Chiral phase transition and

chemical freeze out

Understanding the phase diagram

Order parameters

Nuclear matter and quark matter are separated from other phases by true critical lines
Different realizations of global symmetries
Quark matter: SSB of baryon number B
Nuclear matter: SSB of combination of B and isospin I₃ neutron-neutron condensate

"minimal" phase diagram for nonzero quark masses

< 777? small Crossover 2.0 superfluid U(1)_B broken nuclear matter 1.0

speculation : endpoint of critical line ?

How to find out ?

Methods

 Lattice : One has to wait until chiral limit is properly implemented ! Non-zero chemical potential poses problems.
 Functional renormalization : Not yet available for QCD with quarks and non-zero chemical potential. Nucleons ?

 Models : Simple quark meson models cannot work.
 Polyakov loops ? For low T : nucleons needed. Higgs picture of QCD ?

Experiment : Has T_c been measured ?

Chemical freeze-out and phase diagram

Hadron abundancies

Chemical freeze-out and phase diagram

Chemical freeze-out

Lessons from the hadron world

Chemical freeze-out at high baryon density

Chiral order parameter

Number density

Linear nucleon – meson model

- Protons, neutrons
- Pions, sigma-meson
- Omega-meson (effective chemical potential, repulsive interaction)
- Chiral symmetry fully realized
- Simple description of order parameter and chiral phase transition
- Chiral perturbation theory recovered by integrating out sigma-meson

Linear nucleon – meson model

$$\mathcal{L} = \bar{\psi}_{a} i\gamma^{\nu} (\partial_{\nu} - ig \omega_{\nu} - i\mu \delta_{0\nu}) \psi_{a} + \sqrt{2} h \left[\bar{\psi}_{a} \left(\frac{1+\gamma_{5}}{2} \right) \phi_{ab} \psi_{b} + \bar{\psi}_{a} \left(\frac{1-\gamma_{5}}{2} \right) (\phi^{\dagger})_{ab} \psi_{b} \right] + \frac{1}{2} \phi^{*}_{ab} (-\partial_{\mu} \partial^{\mu}) \phi_{ab} + U_{\text{mic}} (\rho, \sigma) + \frac{1}{4} (\partial_{\mu} \omega_{\nu} - \partial_{\nu} \omega_{\mu}) (\partial^{\mu} \omega^{\nu} - \partial^{\nu} \omega^{\mu}) + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu}.$$

$$\phi_{ab} = \begin{pmatrix} \frac{1}{\sqrt{2}}(\sigma + i\pi^0) & i\pi^- \\ i\pi^+ & \frac{1}{\sqrt{2}}(\sigma - i\pi^0) \end{pmatrix} \quad \rho = \frac{1}{2}\sigma^2$$

$$U_{\rm mic}(\rho,\sigma) = \bar{U}(\rho) - m_{\pi}^2 f_{\pi}\sigma.$$

Effective potential and thermal fluctuations

$$U(\sigma, \omega_0) = U(\rho, \omega_0) - m_\pi^2 f_\pi \sigma \ , \ \rho = \frac{1}{2} \sigma^2,$$

$$\Delta = U(\rho, \omega_0; T, \mu) - U(\rho, \omega_0; 0, \mu_c)$$

For high baryon density and low T : dominated by nucleon fluctuations !

$$U(\sigma, \omega_0; T, \mu) = U_{\text{vac}}(\sigma, \omega_0) - 4 P_{\text{FG}}(T, \mu + g\omega_0, h\sigma)$$

Pressure of gas of nucleons with field-dependent mass

$$U(\sigma, \omega_0; T, \mu) = U_{\text{vac}}(\sigma, \omega_0) - 4 P_{\text{FG}}(T, \mu + g\omega_0, h\sigma)$$

$$P_{\rm FG}(T,\mu,m) = \frac{1}{3} \int \frac{d^3p}{(2\pi)^3} \frac{\vec{p}^2}{\sqrt{\vec{p}^2 + m^2}} \\ \times \left[\frac{1}{e^{\frac{1}{T}(\sqrt{\vec{p}^2 + m^2} - \mu)} + 1} + \frac{1}{e^{\frac{1}{T}(\sqrt{\vec{p}^2 + m^2} + \mu)} + 1} \right]$$

Valid estimate for Δ in indicated region

Input : T=0 potential includes complicated physics of quantum fluctuations in QCD

$$\begin{split} U_{\rm vac}(\sigma,\omega_0) = &\frac{1}{2}m_\pi^2(2\rho - f_\pi^2) + \frac{1}{8}\lambda(2\rho - f_\pi^2)^2 \\ &+ \frac{1}{3}\frac{\gamma_3}{f_\pi^2}(2\rho - f_\pi^2)^3 + \frac{1}{4}\frac{\gamma_4}{f_\pi^4}(2\rho - f_\pi^2)^4 \\ &- m_\pi^2 f_\pi(\sigma - f_\pi) - \frac{1}{2}m_\omega^2\omega_0^2. \end{split}$$

parameters

$$f_{\pi}, m_{\pi}, \lambda, \gamma_3, \gamma_4, m_{\omega}, h \text{ and } g.$$

determined by phenomenology of nuclear matter. Droplet model reproduced. Density of nuclear matter, binding energy, surface tension, compressibility, order parameter in nuclear matter.

other parameterizations : similar results

Effective potential (T=0)

FIG. 4: Effective potential $U(\sigma)$ as a function of the chiral order parameter for T = 0 and chemical potential $\mu = 915$ MeV (dotted line), $\mu = 922.7$ MeV (solid line) and $\mu = 930$ MeV (dashed line).

Effective potential for different T

FIG. 5: Effective potential $U(\sigma)$ as a function of the chiral order parameter at the critical chemical potential of the first order phase transition $\mu = \mu_c(T)$ for temperatures T = 0, T = 5 MeV, T = 10 MeV, T = 15 MeV and T = 20 MeV.

Chiral order parameter

FIG. 6: Chiral order parameter σ_0 as a function of the chemical potential for T = 0 (uppermost curve), T = 10 MeV, T = 20 MeV, T = 30 MeV, T = 40 MeV, T = 50 MeV, T = 60 MeV, T = 70 MeV and T = 80 MeV (lowermost curve). Endpoint of critical line of first order transition

> T = 20.7 MeV $\mu = 900 \text{ MeV}$

Baryon density

FIG. 7: Baryon number density as a function of the chemical potential for T = 0 (lowermost curve), T = 10 MeV, T = 20 MeV, T = 30 MeV, T = 40 MeV, T = 50 MeV, T = 60 MeV, T = 70 MeV and T = 80 MeV (uppermost curve).

Particle number density

FIG. 8: Number density of baryons and pions (solid lines) as well as baryons only (dashed lines) as a function of temperature for the chemical potentials $\mu = 550$ MeV (lowermost curves), $\mu = 650$ MeV, $\mu = 750$ MeV and $\mu = 850$ MeV (uppermost curves).

Energy density

FIG. 9: Energy density of baryons and pions (solid lines) as well as baryons only (dashed lines) as a function of temperature for the chemical potentials $\mu = 550$ MeV (lowermost curves), $\mu = 650$ MeV, $\mu = 750$ MeV and $\mu = 850$ MeV (uppermost curves).

Conclusion (1)

Thermodynamics reliably understood in indicated region of phase diagram

No sign of phase transition or crossover at experimental chemical freeze-out points
 Freeze-out at line of constant number density

$$n = 0.15 n_{\text{nuclear}}$$

Has the critical temperature of the QCD phase transition been measured ?

Heavy ion collision

Yes!

$0.95 T_{c} < T_{ch} < T_{c}$

not : "I have a model where T_c≈ T_{ch} "
 not : "I use T_c as a free parameter and find that in a model simulation it is close to the lattice value (or T_{ch}) "

 $T_{ch} \approx 176 \text{ MeV}$

Hadron abundancies

Has T_c been measured ?

- Observation : statistical distribution of hadron species with "chemical freeze out temperature "T_{ch}=176 MeV
- T_{ch} cannot be much smaller than T_c : hadronic rates for $T < T_c$ are too small to produce multistrange hadrons (Ω ,..)
- Only near T_c multiparticle scattering becomes important
 (collective excitations ...) proportional to high power of density

$$\implies$$
 T_{ch} \approx T_c

P.Braun-Munzinger, J.Stachel, CW

Exclusion argument

Assume temperature is a meaningful concept complex issue

 $T_{ch} < T_c$: \longrightarrow hadrochemical equilibrium

Exclude hadrochemical equilibrium at temperature much smaller than T_c : say for temperatures < 0.95 T_c

 $0.95 < T_{ch} / T_c < 1$

Estimate of critical temperature

For $T_{ch} \approx 176 \text{ MeV}$:

0.95 < T_{ch} /T_c 176 MeV < T_c < 185 MeV 0.75 < T_{ch} /T_c 176 MeV < T_c < 235 MeV

Quantitative issue matters!

lower bound on T_{ch} / T_c

- Two particle scattering rates not sufficient to produce Ω
- "multiparticle scattering for Ω-production ": dominant only in immediate vicinity of T_c

Mechanisms for production of multistrange hadrons

Many proposals

Hadronization

Quark-hadron equilibrium

Decay of collective excitation (σ – field)

Multi-hadron-scattering

Different pictures !

Hadronic picture of Ω - production

Should exist, at least semi-quantitatively, if $T_{ch} < T_c$ (for $T_{ch} = T_c$: $T_{ch} > 0.95 T_c$ is fulfilled anyhow)

e.g. collective excitations ≈ multi-hadron-scattering (not necessarily the best and simplest picture)

multihadron $\rightarrow \Omega + X$ should have sufficient rate

Check of consistency for many models Necessary if $T_{ch} \neq T_c$ and temperature is defined

Way to give quantitative bound on T_{ch} / T_c

Rates for multiparticle scattering

2 pions + 3 kaons -> Ω + antiproton

$$r(n_{in}, n_{out}) = \bar{n}(\mathbf{T})^{n_{in}} |\mathcal{M}|^2 \phi$$

$$\phi = \prod_{k=1}^{n_{out}} \left(\int \frac{d^3 p_k}{(2\pi)^3 (2E_k)} \right) (2\pi)^4 \delta^4 \left(\sum_k p_k^\mu \right)$$

$$r_{\Omega} = n_{\pi}^5 (n_K/n_{\pi})^3 |\mathcal{M}|^2 \phi.$$

Very rapid density increase

... in vicinity of critical temperature

Extremely rapid increase of rate of multiparticle scattering processes

(proportional to very high power of density)

Energy density

Lattice simulations Karsch et al

(even more dramatic for first order transition)

Phase space

- increases very rapidly with energy and therefore with temperature
- \blacksquare effective temperature dependence of time which is needed to produce Ω

$$\tau_{\Omega} \sim T^{-60}$$
 !

This will even be more dramatic if transition is closer to first order phase transition

Production time for Ω

P.Braun-Munzinger, J.Stachel, CW

multi-meson scattering

 $\pi + \pi + \pi + K + K ->$ $\Omega + p$

> strong dependence on pion density

enough time for Ω - production

at T=176 MeV :

consistency !

chemical equilibrium in hadronic phase

requires multi-particle scattering to be important
realized for observed freeze out temperature

chiral phase transition from hadronic perspective

- must exist for crossover (or second order phase transition)
- critical temperature : the temperature when multi-particle scattering becomes dominant
- coincides with freeze-out temperature

extremely rapid change

lowering T by 5 MeV below critical temperature :

rate of Ω – production decreases by factor 10

This restricts chemical freeze out to close vicinity of critical temperature

$$0.95 < T_{ch} / T_c < 1$$

experimental determination of critical temperature may be more precise than lattice results

error estimate becomes crucial

Conclusion (3)

- temperature and chemical potential of phase transition should be determined from distribution of particles which change their abundance only through multi-particle interactions
- pions may still have time to change numbers through few body scattering – results in lower freeze-out temperature for pions

Chemical freeze-out

end