Emergence of Quantum Mechanics
from Classical Statistics



what 1s an atom ?

B quantum mechanics : isolated object

m quantum field theory : excitation of complicated
vacuum

m classical statistics : sub-system of ensemble with
infinitely many degrees of freedom



quantum mechanics can be described
by classical statistics !



quantum mechanics from classical

statistics
probability amplitude
entanglement
interference

superposition of states
fermions and bosons
unitary time evolution
transition amplitude

noN-commuting Operators



probabilistic obsetrvables

Holevo; Beltrametti,Bugajski



classical ensemble ,
discrete observable

» Classical ensemble with probabilities

B one discrete obsetrvable A | values +1 or -1



effective micro-states

1n effective micro-states o :

probabilities to find A=1 : and A=-1:

mean value in micro-state o :




expectation values

only measurements +1 or -1 possible !



Drobabilistic observables have a probability
distribution of values in a microstate.,
classical observables a sharp value



deterministic and probabilistic
observables

classical or deterministic observables describe
atoms and environment

m probabilities for infinitely many sub-states needed for

computation of classical correlation functions

B probabilistic obsetrvables can describe atom only

environment 1s integrated out

suitable system observables need only state of system
for computation of expectation values and correlations



three probabilistic observables

m cach A® can only take values & 1,
“orthogonal spins™

B cxpectation values :




density matrix and
pure states



elements of density matrix

m probability weighted mean values of basis unit
observables are sufficient to characterize the
state of the system




purity

m How many observables can have sharp values ?

m depends on purity

m P=1 : one sharp observable ok

m for two observables with sharp values :




purity

at most M discrete observables can be sharp

consider P = 1

“ three spins , at most one sharp



density matrix

B define hermitean 2x2 matrix :

m properties of density matrix




M — state quantum mechanics

B density matrix for P < M+1 :

trL L L ¢ — Mo ke

m choice of M depends on observables considered

m restricted by maximal number of “commuting

observables™
ﬂ"irmin — *‘mrm-a;r +1




quantum mechanics for
isolated systems

classical ensemble admits infinitely many observables
(atom and its environment)

we want to describe isolated subsystem (atom ) : finite
number of independent observables

“isolated” situation : subset of the possible probability
distributions

not all observables simultaneously sharp in this subset

given purity : conserved by time evolution if subsystem
is perfectly 1solated

different M describe different subsystems (atom or
molecule )



density matrix for
two quantum states

hermitean 2x2 matrix :

P=1

“ three spins , at most one sharp



operators

hermitean operators

e

tr(A(ex)p)

T |
; PEEMN Tk, "TE} — PLEL




quantum law for expectation values

Ve

(A) = tr(Ap)




operators do not commute

at this stage : convenient way to express
expectation values

deeper reasons behind it ...



rotated spins

m correspond to rotated unit vector e,
m new two-level observables

B cxpectation values given by

m only density matrix needed for computation of
expectation values ,

not full classical probability distribution



pure states

m pure states show no dispersion with respect to
one observable A




quantum pure states are classical
pure states

m probability vanishing except for one micro-state

pe =1 for A, =1

(A) =1 { pe, =0 for jg <1



pure state density matrix

m clements p, are vectors on unit sphere

B can be obtained by unitary transformations

p=UpU" | UU' =UU=1

m SO(3) equivalent to SU(2)



wave function

(4

m “root of pure state density matrix

I;_+;

tr(Ap) = Aapppa = Aaptp)

e




time evolution



transition probability

time evolution of probabilities

( fixed observables )

induces transition probability matrix




reduced transition probability

B induced evolution
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evolution of elements of
density matrix

B infinitesimal time variation

Dipr(t) = Oy Spe(t, ) S, Lt ) pon (1)

fm

m scaling + rotation

0,851 = 9,98" + 9, Ind



time evolution of density matrix

m Hamilton operator and scaling factor




quantum time evolution

It 1s easy to construct explicit ensembles where

mm) quantum time evolution



evolution of purity

change of purity

O (prpr) = 0y (2trp* — 1)
2\P

attraction to randomness :
decoherence

attraction to purity :

syncoherence



classical statistics can describe
decoherence and syncoherence !
unitary quantum evolution : special case



pure state fixed point

pure states are special :

“ no state can be purer than pure

fixed point of evolution for

approach to fixed point I\ = B\, P, pi/ VP, ..)




approach to pure state fixed point

solution : [ EEESEEETEY

1 S EEEEY
£1,2 = 3({1 -+ V H“ 4H

syncoherence describes exponential approach to

pure state if | -
a>0 , a<b< 1(1“

decay of mixed atom state to ground state



Durity conserving evolution :
subsystem 15 well isolated



two bit system and
entanglement

ensembles with P=3



non-commuting operators




SU(4) - generatotrs

L =1, trLy =0, tr(LgL;) = 46

diag(1.1.—1,—1) , Lo = diag(1,—1,1,—1)




density matrix

B pure states : P=3

.r ) . ﬁ ) k
Aler) = el , epep =1 tor A%(er) =1




entanglement

m three commuting observables

L, :bitl,L,:bit2 L,:product of two bits

m cxpectation values of associated observables
related to probabilities to measure the
combinations (++) , etc.

W + W, —W_, —W__

-
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“classical” entangled state

m pure state with maximal anti-correlation of two bits

Wie=W__ =0

® bit 1: random , bit 2: random

m if bit 1 = 1 necessarily bit 2 = -1, and vice versa




classical state described by
entangled density matrix




entangled quantum state




conditional correlations



classical correlation

B pointwise multiplication of classical observables on the
level of sub-states

® not available on level of probabilistic observables

m definition depends on details of classical observables ,
while many different classical observables correspond
to the same probabilistic observable

B classical correlation depends on probability distribution
for the atom and its environment

needed : correlation that can be formulated
in terms of probabilistic observables and
density matrix !



pointwise or conditional correlation ?

B Pointwise correlation appropriate if two measurements
do not influence each other.

m Conditional correlation takes into account that system
has been changed after first measurement.

Two measurements of same observable immediately
after each other should yield the same value !



pointwise correlation




conditional correlations

probability to find value +1 for product

of measurements of A and B

probability to find A=1

after measurement of B=1

. can be expressed in
terms of expectation value
of A in eigenstate of B




conditional product

m conditional product of observables

wih — B = (A) _|_EH_'_* (A)_guw?

.C¥

5 {; L+ Ba)(A)4p — 5(1 — Ba)(A)-B.

B does it commute ?



conditional product and
anticommutators

m conditional two point correlation commutes

Re((AB)) = Re(tr(ABp)) = Str({A4, Bip)

.

d—"




quantum correlation

B conditional correlation in classical statistics
equals quantum correlation !

m no contradiction to Bell’s inequalities or to
Kochen-Specker Theorem



conditional three point correlation

AN\B (& AN\By
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conditional three point correlation in
quantum language

m conditional three point correlation is not
commuting !

(A (k) o A (1) o A (1) \ — ﬁﬁ:‘!. [ A (m)




conditional correlations and

quantum operators

B conditional correlations in classical statistics can

be expressed in terms of operator products in

quantum mechanics

Re((AB))

Re({(ABCY))

Re(tr(ABp)) = Str({4, B}p),

d—

Re(tr(ABCp)) = Str ((ABC +CBA)p)

A ( ({{A,B},C} + |[A, B],C]) )

o (({HA BLCY + {A(B.C})

~{B.{A.C}})p).



non — conmmntativit)
of operator product
/5 closely related 1o
conditional corvelations !



conclusion

B quantum statistics arises from classical statistics

states, superposition , interference ,
entanglement , probability amplitudes

B quantum evolution embedded in classical
evolution

m conditional correlations describe measurements
both in quantum theory and classical statistics
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