Quantum Mechanics from Classical Statistics

what is an atom?

- quantum mechanics : isolated object
- quantum field theory : excitation of complicated vacuum
- classical statistics : sub-system of ensemble with infinitely many degrees of freedom

quantum mechanics can be described

 by classical statistics!
quantum mechanics from classical statistics

- probability amplitude
- entanglement
- interference
- superposition of states
- fermions and bosons
- unitary time evolution
- transition amplitude
- non-commuting operators
- violation of Bell's inequalities

statistical picture of the world

- basic theory is not deterministic
- basic theory makes only statements about probabilities for sequences of events and establishes correlations
- probabilism is fundamental, not determinism !
quantum mechanics from classical statistics: not a deterministic bidden variable theory

essence of quantum mechanics

$$
\begin{aligned}
& \text { description of appropriate subsustems of } \\
& \text { classical statistical ensembles }
\end{aligned}
$$

1) equivalence classes of probabilistic observables
2) incomplete statistics
3) correlations between measurements based on conditional probabilities
4) unitary time evolution for isolated subsystems

classical statistical implementation of quantum computer

classical ensemble , discrete observable

- Classical ensemble with probabilities \hat{p}_{τ}

$$
\hat{p}_{\tau} \geq 0 \quad, \quad \sum_{\tau} \hat{p}_{\tau}=1
$$

- qubit :
one discrete observable A, values +1 or -1 probabilities to find $A=1: w_{+}$and $A=-1$: w_{-}

$$
\langle A\rangle=w_{+}-w_{-}
$$

classical ensemble for one qubit

- classical states labeled by

$$
\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)
$$

\square state of subsystem depends on three numbers

$$
\rho_{j}=\sum_{\sigma_{1}, \sigma_{2}, \sigma_{3}} \sigma_{j} p\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)
$$

- expectation value of qubit

$$
\langle A\rangle=\rho_{3}, w_{+}=\frac{1}{2}\left(1+\rho_{3}\right)
$$

classical probability distribution

$$
p\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=p_{s}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)+\delta p_{e}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)
$$

$$
p_{s}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=\frac{1}{8}\left(1+\sigma_{1} \rho_{1}\right)\left(1+\sigma_{2} \rho_{2}\right)\left(1+\sigma_{3} \rho_{3}\right)
$$

characterizes subsystem

$$
\sum_{\sigma_{1}, \sigma_{2}, \sigma_{3}} \delta p_{e}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=0, \sum_{\sigma_{1}, \sigma_{2}, \sigma_{3}} \sigma_{j} \delta p_{e}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=0
$$

different δp_{e} characterize environment

state of system independent of environment

- ϱ_{j} does not depend on precise choice of δp_{e}

$$
\rho_{j}=\sum_{\sigma_{1}, \sigma_{2}, \sigma_{3}} \sigma_{j} p\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)
$$

$$
\sum_{\sigma_{1}, \sigma_{2}, \sigma_{3}} \delta p_{e}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=0, \sum_{\sigma_{1}, \sigma_{2}, \sigma_{3}} \sigma_{j} \delta p_{e}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=0
$$

time evolution

$$
\rho_{k}\left(t, t^{\prime}\right)=\hat{S}_{k l}\left(t, t^{\prime}\right) \rho_{l}\left(t^{\prime}\right), \hat{S} \hat{S}^{T}=1
$$

rotations of ϱ_{k}

$$
\frac{\partial}{\partial t} \rho_{k}=T_{k l} \rho_{l},(T)^{T}=-T
$$

example :

$$
\left.\begin{array}{l}
\hat{S}= \\
\left(\begin{array}{cccc}
\cos ^{2} \varphi & , & \sqrt{2} \sin \varphi \cos \varphi & , \\
-\sqrt{2} \sin \varphi \cos \varphi & , & 1-2 \sin ^{2} \varphi & , \\
\hline 2 \sin \varphi \cos \varphi \\
\sin ^{2} \varphi & , & -\sqrt{2} \sin \varphi \cos \varphi & ,
\end{array} \cos ^{2} \varphi\right.
\end{array}\right) . ~ l
$$

time evolution of classical probability

- evolution of p_{s} according to evolution of ϱ_{k}
- evolution of $\delta \mathrm{p}_{\mathrm{c}}$ arbitrary , consistent with constraints

state after finite rotation

$$
\varphi(t=\Delta)=\frac{\pi}{2}
$$

$$
\begin{aligned}
& \hat{S}= \\
& \left(\begin{array}{ccc}
\cos ^{2} \varphi & \sqrt{2} \sin \varphi \cos \varphi, & \sin ^{2} \varphi \\
-\sqrt{2} \sin \varphi \cos \varphi, & 1-2 \sin { }^{2} \varphi, & \sqrt{2} \sin \varphi \cos \varphi \\
\sin ^{2} \varphi, & -\sqrt{2} \sin \varphi \cos \varphi, & \cos ^{2} \varphi
\end{array}\right)
\end{aligned}
$$

$$
\rho_{3}(t)=\rho_{1,0}, \rho_{1}(t)=\rho_{3,0}, \rho_{2}(t)=-\rho_{2,0}
$$

$$
\begin{aligned}
p_{s}\left(\sigma_{1}, \sigma_{2}, \sigma_{3} ; t\right) & =p_{s}\left(\sigma_{3}, \sigma_{2}, \sigma_{1} ; 0\right) \\
p_{s}\left(\sigma_{1}, \sigma_{2}, \sigma_{3} ; t\right) & =p_{s}\left(\sigma_{3},-\sigma_{2}, \sigma_{1} ; 0\right)
\end{aligned}
$$

this realizes Hadamard gate

purity

$$
P=\rho_{k} \rho_{k}
$$

consider ensembles with $\mathrm{P} \leq 1$

purity conserved by time evolution

density matrix

- define hermitean 2×2 matrix :

$$
\rho=\frac{1}{2}\left(1+\rho_{k} \tau_{k}\right)
$$

- properties of density matrix

$$
\operatorname{tr} \rho=1 \quad \rho_{\alpha \alpha} \geq 1 \quad \operatorname{tr} \rho^{2} \leq 1
$$

operators

if observable $A\left(e_{k}\right)$ obeys

$$
\left\langle A\left(e_{k}\right)\right\rangle=: \rho_{k} e_{k}
$$

associate hermitean operators

$$
\hat{A}\left(e_{k}\right)=e_{k} \tau_{k}
$$

$$
\begin{aligned}
\left\langle A\left(e_{k}\right)\right\rangle & =\operatorname{tr}\left(\hat{A}\left(e_{k}\right) \rho\right) \\
& =\frac{1}{2} \rho_{k} e_{\ell}\left\{\tau_{k}, \tau_{\ell}\right\}=\rho_{k} e_{k}
\end{aligned}
$$

in our case : $e_{3}=1, e_{1}=e_{2}=0$

quantum law for expectation values

$$
\langle A\rangle=\operatorname{tr}(\hat{A} \rho)
$$

pure state

$$
\mathrm{P}=1 \quad \varrho^{2}=\varrho
$$

wave
function

$$
\rho_{\alpha \beta}=\psi_{\alpha} \psi_{\beta}^{*}, \psi_{\alpha}^{*} \psi_{\alpha}=1
$$

$$
\langle A\rangle=\psi_{\alpha}^{*}\left(\tau_{3}\right)_{\alpha \beta} \psi_{\beta}=\langle\psi| \hat{A}|\psi\rangle
$$

unitary time evolution

$$
\psi_{\alpha}(t)=U_{\alpha \beta}(t) \psi_{\boldsymbol{\beta}}(0)
$$

Hadamard gate

$$
\rho_{3}(t)=\rho_{1,0}, \rho_{1}(t)=\rho_{3,0}, \rho_{2}(t)=-\rho_{2,0}
$$

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1, & 1 \\
1, & -1
\end{array}\right)
$$

CNOT gate

$$
U=\left(\begin{array}{llll}
1, & 0, & 0, & 0 \\
0, & 1, & 0, & 0 \\
0, & 0, & 0, & 1 \\
0, & 0, & 1, & 0
\end{array}\right)
$$

Four state quantum system

- two qubits -

$$
\mathrm{k}=1, \ldots, 15 \quad \mathrm{P} \leq 3
$$

$$
\rho=\frac{1}{4}\left(1+\rho_{k} L_{k}\right), \operatorname{tr}\left(L_{k} L_{l}\right)=4 \delta_{k l}
$$

normalized SU(4) - generators :

$$
\begin{aligned}
L_{1} & =\tau_{3} \otimes 1, L_{2}=1 \otimes \tau_{3}, L_{3}=\tau_{3} \otimes \tau_{3} \\
L_{4} & =1 \otimes \tau_{1}, L_{5}=1 \otimes \tau_{2}, L_{6}=\tau_{3} \otimes \tau_{1} \\
L_{7} & =\tau_{3} \otimes \tau_{2}, L_{8}=\tau_{1} \otimes 1, L_{9}=\tau_{2} \otimes 1 \\
L_{10} & =\tau_{1} \otimes \tau_{3}, L_{11}=\tau_{2} \otimes \tau_{3}, L_{12}=\tau_{1} \otimes \tau_{1} \\
L_{13} & =\tau_{1} \otimes \tau_{2}, L_{14}=-\tau_{2} \otimes \tau_{2}, L_{15}=\tau_{2} \otimes \tau_{1}
\end{aligned}
$$

four - state quantum system

$$
\begin{gathered}
P=\rho_{k} \rho_{k} \\
\hat{A}=e_{k} L_{k},\langle A\rangle=\rho_{k} e_{k}=\operatorname{tr}(\rho \hat{A})
\end{gathered}
$$

$\mathrm{P} \leq 3$
pure state $: \mathrm{P}=3$ and
copurity $C=\operatorname{tr}\left[\left(\rho^{2}-\rho\right)^{2}\right] \quad$ must vanish

$$
\begin{gathered}
\rho_{\alpha \beta}=\psi_{\alpha} \psi_{\beta}^{*}, \psi_{\alpha}=U_{\alpha \beta}\left(\hat{\psi}_{m}\right)_{\beta} \\
\left(\hat{\psi}_{m}\right)_{\beta}=\delta_{m \beta},\langle A\rangle=\psi^{\dagger} \hat{A} \psi
\end{gathered}
$$

suitable rotation of ϱ_{k}

$$
\begin{array}{r}
\rho_{2} \leftrightarrow \rho_{3}, \rho_{5} \leftrightarrow \rho_{7}, \rho_{8} \leftrightarrow \rho_{12} \\
\rho_{9} \leftrightarrow \rho_{15}, \rho_{10} \leftrightarrow \rho_{14}, \rho_{11} \leftrightarrow \rho_{13}
\end{array}
$$

yields transformation of the density matrix

$$
\begin{aligned}
& \rho_{13} \leftrightarrow \rho_{14}, \rho_{23} \leftrightarrow \rho_{24}, \rho_{31} \leftrightarrow \rho_{41}, \rho_{32} \leftrightarrow \rho_{42} \\
& \rho_{33} \leftrightarrow \rho_{44}, \rho_{34} \leftrightarrow \rho_{43}
\end{aligned}
$$

and realizes CNOT gate

$$
U=\left(\begin{array}{llll}
1, & 0, & 0, & 0 \\
0, & 1, & 0, & 0 \\
0, & 0, & 0, & 1 \\
0, & 0, & 1, & 0
\end{array}\right)
$$

classical probability distribution for 2^{15} classical states

$$
\begin{aligned}
p_{s}\left(\left\{\sigma_{k}\right\}\right) & =2^{-15} \prod_{k}\left(1+\sigma_{k} \rho_{k}\right) \\
\sum_{\left\{\sigma_{k}\right\}} \delta p_{e}\left(\left\{\sigma_{k}\right\}\right) & =0, \sum_{\left\{\sigma_{k}\right\}} \sigma_{j} \delta p_{e}\left(\left\{\sigma_{k}\right\}\right)=0 \\
\rho_{j} & =\sum_{\left\{\sigma_{k}\right\}} \sigma_{j} p\left(\left\{\sigma_{k}\right\}\right)
\end{aligned}
$$

probabilistic observables

for a given state of the subsystem, specified by $\left\{\varrho_{k}\right\}$:

The possible measurement values +1 and -1 of the discrete two - level observables are found with probabilities $\mathrm{w}_{+}\left(\varrho_{k}\right)$ and $\mathrm{w}_{-}\left(\varrho_{k}\right)$.

In a quantum state the observables have a probabilistic distribution of values, rather than a fixed value as for classical states .

probabilistic quantum observable

spectrum $\left\{\gamma_{\alpha}\right\}$
probability that γ_{α} is measured : w_{α} can be computed from state of subsystem

$$
\begin{aligned}
\langle A\rangle & =\sum_{\alpha} w_{\alpha}\left(\rho_{k}\right) \gamma_{\alpha} \\
w_{\alpha}\left(\rho_{k}\right) & =\rho_{\alpha \alpha}^{\prime}=\left(U_{A} \rho U_{A}^{\dagger}\right)_{\alpha \alpha}
\end{aligned}
$$

non - commuting quantum operators

for two qubits :

- all L_{k} represent two - level observables
- they do not commute

$$
\langle A\rangle=\operatorname{tr}(\hat{A} \rho)
$$

- the laws of quantum mechanics for expectation values are realized
- uncertainty relation etc.

incomplete statistics

joint probabilities depend on environment

 and are not available for subsystem !$$
\begin{gathered}
C_{12}=\sum_{\left\{\sigma_{k}\right\}} \sigma_{1} \sigma_{2} p\left(\left\{\sigma_{k}\right\}\right)=p_{++}+p_{--}-p_{+-}-p_{-+} \\
C_{i j}=\sum_{\left\{\sigma_{k}\right\}} \sigma_{i} \sigma_{j} p\left(\left\{\sigma_{k}\right\}\right) \\
\mathbf{P =} \mathrm{P}_{\mathrm{s}}+\delta \mathrm{Pe}_{\mathrm{P}} \quad p_{s}\left(\left\{\sigma_{k}\right\}\right)=2^{-15} \prod_{k}\left(1+\sigma_{k} \rho_{k}\right) \\
\sum_{\left\{\sigma_{k}\right\}} \delta p_{e}\left(\left\{\sigma_{k}\right\}\right)=0, \sum_{\left\{\sigma_{k}\right\}} \sigma_{j} \delta p_{e}\left(\left\{\sigma_{k}\right\}\right)=0
\end{gathered}
$$

quantum mechanics from classical statistics

- probability amplitude()
- entanglement
- interference
- superposition of states
- fermions and bosons
- unitary time evolution©
- transition amplitude
- non-commuting operators ()
- violation of Bell's inequalities

conditional correlations

classical correlation

- point wise multiplication of classical observables on the level of classical states
- classical correlation depends on probability distribution for the atom and its environment

- not available on level of probabilistic observables
- definition depends on details of classical observables, while many different classical observables correspond to the same probabilistic observable
needed : correlation that can be formulated in terms of probabilistic observables and density matrix!

conditional probability

$w^{A B}$ $+, \alpha$

 probability to find value +1 for product of measurements of A and $B$$$
\begin{aligned}
w_{+, \alpha}^{A B} & =\left(w_{+}^{A}\right)_{+}^{B} w_{+, \alpha}^{B}+\left(w_{-}^{A}\right)_{-}^{B} w_{-, \alpha}^{B} \\
w_{-, \alpha}^{A B} & =\left(w_{+}^{A}\right)_{-}^{B} w_{-, \alpha}^{B}+\left(w_{-}^{A}\right)_{+}^{B} w_{+, \alpha}^{B}
\end{aligned}
$$

$\left(w^{A}\right)^{B} \quad$ probability to find $\mathrm{A}=1$
after measurement of $B=1$
... can be expressed in terms of expectation value of A in eigenstate of B

$$
\begin{aligned}
\left(w_{ \pm}^{A}\right)_{+}^{B} & =\frac{1}{2}\left(1 \pm\langle A\rangle_{+B}\right) \\
\left(w_{ \pm}^{A}\right)_{-}^{B} & =\frac{1}{2}\left(1 \pm\langle A\rangle_{-B}\right)
\end{aligned}
$$

measurement correlation

$$
\begin{aligned}
\langle B A\rangle_{m}= & \left(w_{+}^{B}\right)_{+}^{A} w_{+, s}^{A}-\left(w_{-}^{B}\right)_{+}^{A} w_{+, s}^{A} \\
& -\left(w_{+}^{B}\right)_{-}^{A} w_{-, s}^{A}+\left(w_{-}^{B}\right)_{-}^{A} w_{-, s}^{A}
\end{aligned}
$$

After measurement $A=+1$ the system must be in eigenstate with this eigenvalue. Otherwise repetition of measurement could give a different result! ρ_{A+}

$$
\left(w_{+}^{B}\right)_{+}^{A}-\left(w_{-}^{B}\right)_{+}^{A}=\operatorname{tr}\left(\hat{B}_{\rho_{A+}}\right)
$$

measurement changes state in all statistical systems!

quantum and classical

eliminates possibilities that are not realized

physics makees statements

about possible

sequences of events and their probabilities

unique eigenstates for $\mathbf{M}=2$

$$
\mathrm{M}=2: \quad \rho_{A+}=\frac{1}{2}(1+\hat{A})
$$

$$
\left(w_{ \pm}^{B}\right)_{+}^{A}=\frac{1}{2} \pm \frac{1}{4} \operatorname{tr}(\hat{B} \hat{A}),\left(w_{ \pm}^{B}\right)_{-}^{A}=\frac{1}{2} \mp \frac{1}{4} \operatorname{tr}(\hat{B} \hat{A})
$$

eigenstates with $\mathbf{A}=1$

$$
\begin{gathered}
\rho_{A+}=\frac{1}{M}(1+\hat{A}+X), \operatorname{tr}(\hat{A} X)=0, \operatorname{tr} X=0 \\
P=M \operatorname{tr}\left(\rho_{A+}^{2}\right)=1+\frac{1}{M} \operatorname{tr} X^{2}
\end{gathered}
$$

$$
\rho_{A+}^{2}-\rho_{A+}=\frac{1}{M^{2}}\left(X^{2}+\{\hat{A}, X\}\right)-\left(1-\frac{2}{M}\right) \rho_{A+}
$$

measurement preserves pure states if projection

$$
\rho_{A+}=\frac{1}{2(1+\langle A\rangle)}(1+\hat{A}) \rho(1+\hat{A})
$$

measurement correlation equals quantum correlation

$$
\langle B A\rangle_{m}=\frac{1}{2} \operatorname{tr}(\{\hat{A}, \hat{B}\} \rho)
$$

probability to measure $A=1$ and $B=1$:

$$
w_{++}=\frac{1}{4}\left(1+\langle A\rangle+\langle B\rangle+\langle A B\rangle_{m}\right)
$$

$$
w_{++}=\frac{1}{4}\left(1+e_{k}^{(A)} e_{k}^{(B)}+\rho_{k}\left[e_{k}^{(A)}+e_{k}^{(B)}+d_{m k} e_{m}^{(A)} e_{l}^{(B)}\right]\right)
$$

probability that A and B have both the value +1 in classical ensemble

$$
\begin{gathered}
p_{++}=\frac{1}{4}(1+\langle\boldsymbol{A}\rangle+\langle\boldsymbol{B}\rangle+\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle) \\
\langle\boldsymbol{A} \cdot \boldsymbol{B}\rangle=\sum_{\tau} p_{\tau} A_{\tau} B_{\tau}
\end{gathered}
$$

not a property
of the subsystem
probability to measure A and B both +1

$$
\begin{gathered}
w_{++}=\frac{1}{4}\left(1+\langle A\rangle+\langle B\rangle+\langle A B\rangle_{m}\right) \\
w_{++}=\frac{1}{4}\left(1+e_{k}^{(A)} e_{k}^{(B)}+\rho_{k}\left[e_{k}^{(A)}+e_{k}^{(B)}+d_{m l k} e_{m}^{(A)} e_{l}^{(B)}\right]\right)
\end{gathered}
$$

can be computed from the subsystem

sequence of three measurements and quantum commutator

$$
\begin{aligned}
\langle A B C\rangle_{m}-\langle A C B\rangle_{m} & =\frac{1}{4} \operatorname{tr}([\hat{A},[\hat{B}, \hat{C}]] \rho) \\
\langle A B C\rangle_{m}-\langle C B A\rangle_{m} & =\frac{1}{4} \operatorname{tr}([\hat{B},[\hat{A}, \hat{C}]] \rho) \\
\langle A B C\rangle_{m}-\langle B A C\rangle_{m} & =0
\end{aligned}
$$

two measurements commute, not three

conclusion

- quantum statistics arises from classical statistics states, superposition, interference, entanglement, probability amplitudes
- quantum evolution embedded in classical evolution
- conditional correlations describe measurements both in quantum theory and classical statistics

quantum particle from classical statistics

- quantum and classical particles can be described within the same classical statistical setting
- different time evolution , corresponding to different Hamiltonians
- continuous interpolation between quantum and classical particle possible!
time evolution

transition probability

time evolution of probabilities

$$
\left.\partial_{t} p_{\sigma}=F_{\sigma}\left(p_{\sigma^{\prime}}\right) \quad \text { (fixed observables }\right)
$$

induces transition probability matrix

$$
p_{\sigma}(t)=\tilde{S}_{\sigma \tau}\left(t, t^{\prime}\right) p_{\tau}\left(t^{\prime}\right)
$$

reduced transition probability

- induced evolution

$$
\partial_{t} \rho_{k}=\sum_{\sigma} \partial_{t} p_{\sigma} \bar{A}_{\sigma}^{(k)}=\sum_{\sigma} F_{\sigma}\left(p_{\sigma^{\prime}}\right) \bar{A}_{\sigma}^{(k)}
$$

- reduced transition probability matrix

$$
\rho_{k}(t)=S_{k \ell}\left(t, t^{\prime}\right) \rho_{\ell}\left(t^{\prime}\right)
$$

$$
S_{k \ell}\left(t, t^{\prime}\right)=\frac{\sum_{\sigma \tau \rho} \tilde{S}_{\sigma \tau}\left(t, t^{\prime}\right) p_{\tau}\left(t^{\prime}\right) p_{\rho}\left(t^{\prime}\right) \bar{A}_{\sigma}^{(k)} \bar{A}_{\rho}^{(\ell)}}{\rho_{m}\left(t^{\prime}\right) \rho_{m}\left(t^{\prime}\right)}
$$

evolution of elements of density matrix

in two - state quantum system

- infinitesimal time variation

$$
\partial_{t} \rho_{k}(t)=\partial_{t} S_{k \ell}\left(t, t^{\prime}\right) S_{\ell m}^{-1}\left(t, t^{\prime}\right) \rho_{m}(t)
$$

- scaling + rotation

$$
\begin{aligned}
& \hline S_{k \ell}=\hat{S}_{k \ell} d \quad \hat{S}_{k \ell}^{-1}=\hat{S}_{\ell k} \\
& \partial_{t} S S^{-1}=\partial_{t} \hat{S} \hat{S}^{T}+\partial_{t} \ln d
\end{aligned}
$$

time evolution of density matrix

- Hamilton operator and scaling factor

$$
\hat{H}=-\frac{1}{4}\left(\partial_{t} \hat{S} \hat{S}^{T}\right)_{\ell m} \varepsilon_{\ell m k} \tau_{k}
$$

$$
\lambda=\partial_{t} \ln d
$$

- Quantum evolution and the rest ?

$$
\partial_{t} \rho=-i[\hat{H}, \rho]+\lambda\left(\rho-\frac{1}{2}\right)
$$

$\lambda=0$ and pure state :

$$
i \partial_{t} \psi=\hat{H} \psi
$$

quantum time evolution

It is easy to construct explicit ensembles where

$$
\lambda=0
$$

evolution of purity

change of purity

$$
\begin{aligned}
\partial_{t} P & =\partial_{t}\left(\rho_{k} \rho_{k}\right)=\partial_{t}\left(2 \operatorname{tr} \rho^{2}-1\right) \\
\partial_{t} P & =2 \lambda P
\end{aligned}
$$

$$
P=\rho_{k} \rho_{k}
$$

attraction to randomness : decoherence

$$
\lambda<0 \quad: \quad P \rightarrow 0
$$ attraction to purity :

$$
\lambda>0 \quad: \quad P \rightarrow 1
$$ syncoherence

classical statistics can describe decoberence and syncoberence! unitary quantum evolution : special case

pure state fixed point

pure states are special :
" no state can be purer than pure "
fixed point of evolution for

$$
P=1 \quad, \quad \lambda=0
$$

approach to fixed point

$$
\partial_{t} \lambda=\beta_{\lambda}\left(\lambda, P, \rho_{k} / \sqrt{P}, \ldots\right)
$$

$$
\beta_{\lambda}=-a \lambda+b(1-P)
$$

approach to pure state fixed point

 solution :$$
1-P=x_{1} e^{-\varepsilon_{1} t}+x_{2} e^{-\varepsilon_{2} t}
$$

$$
\lambda=\varepsilon_{1} x_{1} e^{-\varepsilon_{1} t}+\varepsilon_{2} x_{2} e^{-\varepsilon_{2} t}
$$

$$
\varepsilon_{1,2}=\frac{1}{2}\left(a \pm \sqrt{a^{2}-4 b}\right.
$$

syncoherence describes exponential approach to pure state if

$$
a>0, \quad a<b<\frac{1}{4} a^{2}
$$

decay of mixed atom state to ground state
purity conserving evolution: subsystem is well isolated

two bit system and entanglement

ensembles with $\mathrm{P}=3$

non-commuting operators

15 spin observables labeled by

$$
e_{k} \quad, \quad k=1 \ldots 15
$$

$\rho_{k}=\sum_{\sigma} p_{\sigma} \bar{A}_{\sigma}^{(k)} \quad, \quad\left\langle A\left(e_{k}\right)\right\rangle=\sum_{k} \rho_{k} e_{k} \quad, \quad-1 \leq \rho_{k} \leq 1$
density matrix

$$
\rho=\frac{1}{4}\left(1+\rho_{k} L_{k}\right)
$$

$$
L_{k}^{2}=1 \quad, \quad \operatorname{tr} L_{k}=0 \quad, \quad \operatorname{tr}\left(L_{k} L_{\ell}\right)=4 \delta_{k \ell}
$$

SU(4) - generators

$$
L_{k}^{2}=1, \operatorname{tr} L_{k}=0, \operatorname{tr}\left(L_{k} L_{l}\right)=4 \delta_{k l}
$$

$$
L_{1}=\operatorname{diag}(1,1,-1,-1), L_{2}=\operatorname{diag}(1,-1,1,-1)
$$

$$
L_{3}=\operatorname{diag}(1,-1,-1,1)
$$

$$
L_{4}=\left(\begin{array}{cc}
\tau_{1}, & 0 \\
0, & \tau_{1}
\end{array}\right) \quad L_{5}=\left(\begin{array}{cc}
\tau_{2}, & 0 \\
0, & \tau_{2}
\end{array}\right)
$$

$$
L_{6}=\left(\begin{array}{cc}
\tau_{1}, & 0 \\
0, & -\tau_{1}
\end{array}\right), L_{7}=\left(\begin{array}{cc}
\tau_{2}, & 0 \\
0, & -\tau_{2}
\end{array}\right)
$$

density matrix

- pure states : $\mathrm{P}=3$

$$
\operatorname{tr} \rho^{2}=\frac{1}{4}\left(1+\rho_{k} \rho_{k}\right)=\frac{1}{4}(1+P)
$$

$$
P \leq 3 \quad: \quad \operatorname{tr} \rho^{2} \leq 1
$$

$$
\hat{A}\left(e_{k}\right)=e_{k} L_{k} \quad, \quad e_{k} e_{k}=1 \quad \text { for } \quad \hat{A}^{2}\left(e_{k}\right)=1
$$

entanglement

- three commuting observables
$L_{1}=\left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & -1 & \\ & & & -1\end{array}\right) \quad, \quad L_{2}=\left(\begin{array}{llll}1 & & & \\ & -1 & & \\ & & 1 & \\ & & & -1\end{array}\right) \quad, \quad L_{3}=\left(\begin{array}{llll}1 & & & \\ & -1 & & \\ & & -1 & \\ & & & 1\end{array}\right)$
L_{1} : bit $1, \mathrm{~L}_{2}$: bit $2 \mathrm{~L}_{3}$: product of two bits
- expectation values of associated observables related to probabilities to measure the combinations $(++)$, etc.

$$
\begin{aligned}
& \left\langle T_{1}\right\rangle=W_{++}+W_{+-}-W_{-+-} W_{--} \\
& \left\langle T_{2}\right\rangle=W_{++}-W_{+-}+W_{-+}-W_{--} \\
& \left\langle T_{3}\right\rangle=W_{++}-W_{+-}-W_{-+}+W_{--}
\end{aligned}
$$

"classical" entangled state

- pure state with maximal anti-correlation of two bits

$$
W_{++}=W_{--}=0 \quad, \quad W_{+-}=W_{-+}=\frac{1}{2}
$$

- bit 1: random, bit 2: random
- if bit $1=1$ necessarily bit $2=-1$, and vice versa

$$
\left\langle L_{1}\right\rangle=\left\langle L_{2}\right\rangle=0 \quad, \quad\left\langle L_{3}\right\rangle=-1
$$

classical state described by entangled density matrix

$$
\rho=\frac{1}{2}\left(\begin{array}{rrrr}
0, & 0, & 0, & 0 \\
0, & 1, & \pm 1, & 0 \\
0, & \pm 1, & 1, & 0 \\
0, & 0, & 0, & 0
\end{array}\right) \quad, \quad \operatorname{tr} \rho^{2}=1
$$

$$
\rho=\frac{1}{4}\left(1-L_{3} \pm\left(L_{12}-L_{14}\right)\right)
$$

$$
\rho_{1}=\rho_{2}=0 \quad \Rightarrow \quad\left\langle T_{1}\right\rangle=\left\langle T_{2}\right\rangle=0
$$

$$
\rho_{3}=-1 \quad \Rightarrow \quad\left\langle T_{3}\right\rangle=-1
$$

entangled quantum state

$$
\psi_{ \pm}=\frac{1}{\sqrt{2}}\left(\psi_{2} \pm \psi_{3}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{r}
0 \\
1 \\
\pm 1 \\
0
\end{array}\right)
$$

pure state density matrix

- elements ϱ_{k} are vectors on unit sphere
- can be obtained by unitary transformations

$$
\rho=U \hat{\rho}_{1} U^{\dagger} \quad, \quad U U^{\dagger}=U^{\dagger} U=1
$$

$$
\hat{\rho}_{1}=\left(\begin{array}{lll}
1 & , & 0 \\
0 & , & 0
\end{array}\right)
$$

- SO (3) equivalent to $\mathrm{SU}(2)$

wave function

- "root of pure state density matrix "

$$
\psi=\binom{\psi_{1}}{\psi_{2}} \quad \hat{\psi}_{1}=\binom{1}{0} \quad, \quad \psi=U \hat{\psi}_{1}
$$

$$
\rho_{\alpha \beta}=\psi_{\alpha} \psi_{\beta}^{*}
$$

$$
\operatorname{tr}(\hat{A} \rho)=\hat{A}_{\alpha \beta} \rho_{\beta \alpha}=\hat{A}_{\alpha \beta} \psi_{\beta} \psi_{\alpha}^{*}
$$

- quantum law for expectation values

$$
\langle A\rangle=\psi^{\dagger} \hat{A} \psi
$$

