Fermions and
non-commuting observables from
classical probabilities




quantum mechanics can be described
by classical statistics !



statistical picture of the world

m basic theory is not deterministic

m basic theory makes only statements about
probabilities for sequences of events and
establishes correlations

m probabilism 1s fundamental , not determinism !

quantum mechanics from classical statistics :
not a deterministic hidden variable theory



Probabilistic realism

Physteal theories and laws
only describe probabilities



Physics only describes probabilities

Gott wurfelt



fermions from classical statistics



microphysical ensemble

B states T

m [abeled by sequences of occupation
numbers or bits n. = 0 or 1

mc=[n_]=[00,10,1,1,0,1,0,1,1,1,1,0,...]

CtC.

m probabilities p. > 0



Grassmann functional integral

action :
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partition function :

Z = / DY(t)DOH(t)g(d(t ) T{e S} g (v(tin))

P(A'), b(t), tin <t < t; / Dy (t)Db(t') = || / diy(t')di(t)



Grassmann wave function
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observables

representation as functional integral
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particle numbers

(N(t)=2"" / D (t'YD (' )gy N (t)
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time evolution




d=2 quantum field theory

h :TJE'+{f x) (Ve(t+e,x—€) —Uy(t, x))
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time evolution of
Grassmann wave function




Lorentz invariance




what 1s an atom ?

B quantum mechanics : isolated object

m quantum field theory : excitation of complicated
vacuum

m classical statistics : sub-system of ensemble with
infinitely many degrees of freedom



one - particle wave function
from coarse graining
of microphysical
classical statistical ensemble

non — commutativity in classical statistics



microphysical ensemble

B states T

m [abeled by sequences of occupation
numbers or bits n. = 0 or 1

mc=[n_]=[00,10,1,1,0,1,0,1,1,1,1,0,...]

CtC.

m probabilities p. > 0



function observable




function observable

V=323 Cns—1)°
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generalized function observable

normalization

classical
expectation
value

several species o E / dzjor(z) =1



position

classical observable :

fixed value for every state t



momentum

B derivative observable

Py = / dz(f1 +(2)0r fo. ()= fo r(2)0z f1 ()]

classical observable :
fixed value for every state 7



complex structure

/ deff(x)f-(x) =1

/ dz fr(x)(—i0y) fr(2)

Xr= / dr fX(x)z fr(x)

= / d:r[fl.-'r "‘ ) Oy fo.r ""_f 0.7(x)0z f1 (2 |]



classical product of position and
momentum observables

commutes !



different products of observables

PR N ‘ pde £ 7V g
(X)r = / dz f(x)x” fr(x)
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differs from classical product
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Which product describes correlations of
measurenIents ¢



coarse graining of information
for subsystems



density matrix from coarse graining

* position and momentum observables use only

small part of the information contained in p_,

* relevant part can be described by density matrix

! " b Py Ry Ifl
p(z,z) =) prfr(z) fi(z))
—

* subsystem described only by information
which 1s contained in density matrix
* coarse graining of information



quantum density matrix

density matrix has the properties of

a quantum density matrix
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quantum operators

\ — \_s pr Xy =Tr(Xp) = / drxp(r,T)
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quantum product of observables

(X)) = / de f-(z)x” fr(x)

the product

(X% =3 pr(X?);
is compatible with the coarse graining

F v 2 ‘ 2
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and can be represented by operator product



incomplete statistics

classical product

(X - X) = E Dr Xf

\ PR N P g
— _ﬂ, Pri [ dx .'I'LT \T )T 3‘ 7\ T ))
- "

B is not computable from information which
is available for subsystem !

m cannot be used for measurements in the subsystem !



classical and quantum dispetsion
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subsystem probabilities
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squared momentum
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quantum product between classical observables :
maps to product of quantum operators



non — commutativity
in classical statistics

(X P)r = / drfr(x)x(—idy) f+(x)

(PX); = / dx f; (2)(—i0, :] T fr(z)

(XP) =tr(XPp) , (PX) =tr(PXp)

commutator depends on choice of product !



measurement correlation

m correlation between measurements of positon
and momentum 1s given by quantum product

m this correlation 1s compatible with information
contained in subsystem

. 1 L
( XP Jm = 3 (4 XP ) +( PX ))

—_—




coarse graining

[from fundamental fermions p([n.])
at the Planck scale
fo atoms at the Bohr scale o(x,x")



conclusion

B quantum Statistics emerges from classical statistics

quantum state, superposition, interference,
entanglement, probability amplitude

B unitary time evolution of quantum mechanics can
be described by suitable time evolution of
classical probabilities

B conditional correlations for measurements both
in quantum and classical statistics
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