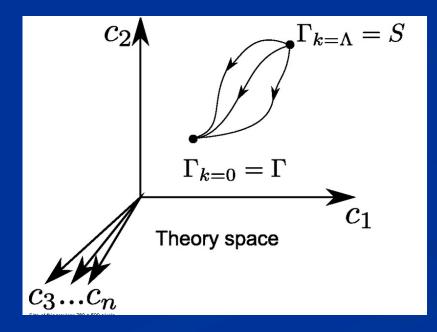
Functional renormalisation: a bridge from microphysics to macrophysics



Functional renormalisation: from microphysical laws to macrophysical complexity

Functional integral

Wide applications:

partition function in statistical physics
whenever you deal with a probability distribution
also more general complex weight distributions

Microphysics

Formulated as partition function or functional integral

Microphysical laws are encoded in classical action S (microphysical action, related to Hamiltonian) weight factor in probability distribution **e** ^{- S}

atomic interactions, quantum gravity, standard model of particle physics, ...

Landau type theories for relevant degrees of freedom

extract properties from variation of effective action : field equations, correlation function, 1PI-vertices

superconductors, superfluidity ...

Macroscopic understanding does not need all details of underlying microscopic physics

motion of planets : m_i
 Newtonian mechanics of point particles
 probabilistic atoms → deterministic planets

2) thermodynamics : T, μ , Gibbs free energy **J**(**T**, μ)

3) antiferromagnetic waves for correlated electrons $\Gamma[s_i(x)]$

How to get from microphysics to macrophysics ?

1) motion of planets : \mathbf{m}_{i} compute or measure mass of objects (second order more complicated : tides etc.) 2) thermodynamics : J(T, µ) integrate out degrees of freedom 3) antiferromagnetic waves for correlated electrons $\Gamma[s_i(x)]$ change degrees of freedom

central role of fluctuations

Classical and effective action

classical action : microscopic laws

 quantum effective action : macroscopic laws includes all fluctuation effects (quantum, thermal, whatsoever...) field equations are exact Landau type theory generates 1PI- correlation functions

Effective action

$$\exp(-\Gamma[\tilde{\varphi}]) = \int D\tilde{\chi} \exp\left\{-S[\tilde{\varphi} + \tilde{\chi}] + \int_x \frac{\partial\Gamma}{\partial\tilde{\varphi}}\tilde{\chi}\right\}$$

Field equations

- The field equations we use for electromagnetism, gravity, or superfluidity are macroscopic equations.
- They obtain by variation of the effective action, not the microscopic action.
 "Classical field theory" is exact, but only with macroscopic field equations

Emergence of macroscopic laws with Functional Renormalisation

Do it stepwise : functional renormalisation

Leo Kadanoff Kenneth Wilson Franz Wegner

Scale dependent effective action

- average effective action, flowing effective action
 introduces momentum scale k by an infrared cutoff
- all fluctuations with momenta larger k are included
 fluctuations with momenta smaller k are not yet included

effective laws at scale k

From

Microscopic Laws (Interactions, classical action)

 to

Fluctuations!

Macroscopic Observation (Free energy functional, effective action)

Exact renormalisation group equation

Exact flow equation

for scale dependence of average action

$$\partial_k \Gamma_k[\varphi] = \frac{1}{2} \text{Tr} \left\{ \left(\Gamma_k^{(2)}[\varphi] + R_k \right)^{-1} \partial_k R_k \right\}$$

1	٦	\sim	
τ		• •	
-2	-7	1	
•	,	_	

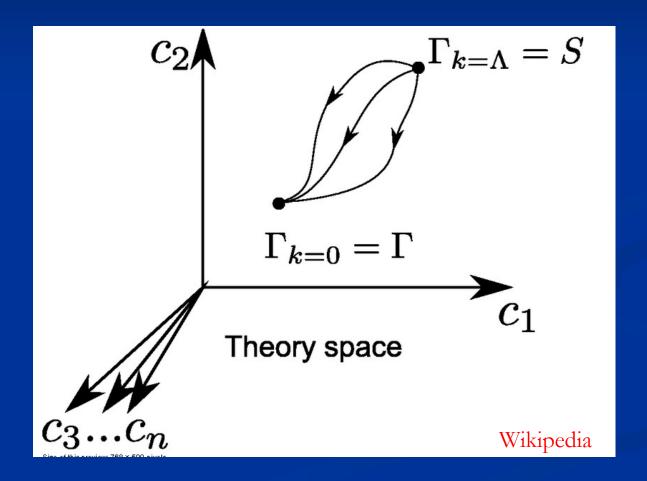
$$\left(\Gamma_k^{(2)}\right)_{ab}(q,q') = \frac{\delta^2 \Gamma_k}{\delta \varphi_a(-q) \delta \varphi_b(q')}$$

Tr : $\sum_a \int \frac{d^d q}{(2\pi)^d}$

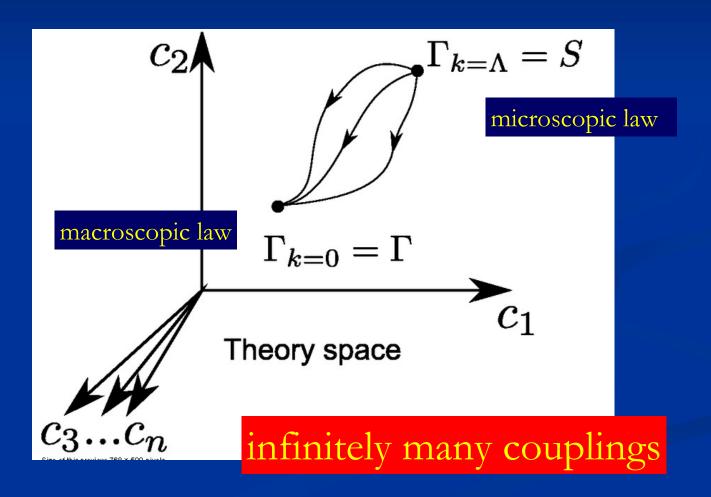
(fermions : STr)

R_k: cutoff function does not affect high momentum fluctuations cuts off "infrared fluctuations"

Flowing action

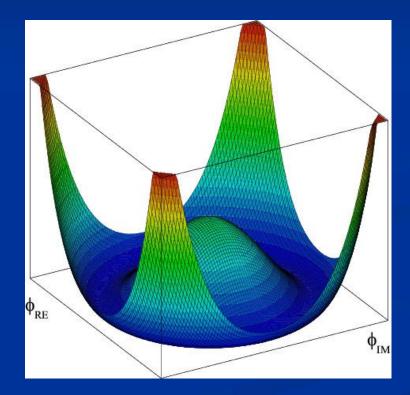


Flowing action



Effective potential

Effective potential = non – derivative part of effective action



Effective potential includes all fluctuations

Average potential U_k

 $\equiv scale dependent effective$ potential $\equiv coarse grained free energy$

Only fluctuations with momenta $q^2 > k^2$ included

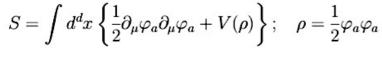
k: infrared cutoff for fluctuations, "average scale" Λ : characteristic scale for microphysics

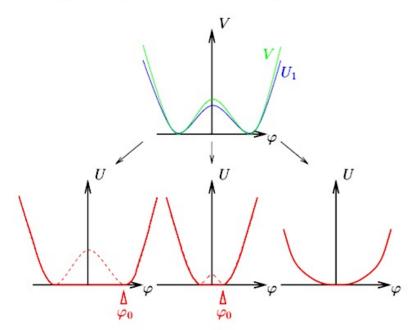
 $U_{\Lambda} \approx S \to U_0 \equiv U$

Scalar field theory

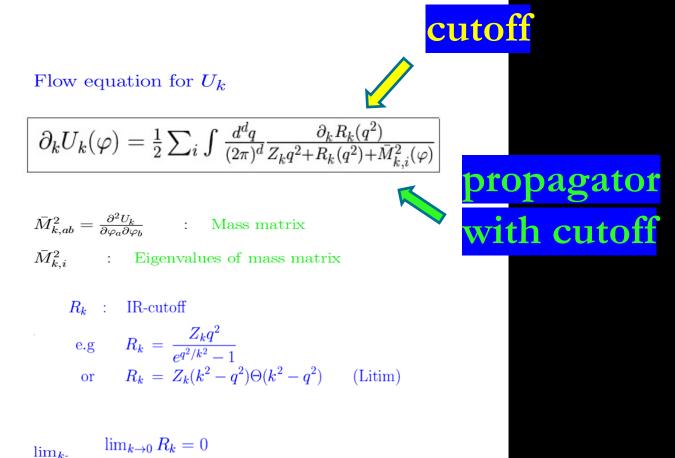
 $\varphi_a(x)$: magnetization, density, chemical concentration, Higgs field, meson field, inflaton, cosmon

O(N)-symmetry:



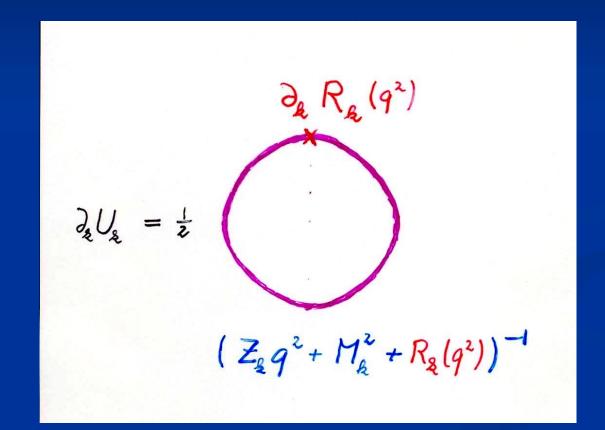


Flow equation for average potential



 $\lim_{k \to \infty} \lim_{k \to \infty} R_k \to \infty$

Simple one loop structure –nevertheless (almost) exact



 $\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$

Simple differential equation for O(N) – models , dimension d

$$\begin{aligned} \partial_t u|_{\tilde{\rho}} &= -\mathbf{d}u + (\mathbf{d} - 2 + \eta)\tilde{\rho}u' \\ &+ 2v_{\mathbf{d}}\{l_0^{\mathbf{d}}(u' + 2\tilde{\rho}u'';\eta) \\ &+ (N-1)\,l_0^{\mathbf{d}}(u';\eta)\} \end{aligned}$$

$$egin{aligned} u &= rac{U_k}{k^d} \ ilde{
ho} &= Z_k k^{2-d}
ho \ u' &= rac{\partial u}{\partial ilde{
ho}} \ ext{ etc.} \end{aligned}$$

linear cutoff:

$$l_0^d(w;\eta) = \frac{2}{d} \left(1 - \frac{\eta}{d+2}\right) \frac{1}{1+w}$$

$$v_d^{-1} = 2^{d+1} \pi^{d/2} \, \Gamma\left(\frac{d}{2}\right)$$

$$t = ln(k)$$

Wave function renormalization and anomalous dimension

 Z_k : wave function renormalization

 $k\partial_k Z_k = -\eta_k Z_K$

 η_k : anomalous dimension

 $t = \ln(k/\Lambda)$

 $\partial_t \ln Z = -\eta$

for $Z_k(\varphi, q^2)$: flow equation is **exact** !

unified approach

choose N
choose d
choose initial form of potential
run !

unified description of scalar models for all d and N

Flow of effective potential

Ising model

Critical exponents

 η

0.0292

0.0356

0.0385

0.0380

0.0363

0.025

0.003

↑

d = 3

N

0 0.590

1 0.6307

2 0.666

3 0.704

4 0.739

10 0.881

100 0.990

Critical exponents ν and η

ν

0.5878 0.039

0.6308 0.0467

0.6714 0.049

0.7102 0.049

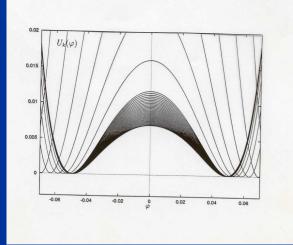
0.7474 0.047

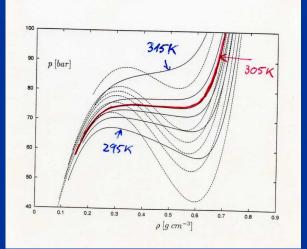
0.886 0.028

0.980 ↑ 0.0030

"average" of other methods

 $(typically \pm (0.0010 - 0.0020))$





Experiment :

T_{*} =304.15 K p_{*} =73.8.bar ρ_{*} = 0.442 g cm-2

S.Seide ...

Critical exponents , d=3

N		ν		η
$0\\1\\2\\3\\4\\10$	0.590 0.6307 0.666 0.704 0.739 0.881	0.5878 0.6308 0.6714 0.7102 0.7474 0.886	0.039 0.0467 0.049 0.049 0.047 0.028	0.0292 0.0356 0.0385 0.0380 0.0363 0.025
100	0.990 ERGE	0.980 world	0.0030 ERGE	0.003 world

"average" of other methods (typically $\pm (0.0010 - 0.0020)$)

More sophisticated approximations

	Correlation-length exponent v											
N	LPA	DE_2	DE ₄	DE ₆	LPA''	BMW	MC	РТ	€-exp	CB		
0	0.5925	0.5879(13)	0.5876(2)		-	0.589	0.58759700(40)	0.5882(11)	0.5874(3)	0.5876(12)		
1	0.650	0.6308(27)	0.62989(25)	0.63012(16)	0.631	0.632	0.63002(10)	0.6304(13)	0.6292(5)	0.629971(4)		
2	0.7090	0.6725(52)	0.6716(6)	_	0.679	0.674	0.67169(7)	0.6703(15)	0.6690(10)	0.6718(1)		
3	0.7620	0.7125(71)	0.7114(9)	-	0.725	0.715	0.7112(5)	0.7073(35)	0.7059(20)	0.7120(23)		
4	0.805	0.749(8)	0.7478(9)	-	0.765	0.754	0.7477(8)	0.741(6)	0.7397(35)	0.7472(87)		

	Anomalous dimension η											
N	DE ₂	DE ₄	DE ₆	LPA"	BMW	MC	PT	€-exp	CB			
0	0.0326(47)	0.0312(9)	-	-	0.034	0.0310434(30)	0.0284(25)	0.0310(7)	0.0282(4)			
1	0.0387(55)	0.0362(12)	0.0361(11)	0.0506	0.039	0.03627(10)	0.0335(25)	0.0362(6)	0.0362978(20)			
2	0.0410(59)	0.0380(13)	-	0.0491	0.041	0.03810(8)	0.0354(25)	0.0380(6)	0.03818(4)			
3	0.0408(58)	0.0376(13)	-	0.0459	0.040	0.0375(5)	0.0355(25)	0.0378(5)	0.0385(13)			
4	0.0389(56)	0.0360(12)	-	0.0420	0.038	0.0360(4)	0.0350(45)	0.0366(4)	0.0378(32)			

1240	Correction-to-scaling exponent ω											
N	LPA	DE ₂	DE ₄	BMW	MC	PT	€-exp	CB				
0	0.66	1.00(19)	0.901(24)	0.83	0.899(14)	0.812(16)	0.841(13)	-				
1	0.654	0.870(55)	0.832(14)	0.78	0.832(6)	0.799(11)	0.820(7)	0.82968(23)				
2	0.672	0.798(34)	0.791(8)	0.75	0.789(4)	0.789(11)	0.804(3)	0.794(8)				
3	0.702	0.754(34)	0.769(11)	0.73	0.773	0.782(13)	0.795(7)	0.791(22)				
4	0.737	0.731(34)	0.761(12)	0.72	0.765	0.774(20)	0.794(9)	0.817(30)				

The nonperturbative functional renormalization group and its applications

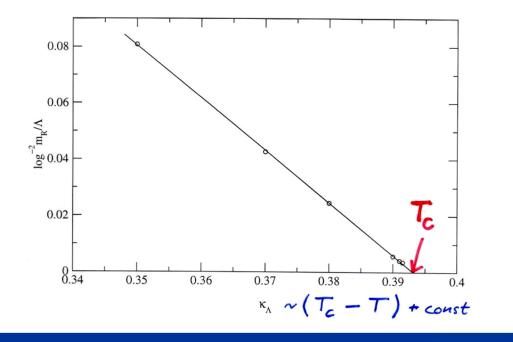
N. Dupuis^a, L. Canet^b, A. Eichhorn^{c,d}, W. Metzner^e, J. M. Pawlowski^{d,f}, M. Tissier^a, N. Wschebor^g

Solution of partial differential equation :

yields highly nontrivial non-perturbative results despite the one loop structure !

Example: Kosterlitz-Thouless phase transition

Essential scaling : d=2, N=2



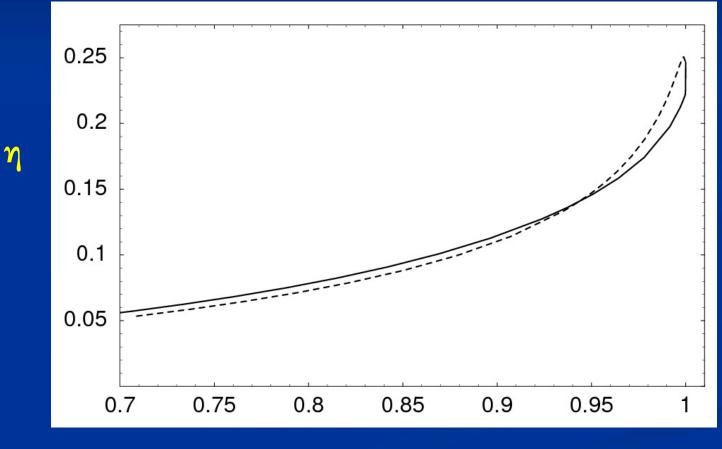
 Flow equation contains correctly the non-perturbative information !

 (essential scaling usually described by vortices)

Kosterlitz-Thouless phase transition (d=2, N=2)

Correct description of phase with Goldstone boson (infinite correlation length) for T<T_c

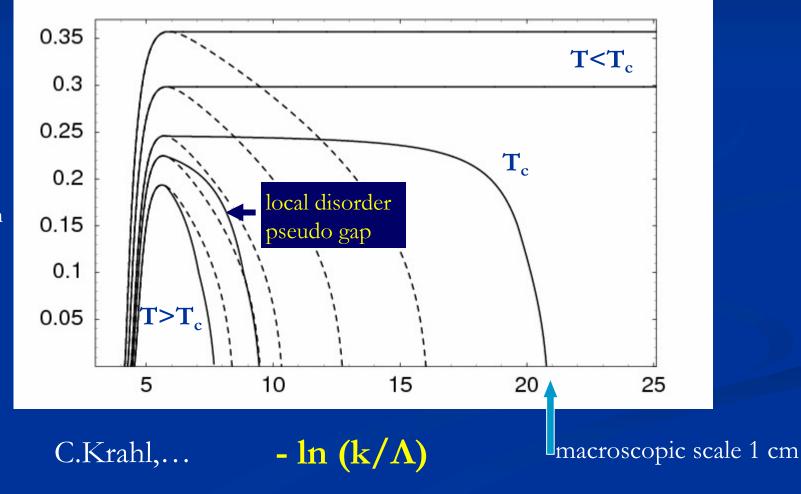
Temperature dependent anomalous dimension η



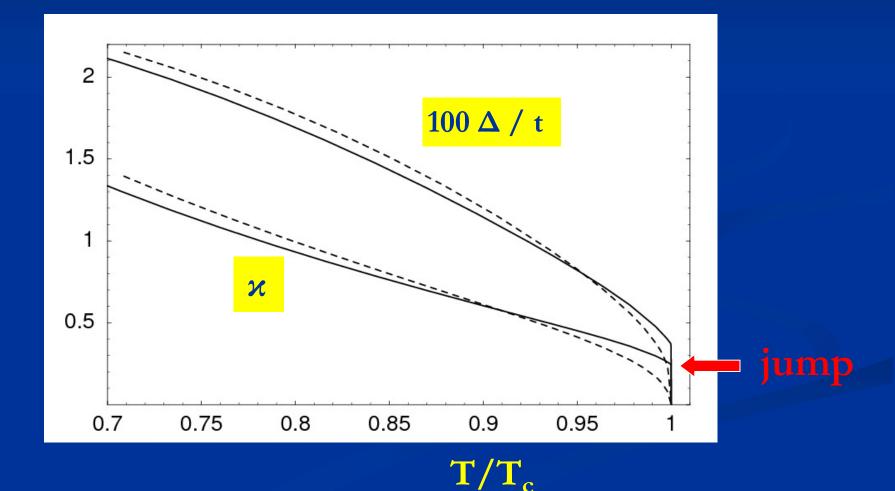
 T/T_c

Running renormalized d-wave superconducting order parameter \varkappa in doped Hubbard (-type) model

X location of minimum of u



Renormalized order parameter \varkappa and gap in electron propagator Δ in doped Hubbard model



Anti-ferromagnetic and superconducting order in the Hubbard model

A functional renormalization group study

T. Baier, E. Bick,C. Krahl, J. Mueller, S. Friederich, ...

Action for Hubbard model

$$\begin{split} S &= \sum_{Q} \hat{\psi}^{\dagger}(Q) [i\omega_{Q} + \xi_{Q}] \hat{\psi}(Q) \\ &+ \frac{U}{2} \sum_{K_{1}, K_{2}, K_{3}, K_{4}} \left[\hat{\psi}^{\dagger}(K_{1}) \hat{\psi}(K_{2}) \right] \left[\hat{\psi}^{\dagger}(K_{3}) \hat{\psi}(K_{4}) \right] \\ &\times \delta \left(K_{1} - K_{2} + K_{3} - K_{4} \right) \,, \end{split}$$

$$\hat{\psi}(Q) = \left(\hat{\psi}_{\uparrow}(Q), \hat{\psi}_{\downarrow}(Q)\right)^{T}$$

$$\xi(\mathbf{q}) = -\mu - 2t(\cos q_x + \cos q_y) - 4t' \cos q_x \cos q_y$$

$$\sum_{Q} = T \sum_{n=-\infty}^{\infty} \int_{-\pi}^{\pi} \frac{d^2 q}{(2\pi)^2},$$
$$\delta(Q - Q') = T^{-1} \delta_{n,n'} (2\pi)^2 \delta^{(2)} (\mathbf{q} - \mathbf{q}')$$

Truncation for flowing action

$$\Gamma_{k}[\chi] = \Gamma_{F,k} + \Gamma_{Fm,k} + \Gamma_{F\rho,k} + \Gamma_{Fs,k} + \Gamma_{Fd,k} + \Gamma_{a,k} + \Gamma_{\rho,k} + \Gamma_{s,k} + \Gamma_{d,k} + \sum_{X} U_{B,k}(\mathbf{a},\rho,s,d)$$

$$\Gamma_F = \Gamma_{F\rm kin} + \Gamma_F^U$$

$$\Gamma_{F\rm kin} = \sum_{Q} \psi^{\dagger}(Q) P_F(Q) \psi(Q)$$

$$P_F(Q) = Z_F(\omega_Q) \left(i \omega_Q + \xi(\mathbf{q}) \right)$$

$$\begin{split} \Gamma_F^U \; = \; \frac{1}{2} \sum_{K_1, K_2, K_3, K_4} U \,\delta \left(K_1 - K_2 + K_3 - K_4 \right) \\ & \times \left[\psi^\dagger(K_1) \psi(K_2) \right] \left[\psi^\dagger(K_3) \psi(K_4) \right]. \end{split}$$

Additional bosonic fields

anti-ferromagnetic
charge density wave
s-wave superconducting
d-wave superconducting

initial values for flow : bosons are decoupled auxiliary fields (microscopic action)

Effective potential for bosons

$$\sum_{X} U_{B}(\mathbf{a}, \rho, s, d) = \sum_{Q} \frac{1}{2} \left(\overline{m}_{a}^{2} \mathbf{a}^{T}(-Q) \mathbf{a}(Q) + \overline{m}_{\rho}^{2} \rho(-Q) \rho(Q) \right) + \overline{m}_{s}^{2} s^{*}(Q) s(Q) + \overline{m}_{d}^{2} d^{*}(Q) d(Q) + \frac{1}{2} \sum_{Q_{1}, Q_{2}, Q_{3}, Q_{4}} \delta(Q_{1} + Q_{2} + Q_{3} + Q_{4}) \times \left(\overline{\lambda}_{a} \alpha(Q_{1}, Q_{2}) \alpha(Q_{3}, Q_{4}) \right) + \overline{\lambda}_{d} \delta(Q_{1}, Q_{2}) \delta(Q_{3}, Q_{4}) + 2 \overline{\lambda}_{ad} \alpha(Q_{1}, Q_{2}) \delta(Q_{3}, Q_{4}) \right),$$
(23)

SYM

microscopic : only "mass terms"

$$\sum_{X} U_{B}(\mathbf{a}, d) = \frac{1}{2} \sum_{Q_{1}, Q_{2}, Q_{3}, Q_{4}} \delta(Q_{1} + Q_{2} + Q_{3} + Q_{4}) \left(\overline{\lambda}_{a} \{ \alpha(Q_{1}, Q_{2}) - \alpha_{0} \delta(Q_{1}) \delta(Q_{2}) \} \times \{ \alpha(Q_{3}, Q_{4}) - \alpha_{0} \delta(Q_{3}) \delta(Q_{4}) \} + \overline{\lambda}_{d} \{ \delta(Q_{1}, Q_{2}) - \delta_{0} \delta(Q_{1}) \delta(Q_{2}) \}$$
(24)
 \times \{ \delta(Q_{3}, Q_{4}) - \delta_{0} \delta(Q_{3}) \delta(Q_{4}) \}
 + 2 \overline{\lambda}_{ad} \{ \alpha(Q_{1}, Q_{2}) - \alpha_{0} \delta(Q_{1}) \delta(Q_{2}) \}
 \times \{ \delta(Q_{3}, Q_{4}) - \delta_{0} \delta(Q_{3}) \delta(Q_{4}) \} \right).

Yukawa coupling between fermions and bosons

 $\Gamma_{Fa} = -\sum_{K,Q,Q'} \overline{h}_a(K) \mathbf{a}(K) \cdot [\psi^{\dagger}(Q)\sigma\psi(Q')]$ $\delta(K - Q + Q' + \Pi),$ $\Gamma_{F\rho} = -\sum_{K,Q,Q'} \overline{h}_{\rho}(K) \rho(K) [\psi^{\dagger}(Q)\psi(Q')] \delta(K - Q + Q'),$ $\Gamma_{Fs} = -\sum_{K,Q,Q'} \overline{h}_s(K) \left(s^*(K) [\psi^T(Q)\epsilon\psi(Q')]\right)$ (12) $-s(K) [\psi^{\dagger}(Q)\epsilon\psi^*(Q')] \delta(K - Q - Q'),$ $\Gamma_{Fd} = -\sum_{K,Q,Q'} \overline{h}_d(K) f_d ((Q - Q')/2) \left(d^*(K) [\psi^T(Q)\epsilon\psi(Q')] - d(K) [\psi^{\dagger}(Q)\epsilon\psi^*(Q')]\right) \delta(K - Q - Q'),$

$$f_d(Q) = f_d(\mathbf{q}) = \frac{1}{2} \left(\cos(q_x) - \cos(q_y) \right)$$

Microscopic Yukawa couplings vanish !

Kinetic terms for bosonic fields

$$\Gamma_{a} = \frac{1}{2} \sum_{Q} \mathbf{a}^{T}(-Q) P_{a}(Q) \mathbf{a}(Q)$$

$$\Gamma_{\rho} = \frac{1}{2} \sum_{Q} \rho(-Q) P_{\rho}(Q) \rho(Q),$$

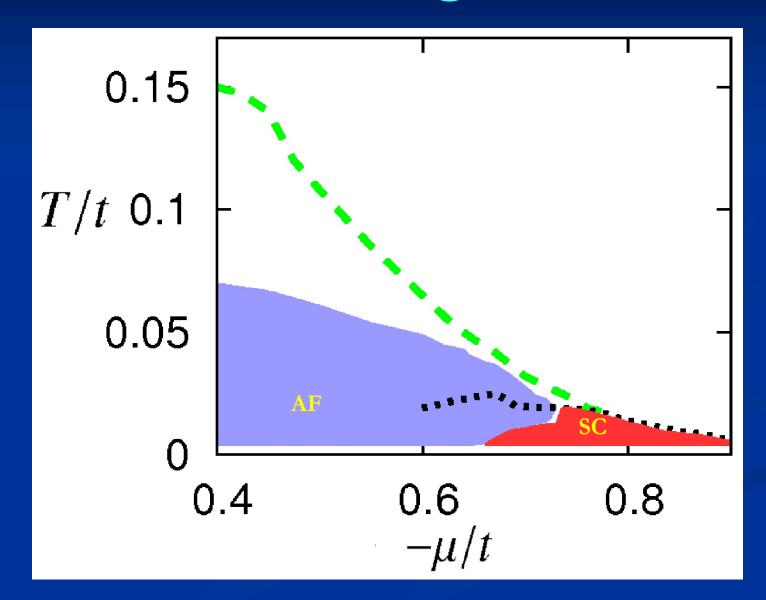
$$\Gamma_{s} = \sum_{Q} s^{*}(Q) P_{s}(Q) s(Q),$$

$$\Gamma_{d} = \sum_{Q} d^{*}(Q) P_{d}(Q) d(Q).$$

$$\mathbf{a}(Q) = \mathbf{m}(Q + \Pi)$$

anti-ferromagnetic

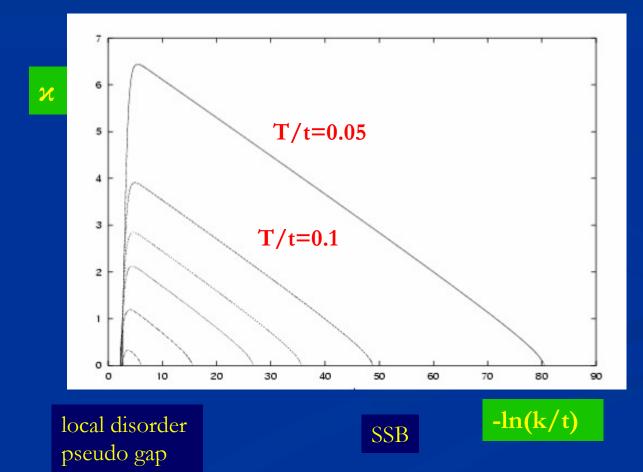
Phase diagram



Anti-ferromagnetism in Hubbard model

- SO(3) symmetric scalar model coupled to fermions
- For low enough k : fermion degrees of freedom decouple effectively
- crucial question : running of x (location of minimum of effective potential, renormalized, dimensionless)

Critical temperature For T<T_c: x remains positive for k/t > 10⁻⁹ size of probe > 1 cm



$$\kappa_a = \frac{Z_a t^2}{T} \alpha_0$$

Below the pseudocritical temperature

the reign of the goldstone bosons

critical behavior

for interval $T_c < T < T_{pc}$ evolution as for classical Heisenberg model

$$k\partial_k\kappa = \frac{1}{4\pi} + \frac{1}{16\pi^2\kappa} + 0(\kappa^{-2})$$

Mermin-Wagner theorem ?

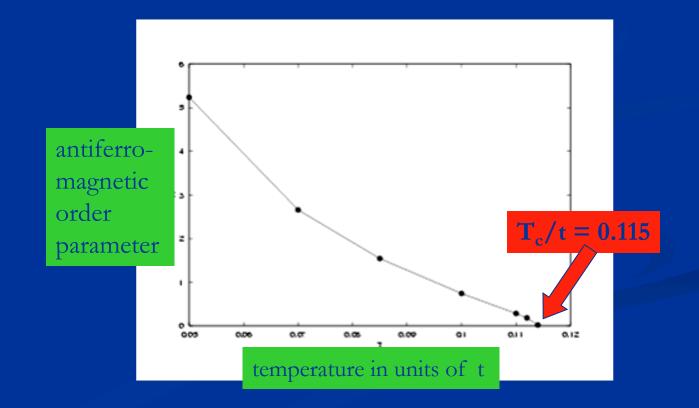
No spontaneous symmetry breaking of continuous symmetry in d=2!

not valid in practice !

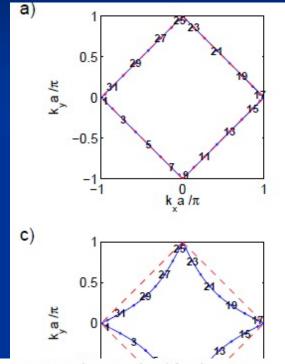
Below the critical temperature :

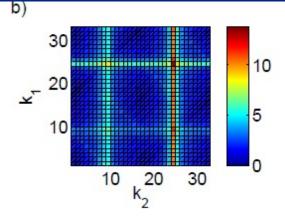
Infinite-volume-correlation-length becomes larger than sample size

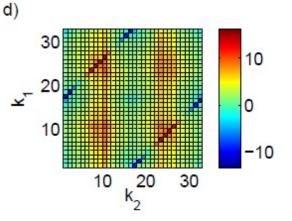
finite sample \approx finite k : order remains effectively



Flow of four point function Hubbard model







Functional renormalization group approach to correlated fermion systems

Walter Metzner

Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany

Manfred Salmhofer

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany

Carsten Honerkamp

Institut für Theoretische Festkörperphysik and JARA-Fundamentals of Future Information Technology, RWTH Aachen University, D-52056 Aachen, Germany

Volker Meden

Institut für Theorie der Statistischen Physik and JARA-Fundamentals of Future Information Technology, RWTH Aachen University, D-52056 Aachen, Germany

Kurt Schönhammer

Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany

Many applications

- Ultracold atoms (quantum statistics)
 Disorder
- Turbulence (non-equilibrium physics)
- Density functional
- Active matter (biophysics)
- Economics

Conclusions

Functional renormalisation has worked out in many areas of physics, even biology and economics...
try it out !

end