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quantum mechanics can be described
by classical statistics !



quantum particle from
classical probabilities




Double slit experiment

Is there a classical probability

density w(x,t) describing
interference ?

Or hidden parameters w(x,o,t) ?
or W(X,p,t) ¢

Suitable time evolution law :
local |, causal 7 Yes !

Bell’s inequalities ?
Kochen-Specker Theorem ?



statistical picture of the world

m basic theory is not deterministic

m basic theory makes only statements about
probabilities for sequences of events and
establishes correlations

m probabilism is fundamental , not determinism !

quantumr mechanics from classical statistics :
not a deterministic hidden variable theor)



Probabilistic realism

Physical theories and laws
only describe probabilities



Physics only describes probabilities

Gott wurfelt Gott wurfelt nicht

keine

Einstein: Brief an Cornelius Lanczos am 21. Marz 1942



Physics only describes probabilities

Gott wurfelt



but nothing beyond classical statistics
15 needed for quantum mechanics !



fermions from classical statistics



Classical probabilities for two
interfering Majorana spinors

. . ]_ Y = i . . . - L . " -
plz,1,y,1) = —L b [x:n::nﬁg{pg{__t + x3)}t cos“{pi(t +yi)}

4
+ cos?{p; (t + x; )} cos?{ps(t + y3)}
—2cos{ps(t + x3)} cos{pi(t + x1)}

Interference

¥ COS { p3(t + y3 3} CcOS { 1 ff + Y1 3 H . terms



microphysical ensemble

B Sstates T

m [abeled by sequences of occupation
numbers or bits n. = 0 or 1

mc=[n_]=[00,10,1,1,0,10,1,1,1,1,0,...]

CtC.

m probabilities p. > 0



Classical wave function

t) >0, \_' pr(t) =1

———

g-(t) = s () p-(t) , pr-(t) = g2(t) . s.(t) = *1

Classical wave function q 1s real , not necessarily positive
Positivity of probabilities automatic.




Time evolution

a- (') = ) Rop(t'.1)gp(t) , RTR=1.

f'--l'

Rotation preserves
normalization of probabilities

Evolution equation specities dynamics
simple evolution : R independent of q



(infinitely) many degrees of freedom

s=(x,7)

X : lattice points , y : different species

number of values of s: B
number of states 1T :2"B



Grassmann wave function

Map between classical states and basis elements
of Grassmann algebra

s=(x,YV)

For everyn,.= 0 : g _contains factor ¢

Grassmann wave function :




Functional integral

Grassmann wave function depends on t,

since classical wave function q depends on t

( fixed basis elements of Grassmann algebra )

Evolution equation for g(t)

|

Functional integral



Wave function from
functional integral

L(t) depends only
on ¢(t) and P(t+e)

g(t) => a-(t)g- [¥(t)]



Evolution equation

m Hvolution equation for classical wave function ,
and therefore also for classical probability
distribution , 1s specified by action S

m Real Grassmann algebra needed , since classical
wave function 1s real



Massless Majorana spinors in
four dimensions




Time evolution

Orgr (1) =) K,

JJJ

j_l




One particle states

———§ . Gy [. T)g = q’ x)g
O~y () ' '

al(z)g =

{dl(2), ac(y)} = 6yb(z—y), N

q1(t) = [ gy (t, z)al (z)go

: arbitrary static “vacuum’ state

One —particle wave function obeys
Dirac equation




Dirac spinor in
electromagnetic field

/ { 1 (0 — TiOp + mry o1 j U
Ji,x

+1bo(8y — Tidh + mA° T},

AS = —e / 11(Ao — ArTr)be — Ya(Ag — ApTr )1 §
Ji L

one particle state obeys Dirac equation
complex Dirac equation in electromagnetic field

Up=q1+igy , v"(0, +ieA,)Up =0




Schrodinger equation

Non — relativistic approximation :

® Time-evolution of particle in a potential
described by standard Schrodinger equation.

m Time evolution of probabilities in classical
statistical Ising-type model generates all
quantum features of particle in a potential , as
interference ( double slit ) or tunneling. This
holds if initial distribution corresponds to one-
particle state.



quantum particle from
classical probabilities




what is an atom ?

B quantum mechanics : 1solated object

m quantum field theory : excitation of complicated
vacuum

m classical statistics : sub-system of ensemble with
infinitely many degrees of freedom






Phases and complex structure
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Simple conversion factor for units



unitary time evolution

V



fermions and bosons

V



[A,B]=C



non-commuting observables

classical statistical systems admit many product
structures of observables

many different definitions of correlation
functions possible , not only classical correlation !

type of measurement determines correct selection
of correlation function !

example 1 : euclidean lattice gauge theories

example 2 : function observables



function observables



microphysical ensemble

B Sstates T

m [abeled by sequences of occupation
numbers or bits n. = 0 or 1

mc=[n_]=[00,10,1,1,0,10,1,1,1,1,0,...]

CtC.

m probabilities p. > 0



function observable

LR
W HIIL?

=




function observable

- (2ns — 1))

z sel(z;) I(x)) I(xy) I(x3) I(xy)




generalized function observable

normalization

classical
expectation
value

Y‘/;M;T|z|_1

several species o




position

classical observable :

fixed value for every state t



momentum

B derivative observable

Pr = / dz|f1 +(x)0z for()— fo.r(2)0r f1 (),

classical observable :
fixed value for every state t



complex structure

/ de ff(x)fr(x) =1

Pr= / dﬂ-:[fl;r (2)0z fo,7(x)— fo ()02 f1 ()]



classical product of position and

momentum observables

commutes !



different products of observables

[:};'E_.T — / drf(x u ;‘H )

s P N
o W ; .}_}T | }L = .I:u B
T

differs from classical product

(X - X) = z Pr :Y;b

T

— ; Pri / dx j..r \z)x Ir x))




Which product describes corrvelations of
nmreasurenents ¢



coarse graining of information
for subsystems



density matrix from coarse graining

* position and momentum observables use only

small part of the information contained in p_,

* relevant part can be described by density matrix

I v oo v opikeys
plz, ) = prfe(x)fi)
—

* subsystem described only by information
which 1s contained in density matrix
* coarse graining ot information



quantum density matrix

density matrix has the properties of

a quantum density matrix

\ % & 7 - |
Ir P = / dx P\T, L) = 1, plr,Tr)=px,Tr)

L E

. F. X Py oo li'l
plr,xr )= ; prirlx)f-(x)
T



quantum operators

T‘ jL - TII T’i ‘.r]l = / arrT ‘||j|::ﬂ?? T ,

.l

E prPr = Tr( P )

T

- / da'dzé(z" — 2)0rp(z, 2')




quantum product of observables

(X°)r = / dzf (z)z” fr(x)

the product

(X% =" pr(XP)y
is compatible with the coarse graining

R TA ‘ 9
\ X° /] = / drx P\, T)

and can be represented by operator product



incomplete statistics

classical product

(X - X) = E Pr ff;h

: it Y A » i ] iR j
f— _,, Pri [ dzx 3‘1_ \T )T 3‘ 7\ T ))
- u

B is not computable from information which
is available for subsystem !

m cannot be used for measurements in the subsystem !



classical and quantum dispetrsion

( X - X ) — ; Pr X - (X J_} = / dx f1(x) :1:{_)‘.-r ()

—

_ . e s L )
— D Il fi(x)xf-(x))” P A v



subsystem probabilities

wlir) = ple,x) = E pr|fr(x)]

/

w(zx) = 0, / drw(x) =1
~ ~ ~ .}-1. II.- ~ ._I
/ arrw(x)

(X - X) = / dxdy ry w.(x,y) Wel\ T, Y) = z prlfrl™ (@) fr[7(y)

1n contrast :




squared momentum

(P%), = [ dz fr(x)(—0z) fr(z)
= dx ‘ C);r Jr \ ) | )

(P?) = E pr(P?); = tr(P?p)

) .

T

fer f v a2y 7. '
— / drdz' o(z" — x)(—05)p(x, ")

(P-P) =Y p-P?

i

= — \_> pr( / dx fX(x)0y fr(x))
T L

quantum product between classical observables :
maps to product of quantum operators



non — commutativity
in classical statistics

(XP)r = / drfX(x)x(—idy) f+(x)

(PX); = / dx f.jl" (z)(—10, jl T fr(x)

(XP) =tr(XPp), (PX) =tr(PXp)

XP—PX =1

commutator depends on choice of product !



measurement correlation

m correlation between measurements of positon
and momentum 1s given by quantum product

m this correlation 1s compatible with information
contained in subsystem

. 1 o
(X P)m = 3 (XP)+ (PX))

—



coarse graining

from fundamental fermions p([n.])
at the Planck scale
to atoms at the Bohr scale o(x,x )



quantum mechanics from
classical statistics

probability amplitude
entanglement

interference

superposition of states
fermions and bosons
unitary time evolution
transition amplitude
non-commuting operators

violation of Bell’s inequalities



conclusion

B quantum statistics emerges from classical statistics

quantum state, superposition, interference,
entanglement, probability amplitude

B unitary time evolution of quantum mechanics can
be described by suitable time evolution of
classical probabilities

B conditional correlations for measurements both
in quantum and classical statistics



zZwitters




zwitters

m no different concepts for classical and quantum
particles

B continuous interpolation between quantum
particles and classical particles is possible

( not only 1n classical limit )



quantum particle

m particle-wave duality

B uncertainty
B no trajectories
M tunneling

B interference for double

slit

classical particle

particles

sharp position and
momentum

classical trajectories

maximal energy limits
motion

only through one slit



quantum particle from
classical probabilities in phase space

m probability distribution in phase space for

one | particle

as for classical particle !

/ w(x,p) =1
Jax.p

B observables different from classical observables

B time evolution of probability distribution different from
the one for classical particle



wave function for classical particle

classical probability
distribution 1n phase space

wave function for

classical particle

depends on

position
and momentum !




modification of evolution for
classical probability distribution

p O AV o
H; = —ihL = il 2 + rﬁ——

m Ox dx dp




zwitter

difference between quantum and classical particles
only through different time evolution

p ) I O
—?}_L——I?_—f——Fi"ﬁ{—r— CL

m Ox dx Op

continuous
interpolation

p O ih O

HW: —FEEI + V ( -+ TE) — 7 (




zwitter - Hamiltonian

Hﬁ} — UJH' H” +Hlll HL

my=0 : quantum — particle

my=7/2: classical particle

other interpolating Hamiltonians possible !



How good 1s quantum mechanics ?

small parameter ) can be tested experimentally

zwitter : no conserved microscopic energy

static state :




experiments for determination or
limits on zwitter — parameter y ?

T = (60.2¢0.1}h

=
2
[m]
5
g
o

Fig.3 : a) Free spin-precession signal of a polarized *He sample cell recorded by means of a
low-T.SQUID ( sampling rate: 250 Hz). b) Envelope of the decaying signal amplitude. From
an exponential fit to the data, a transverse relaxation time of 7, =(60.2+0.1)[»] canbe
deduced.

lifetime of nuclear spin states > 60 h ( Heil et al.) : y < 10-'4



Can quantum physics be described
by classical probabilities ?

“No go “ theorems
Bell , Clauser , Horne , Shimony , Holt

implicit assumption : use of classical correlation function for
correlation between measurements

Kochen , Specker

assumption : unique map from quantum operators to classical
observables
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