Emergence of Quantum Mechanics from Classical Statistics

what is an atom?

- quantum mechanics : isolated object
- quantum field theory : excitation of complicated vacuum
- classical statistics : sub-system of ensemble with infinitely many degrees of freedom

quantum mechanics can be described

 by classical statistics!
quantum mechanics from classical statistics

- probability amplitude
- entanglement
- interference
- superposition of states
- fermions and bosons
- unitary time evolution
- transition amplitude
- non-commuting operators

probabilistic observables

Holevo; Beltrametti,Bugajski

classical ensemble , discrete observable

- Classical ensemble with probabilities \hat{p}_{τ}

$$
\hat{p}_{\tau} \geq 0 \quad, \quad \sum_{\tau} \hat{p}_{\tau}=1
$$

- one discrete observable A, values +1 or -1

effective micro-states

group states together $\quad \tau=\left(\sigma, t_{\sigma}\right)$
σ labels effective micro-states, t_{σ} labels sub-states

$$
p_{\sigma}=\sum_{t_{\sigma}} \hat{p}_{\left(\sigma, t_{\sigma}\right)} \quad, \quad p_{\sigma} \geq 0 \quad, \quad \sum_{\sigma} p_{\sigma}=1
$$

in effective micro-states σ :
probabilities to find $\mathrm{A}=1: w_{\sigma+}$ and $\mathrm{A}=-1: w_{\sigma-}$ mean value in micro-state σ :

$$
\bar{A}_{\sigma}=w_{\sigma+}-w_{\sigma-} \quad, \quad \overline{A_{\sigma}^{2}}=1
$$

expectation values

$$
\langle A\rangle=\sum_{\sigma} p_{\sigma} \overline{A_{\sigma}} \quad, \quad\left\langle A^{2}\right\rangle=\sum_{\sigma} p_{\sigma} \overline{A_{\sigma}^{2}}=1
$$

only measurements +1 or -1 possible !
probabilistic observables bave a probability distribution of values in a microstate, classical observables a sharp value

deterministic and probabilistic observables

- classical or deterministic observables describe atoms and environment
- probabilities for infinitely many sub-states needed for computation of classical correlation functions $\tau=\left(\sigma, t_{\sigma}\right)$
- probabilistic observables can describe atom only
- environment is integrated out
- suitable system observables need only state of system for computation of expectation values and correlations

three probabilistic observables

- characterize by vector
$\left(e_{1}, e_{2}, e_{3}\right)$

$$
A^{(1)}: e=(1,0,0) \quad A^{(2)}: e=(0,1,0) \quad, \quad A^{(3)}: e=(0,0,1)
$$

- each $A^{(k)}$ can only take values ± 1, "orthogonal spins"
- expectation values :

$$
\left\langle A^{(k)}\right\rangle=\rho_{k} e_{k} \quad, \quad \rho_{k}=\sum_{\sigma} p_{\sigma} \bar{A}_{\sigma}^{(k)}
$$

density matrix and

 pure states
elements of density matrix

- probability weighted mean values of basis unit observables are sufficient to characterize the state of the system

- $\varrho_{k}= \pm 1 \Longleftrightarrow$ sharp value for $A^{(k)}$
- in general: $\quad \rho_{k}^{2} \leq 1$

purity

- How many observables can have sharp values ?
- depends on purity

$P=\rho_{k} \rho_{k}$

- $\mathrm{P}=1$: one sharp observable ok
- for two observables with sharp values :

$$
\rho_{1}^{2}=1 \quad, \quad \rho_{2}^{2}=1 \quad \Rightarrow \quad P \geq 2
$$

purity

for $\quad M \leq P<M+1$:
at most M discrete observables can be sharp
consider $\mathrm{P} \leq 1$
" three spins, at most one sharp *

density matrix

- define hermitean 2×2 matrix :

$$
\rho=\frac{1}{2}\left(1+\rho_{k} \tau_{k}\right)
$$

- properties of density matrix

$$
\operatorname{tr} \rho=1 \quad \rho_{\alpha \alpha} \geq 1 \quad \operatorname{tr} \rho^{2} \leq 1
$$

M - state quantum mechanics

- density matrix for $\mathrm{P} \leq \mathrm{M}+1$:

$$
\rho=\frac{1}{M}\left(1+\rho_{k} L_{k}\right) \quad, \quad \operatorname{tr} L_{k} L_{\ell}=M \delta_{k \ell}
$$

$$
\operatorname{tr}^{2}=\frac{1}{M}\left(1+\rho_{k} \rho_{k}\right)=\frac{1}{M}(1+P)
$$

- choice of M depends on observables considered
- restricted by maximal number of "commuting observables"

$$
M_{\min }=N_{\max }+1
$$

quantum mechanics for isolated systems

- classical ensemble admits infinitely many observables (atom and its environment)
- we want to describe isolated subsystem (atom) : finite number of independent observables
" "isolated" situation : subset of the possible probability distributions
- not all observables simultaneously sharp in this subset
- given purity : conserved by time evolution if subsystem is perfectly isolated
- different M describe different subsystems (atom or molecule)

density matrix for two quantum states

hermitean 2×2 matrix :

$\mathrm{P} \leq 1$
" three spins, at most one sharp "

operators

hermitean operators

$$
\hat{A}\left(e_{k}\right)=e_{k} \tau_{k}
$$

$$
\begin{aligned}
\left\langle A\left(e_{k}\right)\right\rangle & =\operatorname{tr}\left(\hat{A}\left(e_{k}\right) \rho\right) \\
& =\frac{1}{2} \rho_{k} e_{\ell}\left\{\tau_{k}, \tau_{\ell}\right\}=\rho_{k} e_{k}
\end{aligned}
$$

quantum law for expectation values

$$
\langle A\rangle=\operatorname{tr}(\hat{A} \rho)
$$

operators do not commute

at this stage : convenient way to express expectation values
deeper reasons behind it ...

rotated spins

- correspond to rotated unit vector e_{k}
- new two-level observables
- expectation values given by

$$
\langle A\rangle=\operatorname{tr}(\hat{A} \rho)
$$

- only density matrix needed for computation of expectation values, $\quad \rho_{k}=\sum_{\sigma} p_{\sigma} A_{\sigma}^{(k)}$ not full classical probability distribution \hat{p}_{τ}

pure states

- pure states show no dispersion with respect to one observable A

$$
\langle A\rangle^{2}=\left\langle A^{2}\right\rangle
$$

- recall classical statistics definition

$$
\langle A\rangle=\sum_{\sigma} p_{\sigma} \bar{A}_{\sigma} \quad, \quad\left|\bar{A}_{\sigma}\right| \leq 1
$$

quantum pure states are classical pure states

- probability vanishing except for one micro-state

$$
\langle A\rangle=1:\left\{\begin{array}{lll}
p_{\sigma}=0 & \text { for } & \bar{A}_{\sigma}<1 \\
p_{\sigma}=1 & \text { for } & \bar{A}_{\sigma}=1
\end{array}\right.
$$

pure state density matrix

- elements ϱ_{k} are vectors on unit sphere
- can be obtained by unitary transformations

$$
\rho=U \hat{\rho}_{1} U^{\dagger} \quad, \quad U U^{\dagger}=U^{\dagger} U=1
$$

$$
\hat{\rho}_{1}=\left(\begin{array}{lll}
1 & , & 0 \\
0 & , & 0
\end{array}\right)
$$

- SO (3) equivalent to $\mathrm{SU}(2)$

wave function

- "root of pure state density matrix "

$$
\psi=\binom{\psi_{1}}{\psi_{2}} \quad \hat{\psi}_{1}=\binom{1}{0} \quad, \quad \psi=U \hat{\psi}_{1}
$$

$$
\rho_{\alpha \beta}=\psi_{\alpha} \psi_{\beta}^{*}
$$

$$
\operatorname{tr}(\hat{A} \rho)=\hat{A}_{\alpha \beta} \rho_{\beta \alpha}=\hat{A}_{\alpha \beta} \psi_{\beta} \psi_{\alpha}^{*}
$$

- quantum law for expectation values

$$
\langle A\rangle=\psi^{\dagger} \hat{A} \psi
$$

time evolution

transition probability

time evolution of probabilities

$$
\left.\partial_{t} p_{\sigma}=F_{\sigma}\left(p_{\sigma^{\prime}}\right) \quad \text { (fixed observables }\right)
$$

induces transition probability matrix

$$
p_{\sigma}(t)=\tilde{S}_{\sigma \tau}\left(t, t^{\prime}\right) p_{\tau}\left(t^{\prime}\right)
$$

reduced transition probability

- induced evolution

$$
\partial_{t} \rho_{k}=\sum_{\sigma} \partial_{t} p_{\sigma} \bar{A}_{\sigma}^{(k)}=\sum_{\sigma} F_{\sigma}\left(p_{\sigma^{\prime}}\right) \bar{A}_{\sigma}^{(k)}
$$

- reduced transition probability matrix

$$
\rho_{k}(t)=S_{k \ell}\left(t, t^{\prime}\right) \rho_{\ell}\left(t^{\prime}\right)
$$

$$
S_{k \ell}\left(t, t^{\prime}\right)=\frac{\sum_{\sigma \tau \rho} \tilde{S}_{\sigma \tau}\left(t, t^{\prime}\right) p_{\tau}\left(t^{\prime}\right) p_{\rho}\left(t^{\prime}\right) \bar{A}_{\sigma}^{(k)} \bar{A}_{\rho}^{(\ell)}}{\rho_{m}\left(t^{\prime}\right) \rho_{m}\left(t^{\prime}\right)}
$$

evolution of elements of density matrix

- infinitesimal time variation

$$
\partial_{t} \rho_{k}(t)=\partial_{t} S_{k \ell}\left(t, t^{\prime}\right) S_{\ell m}^{-1}\left(t, t^{\prime}\right) \rho_{m}(t)
$$

- scaling + rotation

$$
S_{k \ell}=\hat{S}_{k \ell} d \quad \hat{S}_{k \ell}^{-1}=\hat{S}_{\ell k}
$$

$$
\partial_{t} S S^{-1}=\partial_{t} \hat{S} \hat{S}^{T}+\partial_{t} \ln d
$$

time evolution of density matrix

- Hamilton operator and scaling factor

$$
\hat{H}=-\frac{1}{4}\left(\partial_{t} \hat{S} \hat{S}^{T}\right)_{\ell m} \varepsilon_{\ell m k} \tau_{k}
$$

$$
\lambda=\partial_{t} \ln d
$$

- Quantum evolution and the rest ?

$$
\partial_{t} \rho=-i[\hat{H}, \rho]+\lambda\left(\rho-\frac{1}{2}\right)
$$

$\lambda=0$ and pure state :

$$
i \partial_{t} \psi=\hat{H} \psi
$$

quantum time evolution

It is easy to construct explicit ensembles where

$$
\lambda=0
$$

evolution of purity

change of purity

$$
\begin{aligned}
\partial_{t} P & =\partial_{t}\left(\rho_{k} \rho_{k}\right)=\partial_{t}\left(2 \operatorname{tr} \rho^{2}-1\right) \\
\partial_{t} P & =2 \lambda P
\end{aligned}
$$

$$
P=\rho_{k} \rho_{k}
$$

attraction to randomness : decoherence

$$
\lambda<0 \quad: \quad P \rightarrow 0
$$ attraction to purity :

$$
\lambda>0 \quad: \quad P \rightarrow 1
$$ syncoherence

classical statistics can describe decoberence and syncoberence! unitary quantum evolution : special case

pure state fixed point

pure states are special :
" no state can be purer than pure "
fixed point of evolution for

$$
P=1 \quad, \quad \lambda=0
$$

approach to fixed point

$$
\partial_{t} \lambda=\beta_{\lambda}\left(\lambda, P, \rho_{k} / \sqrt{P}, \ldots\right)
$$

$$
\beta_{\lambda}=-a \lambda+b(1-P)
$$

approach to pure state fixed point

 solution :$$
1-P=x_{1} e^{-\varepsilon_{1} t}+x_{2} e^{-\varepsilon_{2} t}
$$

$$
\lambda=\varepsilon_{1} x_{1} e^{-\varepsilon_{1} t}+\varepsilon_{2} x_{2} e^{-\varepsilon_{2} t}
$$

$$
\varepsilon_{1,2}=\frac{1}{2}\left(a \pm \sqrt{a^{2}-4 b}\right.
$$

syncoherence describes exponential approach to pure state if

$$
a>0, \quad a<b<\frac{1}{4} a^{2}
$$

decay of mixed atom state to ground state
purity conserving evolution: subsystem is well isolated

two bit system and entanglement

ensembles with $\mathrm{P}=3$

non-commuting operators

15 spin observables labeled by

$$
e_{k} \quad, \quad k=1 \ldots 15
$$

$\rho_{k}=\sum_{\sigma} p_{\sigma} \bar{A}_{\sigma}^{(k)} \quad, \quad\left\langle A\left(e_{k}\right)\right\rangle=\sum_{k} \rho_{k} e_{k} \quad, \quad-1 \leq \rho_{k} \leq 1$
density matrix

$$
\rho=\frac{1}{4}\left(1+\rho_{k} L_{k}\right)
$$

$$
L_{k}^{2}=1 \quad, \quad \operatorname{tr} L_{k}=0 \quad, \quad \operatorname{tr}\left(L_{k} L_{\ell}\right)=4 \delta_{k \ell}
$$

SU(4) - generators

$$
L_{k}^{2}=1, \operatorname{tr} L_{k}=0, \operatorname{tr}\left(L_{k} L_{l}\right)=4 \delta_{k l}
$$

$$
L_{1}=\operatorname{diag}(1,1,-1,-1), L_{2}=\operatorname{diag}(1,-1,1,-1)
$$

$$
L_{3}=\operatorname{diag}(1,-1,-1,1)
$$

$$
L_{4}=\left(\begin{array}{cc}
\tau_{1}, & 0 \\
0, & \tau_{1}
\end{array}\right) \quad L_{5}=\left(\begin{array}{cc}
\tau_{2}, & 0 \\
0, & \tau_{2}
\end{array}\right)
$$

$$
L_{6}=\left(\begin{array}{cc}
\tau_{1}, & 0 \\
0, & -\tau_{1}
\end{array}\right), L_{7}=\left(\begin{array}{cc}
\tau_{2}, & 0 \\
0, & -\tau_{2}
\end{array}\right)
$$

density matrix

- pure states : $\mathrm{P}=3$

$$
\operatorname{tr} \rho^{2}=\frac{1}{4}\left(1+\rho_{k} \rho_{k}\right)=\frac{1}{4}(1+P)
$$

$$
P \leq 3 \quad: \quad \operatorname{tr} \rho^{2} \leq 1
$$

$$
\hat{A}\left(e_{k}\right)=e_{k} L_{k} \quad, \quad e_{k} e_{k}=1 \quad \text { for } \quad \hat{A}^{2}\left(e_{k}\right)=1
$$

entanglement

- three commuting observables
$L_{1}=\left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & -1 & \\ & & & -1\end{array}\right) \quad, \quad L_{2}=\left(\begin{array}{llll}1 & & & \\ & -1 & & \\ & & 1 & \\ & & & -1\end{array}\right) \quad, \quad L_{3}=\left(\begin{array}{llll}1 & & & \\ & -1 & & \\ & & -1 & \\ & & & 1\end{array}\right)$
L_{1} : bit $1, \mathrm{~L}_{2}$: bit $2 \mathrm{~L}_{3}$: product of two bits
- expectation values of associated observables related to probabilities to measure the combinations $(++)$, etc.

$$
\begin{aligned}
& \left\langle T_{1}\right\rangle=W_{++}+W_{+-}-W_{-+-} W_{--} \\
& \left\langle T_{2}\right\rangle=W_{++}-W_{+-}+W_{-+}-W_{--} \\
& \left\langle T_{3}\right\rangle=W_{++}-W_{+-}-W_{-+}+W_{--}
\end{aligned}
$$

"classical" entangled state

- pure state with maximal anti-correlation of two bits

$$
W_{++}=W_{--}=0 \quad, \quad W_{+-}=W_{-+}=\frac{1}{2}
$$

- bit 1: random, bit 2: random
- if bit $1=1$ necessarily bit $2=-1$, and vice versa

$$
\left\langle L_{1}\right\rangle=\left\langle L_{2}\right\rangle=0 \quad, \quad\left\langle L_{3}\right\rangle=-1
$$

classical state described by entangled density matrix

$$
\rho=\frac{1}{2}\left(\begin{array}{rrrr}
0, & 0, & 0, & 0 \\
0, & 1, & \pm 1, & 0 \\
0, & \pm 1, & 1, & 0 \\
0, & 0, & 0, & 0
\end{array}\right) \quad, \quad \operatorname{tr} \rho^{2}=1
$$

$$
\rho=\frac{1}{4}\left(1-L_{3} \pm\left(L_{12}-L_{14}\right)\right)
$$

$$
\rho_{1}=\rho_{2}=0 \quad \Rightarrow \quad\left\langle T_{1}\right\rangle=\left\langle T_{2}\right\rangle=0
$$

$$
\rho_{3}=-1 \quad \Rightarrow \quad\left\langle T_{3}\right\rangle=-1
$$

entangled quantum state

$$
\psi_{ \pm}=\frac{1}{\sqrt{2}}\left(\psi_{2} \pm \psi_{3}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{r}
0 \\
1 \\
\pm 1 \\
0
\end{array}\right)
$$

conditional correlations

classical correlation

- pointwise multiplication of classical observables on the level of sub-states
- not available on level of probabilistic observables
- definition depends on details of classical observables, while many different classical observables correspond to the same probabilistic observable
- classical correlation depends on probability distribution for the atom and its environment
needed : correlation that can be formulated in terms of probabilistic observables and density matrix!

pointwise or conditional correlation?

- Pointwise correlation appropriate if two measurements do not influence each other.
- Conditional correlation takes into account that system has been changed after first measurement.
Two measurements of same observable immediately after each other should yield the same value !

pointwise correlation

pointwise product of observables

$$
(\overline{A \cdot B})_{\alpha}=\bar{A}_{\alpha} \bar{B}_{\alpha}
$$

$(\overline{A \cdot B})_{\alpha}=w_{+, \alpha}^{A B}-w_{-, \alpha}^{A B}$,
$\alpha=\sigma$

$$
\begin{aligned}
w_{+, \alpha}^{A B} & =w_{+, \alpha}^{A} w_{+, \alpha}^{B}+w_{-, \alpha}^{A} w_{-, \alpha}^{B} \\
w_{-, \alpha}^{A B} & =w_{+, \alpha}^{A} w_{-, \alpha}^{B}+w_{-, \alpha}^{A} w_{+, \alpha}^{B}
\end{aligned}
$$

does not describe $A^{2}=1$:

$$
\langle A \cdot A\rangle=\sum_{\alpha} p_{\alpha} \bar{A}_{\alpha}^{2} \leq 1
$$

conditional correlations

$w_{+, ~}^{A B}$ $+, \alpha$

 probability to find value +1 for product of measurements of A and $B$$$
\begin{aligned}
w_{+, \alpha}^{A B} & =\left(w_{+}^{A}\right)_{+}^{B} w_{+, \alpha}^{B}+\left(w_{-}^{A}\right)_{-}^{B} w_{-, \alpha}^{B} \\
w_{-, \alpha}^{A B} & =\left(w_{+}^{A}\right)_{-}^{B} w_{-, \alpha}^{B}+\left(w_{-}^{A}\right)_{+}^{B} w_{+, \alpha}^{B}
\end{aligned}
$$

$\left(w^{A}\right)^{B} \quad$ probability to find $\mathrm{A}=1$
after measurement of $B=1$
... can be expressed in terms of expectation value of A in eigenstate of B

$$
\begin{aligned}
& \left(w_{ \pm}^{A}\right)_{+}^{B}=\frac{1}{2}\left(1 \pm\langle A\rangle_{+B}\right) \\
& \left(w_{ \pm}^{A}\right)_{-}^{B}=\frac{1}{2}\left(1 \pm\langle A\rangle_{-B}\right)
\end{aligned}
$$

conditional product

- conditional product of observables

$$
\begin{aligned}
&\left({\overline{A \circ B})_{\alpha}}=w_{+, \alpha}^{A B}-w_{-, \alpha}^{A B}=\langle A\rangle_{+B} w_{+, \alpha}^{B}-\langle A\rangle_{-B} w_{-, \alpha}^{B}\right. \\
&=\frac{1}{2}\left(1+\bar{B}_{\alpha}\right)\langle A\rangle_{+B}-\frac{1}{2}\left(1-\bar{B}_{\alpha}\right)\langle A\rangle_{-B} .
\end{aligned}
$$

- conditional correlation

$$
\begin{array}{r}
\langle A \circ B\rangle=\sum_{\alpha} p_{\alpha}(\overline{A \circ B})_{\alpha}=\langle A\rangle_{+B} w_{+, s}^{B}-\langle A\rangle_{-B} w_{-, s}^{B} \\
\\
=\frac{1}{2}(1+\langle B\rangle)\langle A\rangle_{+B}-\frac{1}{2}(1-\langle B\rangle\rangle\langle A\rangle_{-B},
\end{array}
$$

- does it commute ?

conditional product and anticommutators

- conditional two point correlation commutes

$$
\langle A \circ B\rangle=\langle B \circ A\rangle
$$

$$
\operatorname{Re}(\langle A B\rangle)=\operatorname{Re}(\operatorname{tr}(\hat{A} \hat{B} \rho))=\frac{1}{2} \operatorname{tr}(\{\hat{A}, \hat{B}\} \rho)
$$

quantum correlation

- conditional correlation in classical statistics equals quantum correlation!
- no contradiction to Bell's inequalities or to Kochen-Specker Theorem

conditional three point correlation

$$
\begin{aligned}
\langle A \circ B \circ C\rangle & =\left(w_{+}^{A}\right)_{+}^{B}\left(w_{+}^{B}\right)_{+}^{C} w_{+, s}^{C}-\left(w_{+}^{A}\right)_{+}^{B}\left(w_{+}^{B}\right)_{-}^{C} w_{-, s}^{C} \\
& -\left(w_{+}^{A}\right)_{-}^{B}\left(w_{-}^{B} C_{+}^{C} w_{+,}^{C}+\left(w_{+}^{A}\right)^{B}\left(w_{-}^{B}\right)_{-}^{C} w_{-, s}^{C}\right. \\
& -\left(w _ { - } ^ { A } { } _ { + } ^ { B } \left(w_{+}^{B} C_{+}^{C} w_{+,}^{C}+\left(w_{-}^{A}\right)^{B}\left(w_{+}^{B}\right)_{-}^{C} w_{-, s}^{C}\right.\right. \\
& +\left(w_{-}^{A}\right)_{-}^{B}\left(w_{-}^{B}\right)_{+}^{C} w_{+, s}^{C}-\left(w_{-}^{A}\right)_{-}^{B}\left(w_{-}^{B}\right)_{-}^{C} w_{-, s}^{C} .
\end{aligned}
$$

conditional three point correlation in

 quantum language- conditional three point correlation is not commuting !

$$
\begin{gathered}
\langle A \circ B \circ C\rangle=\frac{1}{4} \operatorname{tr}(\{\{\hat{A}, \hat{B}\}, \hat{C}\} \rho) \\
\left\langle A^{(k)} \circ A^{(l)} \circ A^{(m)}\right\rangle=\delta^{k l}\left\langle A^{(m)}\right\rangle
\end{gathered}
$$

conditional correlations and

quantum operators

- conditional correlations in classical statistics can be expressed in terms of operator products in quantum mechanics

$$
\begin{aligned}
\operatorname{Re}(\langle A B\rangle)= & \operatorname{Re}(\operatorname{tr}(\hat{A} \hat{B} \rho))=\frac{1}{2} \operatorname{tr}(\{\hat{A}, \hat{B}\} \rho), \\
\operatorname{Re}(\langle A B C\rangle)= & \operatorname{Re}(\operatorname{tr}(\hat{A} \hat{B} \hat{C} \rho))=\frac{1}{2} \operatorname{tr}((\hat{A} \hat{B} \hat{C}+\hat{C} \hat{B} \hat{A}) \rho) \\
= & \frac{1}{4} \operatorname{tr}((\{\{\hat{A}, \hat{B}\}, \hat{C}\}+[[\hat{A}, \hat{B}], \hat{C}])) \\
= & \frac{1}{4} \operatorname{tr}((\{\{\hat{A}, \hat{B}\}, \hat{C}\}+\{\hat{A},\{\hat{B}, \hat{C}\}\} \\
& -\{\hat{B},\{\hat{A}, \hat{C}\}\}) \rho) .
\end{aligned}
$$

non - commutativity of operator product

is closely related to conditional comelations!

conclusion

- quantum statistics arises from classical statistics states, superposition, interference, entanglement, probability amplitudes
- quantum evolution embedded in classical evolution
- conditional correlations describe measurements both in quantum theory and classical statistics

