
Emergence of Quantum MechanicsEmergence of Quantum Mechanics
from Classical Statisticsfrom Classical Statistics



what is an atom ?what is an atom ?

quantum mechanics : isolated objectquantum mechanics : isolated object
quantum field theory : excitation of complicated quantum field theory : excitation of complicated 
vacuumvacuum
classical statistics : subclassical statistics : sub--system of ensemble with system of ensemble with 
infinitely many degrees of freedominfinitely many degrees of freedom



quantum mechanics can be described quantum mechanics can be described 
by classical statistics !by classical statistics !



quantum mechanics from classical quantum mechanics from classical 
statisticsstatistics

probability amplitudeprobability amplitude
entanglemententanglement
interferenceinterference
superposition of statessuperposition of states
fermions and bosonsfermions and bosons
unitary time evolutionunitary time evolution
transition amplitudetransition amplitude
nonnon--commuting operatorscommuting operators



probabilistic observablesprobabilistic observables

HolevoHolevo;  ;  Beltrametti,BugajskiBeltrametti,Bugajski



classical ensemble , classical ensemble , 
discrete observablediscrete observable

Classical ensemble with probabilitiesClassical ensemble with probabilities

one discrete observable A ,  values +1 or one discrete observable A ,  values +1 or --11



effective microeffective micro--statesstates

group states togethergroup states together
σσ labels effective labels effective micromicro--statesstates , t, tσσ labels labels subsub--statesstates

in effective microin effective micro--states states σσ ::
probabilities to find A=1 :             and A=probabilities to find A=1 :             and A=--1:1:
mean value in micromean value in micro--state state σσ ::



expectation valuesexpectation values

only measurements +1 or only measurements +1 or --1 possible !1 possible !



probabilistic observables have a probability probabilistic observables have a probability 
distribution of values in a microstate ,distribution of values in a microstate ,

classical observables a sharp valueclassical observables a sharp value



deterministic and probabilistic deterministic and probabilistic 
observablesobservables

classical or deterministic observablesclassical or deterministic observables describe describe 
atoms and environmentatoms and environment
probabilities for infinitely many subprobabilities for infinitely many sub--states needed for states needed for 
computation of classical correlation functionscomputation of classical correlation functions

probabilistic observablesprobabilistic observables can describe atom only can describe atom only 
environment is integrated outenvironment is integrated out
suitable system observables need only state of system suitable system observables need only state of system 
for computation of expectation values and correlationsfor computation of expectation values and correlations



three probabilistic observablesthree probabilistic observables

characterize by vectorcharacterize by vector

each each AA(k(k)) can only take values can only take values ±± 1 , 1 , 
““orthogonal spinsorthogonal spins””
expectation values : expectation values : 



density matrix and density matrix and 
pure statespure states



elements of density matrixelements of density matrix

probability weighted mean values of basis unit probability weighted mean values of basis unit 
observables are sufficient to characterize the observables are sufficient to characterize the 
state of the systemstate of the system

ρρkk = = ±± 1             sharp value for 1             sharp value for AA(k(k))

in general:in general:



puritypurity

How many observables can have sharp values ?How many observables can have sharp values ?

depends ondepends on puritypurity

P=1 : one sharp observable ok P=1 : one sharp observable ok 

for two observables with sharp values :for two observables with sharp values :



puritypurity

for                                  for                                  ::

at most M discrete observables can be sharpat most M discrete observables can be sharp

consider P consider P ≤≤ 11

““ three spins , at most one sharp three spins , at most one sharp ““



density matrixdensity matrix

define define hermiteanhermitean 2x2 matrix :2x2 matrix :

properties of density matrix     properties of density matrix     



M M –– state quantum mechanicsstate quantum mechanics

density matrix for P density matrix for P ≤≤ M+1 :M+1 :

choice of M depends on observables consideredchoice of M depends on observables considered
restricted by maximal number of restricted by maximal number of ““commuting commuting 
observablesobservables””



quantum mechanics forquantum mechanics for
isolated systemsisolated systems

classical ensemble admits infinitely many observables classical ensemble admits infinitely many observables 
((atom and its environmentatom and its environment))
we want to describe isolated subsystem ( we want to describe isolated subsystem ( atomatom ) : finite ) : finite 
number of independent observablesnumber of independent observables
““isolatedisolated”” situation : subset of the possible probability situation : subset of the possible probability 
distributionsdistributions
not all observables simultaneously sharp in this subsetnot all observables simultaneously sharp in this subset
given purity : conserved by time evolution if subsystem given purity : conserved by time evolution if subsystem 
is perfectly isolatedis perfectly isolated
different M describe different subsystems ( different M describe different subsystems ( atom or atom or 
moleculemolecule ))



density matrix for density matrix for 
two quantum statestwo quantum states

hermiteanhermitean 2x2 matrix :2x2 matrix :

P P ≤≤ 11

““ three spins , at most one sharp three spins , at most one sharp ““



operatorsoperators

hermiteanhermitean operatorsoperators



quantum law for expectation valuesquantum law for expectation values



operators do not commuteoperators do not commute

at this stage : convenient way to express at this stage : convenient way to express 
expectation valuesexpectation values

deeper reasons behind it deeper reasons behind it ……



rotated spinsrotated spins

correspond to rotated unit vector correspond to rotated unit vector eekk

new twonew two--level observableslevel observables
expectation values given byexpectation values given by

only density matrix needed for computation of only density matrix needed for computation of 
expectation values , expectation values , 
not full classical probability distribution not full classical probability distribution 



pure statespure states

pure states show no dispersion with respect to pure states show no dispersion with respect to 
one observable Aone observable A

recall classical statistics definitionrecall classical statistics definition



quantum pure states are classical quantum pure states are classical 
pure statespure states

probability vanishing except for one microprobability vanishing except for one micro--statestate



pure state density matrixpure state density matrix

elements elements ρρkk are vectors on unit sphereare vectors on unit sphere
can be obtained by unitary transformationscan be obtained by unitary transformations

SO(3) equivalent to SU(2)SO(3) equivalent to SU(2)



wave functionwave function

““root of pure state density matrix root of pure state density matrix ““

quantum law for expectation valuesquantum law for expectation values



time evolutiontime evolution



transition probabilitytransition probability

time evolution of probabilities                                 time evolution of probabilities                                 
( fixed observables )( fixed observables )

induces transition probability matrixinduces transition probability matrix



reduced transition probabilityreduced transition probability

induced evolutioninduced evolution

reduced transition probability matrixreduced transition probability matrix



evolution of elements of evolution of elements of 
density matrixdensity matrix

infinitesimal time variationinfinitesimal time variation

scaling + rotationscaling + rotation



time evolution of density matrixtime evolution of density matrix

Hamilton operator and scaling factorHamilton operator and scaling factor

Quantum evolution and the rest ?Quantum evolution and the rest ?

λλ=0 and pure state :=0 and pure state :



quantum time evolutionquantum time evolution

It is easy to construct explicit ensembles whereIt is easy to construct explicit ensembles where

λλ = 0= 0

quantum time evolutionquantum time evolution



evolution of purityevolution of purity

change of puritychange of purity

attraction to randomness :attraction to randomness :
decoherencedecoherence

attraction to purity :attraction to purity :
syncoherencesyncoherence



classical statistics can describe classical statistics can describe 
decoherencedecoherence and and syncoherencesyncoherence !!

unitary quantum evolution : special caseunitary quantum evolution : special case



pure state fixed pointpure state fixed point

pure states are special :pure states are special :
““ no state can be purer than pure no state can be purer than pure ““

fixed point of evolution forfixed point of evolution for

approach to fixed pointapproach to fixed point



approach to pure state fixed pointapproach to pure state fixed point

solution :solution :

syncoherencesyncoherence describes exponential approach to describes exponential approach to 
pure state ifpure state if

decay of mixed atom state to ground statedecay of mixed atom state to ground state



purity conserving evolution :purity conserving evolution :
subsystem is well isolatedsubsystem is well isolated



two bit system andtwo bit system and
entanglemententanglement

ensembles with P=3ensembles with P=3



nonnon--commuting operatorscommuting operators

15 spin observables labeled by15 spin observables labeled by

density matrixdensity matrix



SU(4) SU(4) -- generatorsgenerators



density matrixdensity matrix

pure states : P=3pure states : P=3



entanglemententanglement
three commuting observablesthree commuting observables

LL11 : bit 1 , L: bit 1 , L22 : bit 2   L: bit 2   L33 : product of two bits: product of two bits
expectation values of associated observables expectation values of associated observables 
related to probabilities to measure the related to probabilities to measure the 
combinations (++) , etc.combinations (++) , etc.



““classicalclassical”” entangled stateentangled state

pure state with maximal antipure state with maximal anti--correlation of two bitscorrelation of two bits

bit 1: random , bit 2: randombit 1: random , bit 2: random
if bit 1 = 1 necessarily bit 2 = if bit 1 = 1 necessarily bit 2 = --1 , and vice versa1 , and vice versa



classical state described by classical state described by 
entangled density matrixentangled density matrix



entangled quantum stateentangled quantum state



conditional correlationsconditional correlations



classical correlationclassical correlation
pointwisepointwise multiplication of classical observables on the multiplication of classical observables on the 
level of sublevel of sub--statesstates
not available on level of probabilistic observablesnot available on level of probabilistic observables

definition depends on details of classical observables , definition depends on details of classical observables , 
while many different classical observables correspond while many different classical observables correspond 
to the same probabilistic observableto the same probabilistic observable
classical correlation depends on probability distribution classical correlation depends on probability distribution 
for the atom and its environmentfor the atom and its environment

needed : correlation that can be formulated needed : correlation that can be formulated 
in terms of probabilistic observables and in terms of probabilistic observables and 
density matrix !density matrix !



pointwisepointwise or conditional correlation ?or conditional correlation ?

PointwisePointwise correlation appropriate if two measurements correlation appropriate if two measurements 
do not influence each otherdo not influence each other..

Conditional correlation takes into account that system Conditional correlation takes into account that system 
has been changed after first measurement.has been changed after first measurement.
Two measurements of same observable immediately Two measurements of same observable immediately 
after each other should yield the same value !after each other should yield the same value !



pointwisepointwise correlationcorrelation

pointwisepointwise product of observablesproduct of observables

αα==σσ

does not describe Adoes not describe A²² =1:=1:



conditional correlationsconditional correlations

probability to find value +1 for   productprobability to find value +1 for   product
of measurements of A and Bof measurements of A and B

…… can be expressed in can be expressed in 
terms of expectation valueterms of expectation value
of A in of A in eigenstateeigenstate of Bof B

probability to find A=1 probability to find A=1 
after measurement of B=1after measurement of B=1



conditional productconditional product

conditional product of observablesconditional product of observables

conditional correlationconditional correlation

does it commute ?does it commute ?



conditional product and conditional product and 
anticommutatorsanticommutators

conditional two point correlation commutesconditional two point correlation commutes

==



quantum correlationquantum correlation

conditional correlation in classical statistics conditional correlation in classical statistics 
equals quantum correlation !equals quantum correlation !
no contradiction to Bellno contradiction to Bell’’s inequalities or to s inequalities or to 
KochenKochen--SpeckerSpecker TheoremTheorem



conditional three point correlationconditional three point correlation



conditional three point correlation in conditional three point correlation in 
quantum languagequantum language

conditional three point correlation is not conditional three point correlation is not 
commuting !commuting !



conditional correlations and conditional correlations and 
quantum operatorsquantum operators

conditional correlations in classical statistics can conditional correlations in classical statistics can 
be expressed in terms of operator products in be expressed in terms of operator products in 
quantum mechanicsquantum mechanics



non non –– commutativitycommutativity
of operator productof operator product
is closely related tois closely related to

conditional correlations !conditional correlations !



conclusionconclusion

quantum statistics arises from classical statisticsquantum statistics arises from classical statistics
states, superposition , interference , states, superposition , interference , 
entanglement , probability amplitudesentanglement , probability amplitudes
quantum evolution embedded in classical quantum evolution embedded in classical 
evolutionevolution
conditional correlations describe measurements conditional correlations describe measurements 
both in quantum theory and classical statisticsboth in quantum theory and classical statistics



endend
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