Quantum Mechanics
from Classical Statistics



what 1s an atom ?

B quantum mechanics : isolated object

m quantum field theory : excitation of complicated
vacuum

m classical statistics : sub-system of ensemble with
infinitely many degrees of freedom



quantum mechanics can be described
by classical statistics !



quantum mechanics from
classical statistics

probability amplitude
entanglement

interference

superposition of states
fermions and bosons
unitary time evolution
transition amplitude
non-commuting operators

violation of Bell’s inequalities



statistical picture of the world

m basic theory is not deterministic

m basic theory makes only statements about
probabilities for sequences of events and
establishes correlations

m probabilism 1s fundamental , not determinism !

quantum mechanics from classical statistics :
not a deterministic hidden variable theory



essence of quantum mechanics

1)
2)
3)

)

description of appropriate subsystenss of

classical statistical ensenibles

equivalence classes of probabilistic observables

incomplete statistics

correlations between measurements based on
conditional probabilities

unitary time evolution for isolated subsystems



classical statistical implementation
of quantum computer



classical ensemble ,
discrete observable

» Classical ensemble with probabilities

B qubit :
one discrete observable A , values +1 or -1

probabilities to find A=1: w, and A=-1: w




classical ensemble for one qubit

m classical states labeled by

i J1,072,03 } eight states

m state of subsystem depends on three numbers

pPj = E | aip { d1.02, T3 }

01,072,073

B expectation value of qubit




classical probability distribution

plor, o2, 03) = ps(o1,02,03) + 0pe(o1,02,03)

pslor,02.03) = 2 (1 +oip1)(1 4+ o2p2)(1 4 a3p3)

L

characterizes subsystem

Z Ope(oy,02,03) =0, Z gjope(or.02,03) =0

(T .7 .673 d1,02,03

different 6p, characterize environment



state of system independent of
environment

m 0. does not depend on precise choice of op,

pj = E ~ ojp(o1,02,03)

01,02,03

E  Opeloy.oa.03) =0, E | o Opeloy.o0.03) =0

T 07,073 d1,02,03




time evolution

p(t.t') = Su(t, ) pi(d') . SST =1

rotations of g,

s, T
—pk = Tupr . () =—T
ot

example :
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time evolution of classical probability

m cvolution of p, according to evolution of p,

m cvolution of op, arbitrary , consistent with
constraints



state after finite rotation

I.é‘ —

—_—

- ‘2 I.-".-q’ o _ . . 2
CO5S™ ., Vismgpcosy . sin“ ¢
D - D e o
— V2sinpcosy | —2sin“ ¢ . V2singcosy

31§ Qe . VSN Ccos e COS™

p3(t) = pro, p1(t) = p3o, p2(t) = —p20

ps(o1.02,03:1) = ps(03,02,01;0).

Ps(01,02.03:1) ps(o3, —o2,01;0)




this realizes Hadamard gate



purity

consider ensembles with P < 1

purity conserved by time evolution



density matrix

B define hermitean 2x2 matrix :

m properties of density matrix




operators

if observable WM obeys

assoclate hermitean operators

A

tr(A(ex)p)

1 _
5 Pre {7k, Te} = prex

in our case : e;=1 , ¢,=e,=0



quantum law for expectation values

Ve

(A) = tr(Ap)




putre state

P=1 = o=

wave
function

unitary time

"iv":‘r:r ” ' — irr:u:r ” ' "j‘ |: 0 ‘,l

evolution



Hadamard gate




CNOT gate




Four state quantum system
- two qubits -

k=1,...15 P <3

1 ._ ,. ., )
p=—(1+mLle) , tr(Lil;) = 40

4

normalized SU(4) — generators :




four — state quantum system

P = prpx

A=ely, (A) = preg = tr(pA)




suitable rotation of o,

M p3 ., P5 < P71, P8 < P12,

P9 ~— 215 . 210 =~ P14+ P11 — P13

yzelds transformation of the density matrix

P13 <7 P14 s P23 <= P24 5 P31 <7 P41, P32 < P42,

P33 <7 P44 5 P34 < P43

and, reatizes CINOT gate




classical probability distribution
for 2 classical states

ps({on}) =270 H (1 + oxpx)

Y ope({ow}) =0, > ojope({ox}) =0

{ow} {or}

Pj = Z ijP(‘L'TRJ

Tﬁj




probabilistic observables

for a given state of the subsystem , specified by {g,} :

The possible measurement values +1 and -1
of the discrete two - level observables are found

with probabilities w. (o,) and w (o) -

In a quantum state the observables have a probabilistic
distribution of values , rather than a fixed value as for

classical states .



probabilistic quantum observable

spectrum { vy, |
probability that y_1s measured : w,

can be computed from state of subsystem

Z i__l,ﬂ [ f"ﬁt ':l ...:r_ o
X

N ‘TT. - .r% '
/ jg‘_‘r ¥ — f f_. A ‘t' J l{l A ] Xy




non — commuting quantum opetratotrs

for two qubits :
m all [, represent two — level observables

B they do not commute

(A) = tr(Ap)

m the laws of quantum mechanics for expectation values
are realized

B uncertainty relation etc.



incomplete statistics

joint probabilities depend on environment

and are not available for subsystem !

Cip = Z croop({ok}) =pst +p—— —pr— —p_=

{Jﬁ: ]L

Cij = Z TiOjP ( {ok} }

"IL-G—.E: }

ps({ow}) =27 P [0 + own)
K

P=Ps 0P,

> ope({or}) =0, aipe({on}) =0
{on} {ov}



quantum mechanics from
classical statistics

probability amplitude ©
entanglement

interference

superposition of states
fermions and bosons

unitary time evolution ©
transition amplitude
non-commuting operators ©

violation of Bell’s inequalities



conditional correlations



classical correlation

B point wise multiplication of classical observables on the
level ot classical states

m classical correlation depends on probability distribution
for the atom and its environment

® not available on level of probabilistic observables

B definition depends on details of classical observables ,
while many different classical observables correspond
to the same probabilistic observable

needed : correlation that can be formulated
in terms of probabilistic observables and
density matrix !



conditional probability

probability to find value +1 for product

of measurements of A and B

probability to find A=1

after measurement of B=1

. can be expressed in
terms of expectation value
of A in eigenstate of B




measurement correlation

I B."l " m — |: W f_ :lj_ W +.5 f H'rﬁ A ' A

gy

After measurement A=+1 the system

must be in eigenstate with this eigenvalue.
Otherwise repetition of measurement could

otve a different result !




measurement changes state
mn all statistical systemss: !

quantum and. classical

eliminates possibilities that are not realized



Dhysics makes Statenents
abount possible
sequences of events
and their probabilities



unique eigenstates for M=2

+ —tr(BA) , (Wh)? = = F —tr(BA)

4 4




eigenstates with A = 1

P ) 1 iy
P=Mltr(pg,) =1+ ETIX -

PAL — PA+ = Ve (X°+{A. X}) — (

measurement preserves pure states it projection

par = — (1 +A)p(1 +A)

2(14+ (A))"




measurement correlation equals
quantum cotrrelation

probability to measure A=1 and B=1 :

(B) (A) (B)
‘|"‘~;‘ + dmikem €; ])




probability that A and B have both the

value +1 in classical ensemble

)iy =—(1+A)+(B)+{A-B))
P+ 4" L L " o not a pfoperty

probability to measure A and B both +1

(A) (B)

1 (A) | (B (4) ,(B)
H_r++:1(]—|— L €y —l—;m[ + € + dmikem € ])

can be computed from the subsystem



sequence of three measurements
and quantum commutator

~1 BC m — ”1 CB m

two measurements commute , not three



conclusion

B quantum statistics arises from classical statistics

states, superposition , interference ,
entanglement , probability amplitudes

B quantum evolution embedded in classical
evolution

m conditional correlations describe measurements
both in quantum theory and classical statistics



quantum particle from
classical statistics

m quantum and classical particles can be described
within the same classical statistical setting

m different time evolution , corresponding to
different Hamiltonians

B continuous interpolation between quantum and
classical particle possible !



C



time evolution



transition probability

time evolution of probabilities

( fixed observables )

induces transition probability matrix




reduced transition probability

B induced evolution

(£)
4

. 2 N ey i k)
 2orp Oar (L )p () (H) Ay A,

Pm Hf ) Pm ( tf )

Ske(t, 1)




evolution of elements of
density matrix
in two — state quantum system

B infinitesimal time variation

ai’.‘”ﬁl( ) — dl“sﬁf(f TL )('; 1(f IL )pm{ )

fm

m scaling + rotation

0,851 = 9,58T + 9,Ind




time evolution of density matrix

m Hamilton operator and scaling factor




quantum time evolution

It 1s easy to construct explicit ensembles where

mm) quantum time evolution



evolution of purity

change of purity

O (prpr) = 0y (2trp* — 1)
2\P

attraction to randomness :
decoherence

attraction to purity :

syncoherence



classical statistics can describe
decoherence and syncoherence !
unitary quantum evolution : special case



pure state fixed point

pure states are special :

“ no state can be purer than pure

fixed point of evolution for

approach to fixed point I\ = B\, P, pi/ VP, ..)




approach to pure state fixed point

solution : [ EEESEEETEY

1 S EEEEY
£1,2 = 3({1 -+ V H“ 4H

syncoherence describes exponential approach to

pure state if | -
a>0 , a<b< 1(1“

decay of mixed atom state to ground state



Durity conserving evolution :
subsystem 15 well isolated






two bit system and
entanglement

ensembles with P=3



non-commuting operators




SU(4) - generatotrs

L =1, trLy =0, tr(LgL;) = 46

diag(1.1.—1,—1) , Lo = diag(1,—1,1,—1)




density matrix

B pure states : P=3

.r ) . ﬁ ) k
Aler) = el , epep =1 tor A%(er) =1




entanglement

m three commuting observables

L, :bitl,L,:bit2 L,:product of two bits

m cxpectation values of associated observables
related to probabilities to measure the
combinations (++) , etc.

W + W, —W_, —W__

-

I"'i""r_|__|_ — ITT_|_ _ -+ 1[1 4 — IIT_ _




“classical” entangled state

m pure state with maximal anti-correlation of two bits

Wie=W__ =0

® bit 1: random , bit 2: random

m if bit 1 = 1 necessarily bit 2 = -1, and vice versa




classical state described by
entangled density matrix




entangled quantum state




(‘: 1



pure state density matrix

m clements p, are vectors on unit sphere

B can be obtained by unitary transformations

p=UpU" | UU' =UU=1

m SO(3) equivalent to SU(2)



wave function

(4

m “root of pure state density matrix

I;_+;

tr(Ap) = Aapppa = Aaptp)

e
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