Quantum gravity predictions

<u>for</u>

dark energy

$$\partial_k \Gamma_k[\varphi] = \frac{1}{2} \operatorname{Tr} \left\{ \left(\Gamma_k^{(2)}[\varphi] + R_k \right)^{-1} \partial_k R_k \right\}$$

Predictions

- Dynamical solution of cosmological constant problem
- Prediction of dynamical dark energy

Realistic cosmology?

(1) Largest intrinsic mass scale

 LIMS is the largest mass scale generated by flow of relevant couplings

Explicit violation of quantum scale symmetry

Example QCD with light quarks: confinement scale

Ultraviolet fixed point

- Flow of couplings stops for $k \rightarrow \infty$
- Self-similarity: no explicit dependence on k
- Theory can be extrapolated to arbitrary short distances
- Completeness

Renormalizability

Predictivity

- few relevant parameters govern flow away from UV-fixed point
- translate to renormalizable couplings in standard model or extensions
- generate intrinsic mass scales
- largest one : LIMS
- LIMS only sets overall mass scale
- involves no parameter tuning

(2) LIMS in quantum gravity

Often LIMS is associated to Planck mass ■ No need for that! Proposal: LIMS of the order of neutrino masses or smaller Electron mass, Planck mass much larger? Particle masses given by field

Metric + scalar field

Inflation : add scalar field (inflaton)
Dynamical dark energy or quintessence: add scalar field (cosmon)

$$\Gamma_k = \int_x \sqrt{g'} \left\{ -\frac{\xi}{2} \chi^2 R' + \ldots \right.$$

(3) Spontaneous breaking of quantum scale symmetry and the scale invariant standard model

Non-zero cosmological value of scalar field $\chi(t)$ breaks quantum scale symmetry spontaneously

No intrinsic mass parameter larger than LIMS:
 All masses larger than neutrino masses are proportional to *X*

Scale symmetric standard model

Replace all mass scales by scalar field χ

(1) Higgs potential

(2) Strong gauge coupling, normalized at $\mu = \chi$, is independent of χ

$$g(\chi) = \overline{g}$$
 $\wedge_{\text{QCD}} = \chi \exp\left(-\frac{1}{b_0 \overline{g}^2}\right)$ $b_0 = \frac{1}{16\pi^2}\left(22 - \frac{4}{3}N_f\right)$

(3) Similar for all dimensionless couplings

Quantum effective action for standard model does not involve intrinsic mass or length

Quantum scale symmetry CW'87, Shaposhnikov et al

(4) Scaling solution

 UV – fixed point : scaling solution of functional renormalization

FRG scale k larger than LIMS:

Scaling solution very good approximation
Scaling solution is predictive!

Can the scalar potential be predicted by functional renormalization for quantum gravity ?

Dilaton quantum gravity

functional renormalization for quantum gravity coupled to a scalar field

$$\Gamma = \int_{\chi} \sqrt{g} \left\{ -\frac{1}{2} F(\chi) R + \frac{1}{2} K(\chi) \partial^{\mu} \chi \partial_{\mu} \chi + U(\chi) \right\}$$

Henz, Pawlowski, Rodigast, Yamada, Reichert, Eichhorn, Pauly, Laporte, Pereira, Saueressig,

Wang, Knorr, ... for low order polynomial expansion of potential : Percacci, Narain, ...

Functional flow equation for scalar potential

$$\Gamma_{k} = \int_{x} \sqrt{g'} \left\{ -\frac{\xi}{2} \chi^{2} R' + u(\chi) k^{4} + \frac{1}{2} K \partial^{\mu} \chi \partial_{\mu} \chi \right\}$$
$$k \partial_{k} u = -4u + 2\tilde{\rho} \partial_{\tilde{\rho}} u + 4c_{U} \qquad \tilde{\rho} = \chi^{2} / (2k^{2})$$
$$c_{U} = \frac{1}{128\pi^{2}} \left(\bar{N}_{S}(\tilde{\rho}) + 2\bar{N}_{V}(\tilde{\rho}) - 2\bar{N}_{F}(\tilde{\rho}) + \bar{N}_{g}(\tilde{\rho}) \right)$$

Scaling solution: no explicit dependence of u on k

Generic form of scaling potential

Interpolates between plateaus
Scalar potential = field dependent "cosmological constant"
Effectively massless particles contribute to flow
Different numbers of massless particles in different regions of field space

No quartic coupling $\lambda \chi^4$

Scaling solutions are restrictive

 scaling solutions are solutions of non-linear differential equations
 scaling potential needs to extend over whole range of scalar field
 predictivity !

in presence of gravitational fluctuations: scalar effective potential no longer approximated by polynomial

Coefficient of curvature scalar in standard model

non-minimal coupling of scalar field to gravity: $F = \xi \chi^2 R$

w : dimensionless field dependent squared Planck mass

$$u=\frac{U}{k^4}\,,\quad w=\frac{F}{2k^2}$$

Approximate scaling solution

flat potential: u constant

non-minimal scalar- gravity coupling:

for large scalar field w increases proportional χ^2

 $U = u_0 k^4$

$$F = 2w_0k^2 + \xi\chi^2$$

looks natural no small parameter no tuning

Scaling solution in Einstein frame

Weyl transformation for variable gravity

$$g_{\mu\nu} = (M^2/F)g'_{\mu\nu} \quad \varphi = 4M\ln(\chi/k)$$

$$\Gamma = \int_{\chi} \sqrt{g} \left\{ -\frac{1}{2} F(\chi) R + \frac{1}{2} K(\chi) \partial^{\mu} \chi \partial_{\mu} \chi + U(\chi) \right\}$$

$$\Gamma = \int_{\chi} \sqrt{g} \left\{ -\frac{M^2}{2} R' + \frac{1}{2} Z(\varphi) \partial^{\mu} \varphi \partial_{\mu} \varphi + V(\varphi) \right\}$$

$$V(\varphi) = \frac{UM^4}{F^2}$$

$$Z(\varphi) = \frac{1}{16} \left\{ \frac{\chi^2 K}{F} + \frac{3}{2} \left(\frac{\partial \ln F}{\partial \ln \chi} \right)^2 \right\}$$

Quintessential inflation

Spokoiny, Peebles, Vilenkin, Peloso, Rosati, Dimopoulos, Valle, Giovannini, Brax, Martin, Hossain, Myrzakulov, Sami, Saridakis, de Haro, Salo, Bettoni, Rubio...

(5) Dynamical solution of cosmological constant problem

$$V = \frac{u_0 M^4}{\left(2w_0 + \xi \exp\left(\frac{\varphi}{2M}\right)\right)^2}$$
$$= \frac{u_0 M^4}{\xi^2} \left[1 + \frac{2w_0}{\xi} \exp\left(-\frac{\varphi}{2M}\right)\right]^{-2} \exp\left(-\frac{\varphi}{M}\right)$$

no tiny parameter !

$$V(\varphi) = \frac{UM^4}{F^2}$$

Mass scales in Einstein frame

Renormalization scale k is no longer present Planck mass M not intrinsic: introduced only by change of variables

$$V = \frac{u_0 M^4}{\left(2w_0 + \xi \exp\left(\frac{\varphi}{2M}\right)\right)^2}$$
$$= \frac{u_0 M^4}{\xi^2} \left[1 + \frac{2w_0}{\xi} \exp\left(-\frac{\varphi}{2M}\right)\right]^{-2} \exp\left(-\frac{\varphi}{M}\right)$$

(6) Dynamical dark energy

prediction of (approximate)
 quantum scale symmetry:
 dynamical dark energy ,
 generated by scalar field (cosmon)

C.Wetterich, Nucl.Phys.B302(1988)668, 24.9.87 P.J.E.Peebles, B.Ratra, ApJ.Lett.325(1988)L17, 20.10.87

Cosmon

- Spontaneously broken scale symmetry induces a Goldstone boson
- Massless dilaton
- Intrinsic mass scale from LIMS : Pseudo-Goldstone boson acquires a tiny mass
- Cosmon

Naturally very light scalar particle !

(7) Scaling potential for standard model

Mass thresholds matter

$$\tilde{
ho}\partial_{\tilde{
ho}}u = 2(u-c_U)$$
 $c_U = rac{1}{128\pi^2}(\bar{N}_S(\tilde{
ho}) + 2\bar{N}_V(\tilde{
ho}) - 2\bar{N}_F(\tilde{
ho}) + \bar{N}_g(\tilde{
ho}))$

$$ar{N}_F = \sum_f \left(1 + ilde{m}_f^2
ight)^{-1} \quad \tilde{m}_f^2 = rac{m_f^2(ilde{
ho})}{k^2} \quad m_f = h_f \chi \ , \quad ilde{m}_f^2(ilde{
ho}) = 2h_f^2(ilde{
ho}) ilde{
ho}$$

$$u = \frac{5}{128\pi^2} - \frac{1}{64\pi^2} \sum_f t_u(\tilde{m}_f^2) \qquad \tilde{\rho} \partial_{\tilde{\rho}} t_u = 2t_u - \frac{2}{1 + \tilde{m}_f^2}$$

Quantum scale symmetry violation in neutrino sector

Neutrino masses involve beyond standard model physics

$$m_{\nu} = b_{\nu} \frac{\varphi_0^2(\chi)}{m_{\rm B-L}(\chi)} = \frac{b_{\nu} \varepsilon \chi^2}{g_{\rm B-L}(\chi) \chi} \qquad h_{\nu}(\tilde{\rho}) = \frac{b_{\nu} \varepsilon}{g_{\rm B-L}(\tilde{\rho})}$$
$$g_{\rm B-L}(\tilde{\rho}) = \bar{g}_{\rm B-L} - c_{\rm B-L} \ln\left(\frac{\chi}{L}\right)$$

Effective neutrino Yukawa coupling in Einstein frame

ヽĸノ

$$h_{\nu}(\varphi) = \frac{4b_{\nu}\varepsilon M}{4\bar{g}_{\mathrm{B-L}}M - c_{\mathrm{B-L}}\varphi}$$

Cosmon – neutrino coupling

$$\beta = -\frac{\partial \ln m_{\nu}}{\partial \varphi} M = -\frac{M}{\varphi_c - \varphi} \qquad \frac{\varphi_c}{M} = \frac{4\bar{g}_{\rm B-L}}{c_{\rm B-L}}$$

Scaling potential

Quantum scale symmetry in neutrino sector, $c_{B-L}=0$

Field dependent neutrino masses

U in units of $U_0 = (2.229 \cdot 10^{-3} \,\mathrm{eV})^4$

(8) Cosmology

For quantum scale symmetry in neutrino sector :
dynamical solution of cosmological constant problem, but time evolution of dynamical dark energy is not realistic

Field dependent neutrino mass

realistic cosmology?

equation of state w

Hubble parameter

y=ln(a)

Conclusion

Fixed point of quantum gravity with associated quantum scale symmetry, scaling solutions and relevant parameters is crucial for understanding the evolution of our Universe