
Quantum computing with 
classical bits



Quantum mechanics :
subsystem of 

classical probabilistic system
n quantum mechanics emerges for

quantum subsystems
n subsystems are genuinely probabilistic
n part of information is lost by focus on subsystem
n ”forgetting” parts of information



Embedding of quantum 
mechanics in classical statistics

n it works
n quantum mechanics does not need new 

fundamental concepts beyond classical statistics
n raises interesting new questions



Does our brain use quantum computing ?

Do artificial neural networks employ 
quantum algorithms ?

Can classical statistical memory materials
perform quantum operations ?



Quantum computing



Unitary evolution in 
quantum mechanics

solution of  Schrödinger equation :

wave function

evolution operator



wave function

n complex function

n components for Q qubits

n normalization



Density matrix
density matrix for pure quantum state:



pure and mixed quantum states

pure state :

mixed state : density matrix is weighed 
sum of  pure state density matrices
each realized with probability pa



positivity of density matrix



quantum evolution



quantum gates

n split continuous evolution into discrete steps

n quantum gate

n the order matters : 
n quantum operations do not commute



basis gates for one qubit
Unitary transformation
of  density matrix

Rotation

Hadamard gate



Quantum subsystem

One qubit from three classical Ising spins

Ising spin : macroscopic two-level observable
Neuron fires above or below certain level
Particle present or not
Bit in a computer



Three Ising spins ( classical bits )

Eight states

Arbitrary macroscopic two-level observables

Classical
statistics



One qubit from three classical bits

Quantum subsystem defined by density matrix

Only part of  classical statistical 
information used for subsystem

Expectation values :



Subsystem in space of 
correlation functions



Thermalization of 
pure quantum state

n where does the information go ?
n into n – point functions with extremely high n !           

( Avogadro’s number )
n initial information is no longer visible in low 

order correlation functions, which approach 
thermal equilibrium values

n subsystem : low order correlation functions

Aarts, Bonini, Berges, Borsanyi…



Quantum subsystems

Quantum systems are subsystems of 
classical statistical systems

They use only part of the available probabilistic
information

Incomplete statistics



Incomplete statistics

Classical correlation function 
between Ising spin 1 and Ising spin 2 
cannot be computed 
from information in subsystem !

It involves information about environment of 
subsystem : probabilistic information beyond 



incomplete statistics 
is origin of

representation of observables by 
non-commuting operators



Non-commuting operators

Quantum rule for expectation values
follows from classical statistical rules :



Quantum condition

Positivity of density matrix requires 
quantum condition :

This implies uncertainty relation !



Not every classical probability 
distribution admits a quantum subsystem



Pure quantum states

saturation of quantum condition :
n pure state
n density matrix can be written as bilinear in 

complex wave function
n located on Bloch sphere



Quantum computing

n quantum computing proceeds by quantum gates
n discrete unitary transformations of density 

matrix in consecutive time steps

n a few basic gates are sufficient



Quantum gates
Unitary transformation
of  density matrix

Single qubit:
Rotation

Hadamard gate

Two qubits:
CNOT gate



Realization of quantum gates

n by deterministic manipulations of classical bits 
or Ising spins

cellular automata
n by changes of classical probability distribution 

for classical bits

probabilistic computing



Hadamard gate

Can be realized by deterministic spin flip



A few one qubit gates



Bit - quantum map

classical
probability 
distribution

quantum
subsystem

bit quantum map

evolution of
classical probabilities

unitary
quantum 
evolution



Complete bit – quantum map

n every positive density matrix of the quantum 
subsystem can be realized by suitable classical 
probability distribution

n then all quantum operations can be performed by 
suitable changes of classical probability distribution



Single qubit quantum gates
Unitary transformation
of  density matrix

Rotation

Hadamard gate

can be realized by suitable change of  
classical probability distribution
rotation : not deterministic



T - gate

other names :

T - gate is realized by the transformation

needs corresponding change of expectation values 
of classical Ising spins



Unique jump operation

n Every state τ is mapped to precisely one state ρ
n This induces a map of probability distributions

For invertible unique jump operation:
n The matrix W has in each row and column 

precisely one element one, and zeros otherwise  
n Transition probabilities are either one or zero 



Deterministic computation

n The operations of deterministic computation are 
unique jump operations

n cellular automata
n permutations among the states τ
n finite discrete group
n larger than permutations of the classical spins 

combined with sign changes
n include conditional changes



Conditional change

example :

n If Ising spin 1 has the same sign as Ising spin 2, 
flip the sign of Ising spin 3

n If the signs of Ising spin 1 and 2 are opposite, 
leave Ising spin 3 invariant



Quantum operations by 
cellular automata

n In order to realize arbitrary unitary  
transformations for a single qubit one needs 
infinitely many classical bits

n The continuous group of unitary 
transformations can be approximated arbitrarily
closely by permutations of infinitely many states, 
while a finite number of states is not sufficient



More classical bits…

could realize more quantum operations by 
cellular automata?



Maximal discrete subgroup of SO(3)

Icosahedron



Maximal discrete subgroup of SO(3)

n Can be realized with six classical Ising spins
n Classical spins “situated” at coins of iscosahedron
n Quantum subsystem defined by



Quantum spins in six directions



Quantum constraints
n Six expectation values are given by three 

numbers

n resulting in constraints of the type



Quantum operations 

n Reflections realized by

n Rotations by !/4 or !/2 not realized, 
n UT and UH not realized 

n Replaced by



Quantum operations 

n Denser set of quantum operations can be 
performed by unique jump operations or 
deterministic computing

n Generalization to more qubits may allow for 
new  algorithms and computing structures



Continuous classical variables
n Take x          , e : unit vector
n Define infinitely many classical Ising spins

n Consider family of probability distributions,

n given by                                                  , f : unit vector

n Expectation values obey



One qubit quantum system
Quantum subsystem ( density matrix ) characterized by ρ

Expectation values of quantum spins in arbitrary directions 
equal the classical expectation values of corresponding Ising
spins.

Arbitrary unitary transformations can be achieved by 
deterministic rotations of x.



Two qubits

SU(4)- generators :

use fifteen classical bits
or use six classical bits and correlations

different bit - quantum maps



Correlation map

n Completeness of correlation map not yet 
established



Quantum gates
Unitary transformation
of  density matrix

Single qubit:
Rotation

Hadamard gate

Two qubits:
CNOT gate



CNOT gate for two qubits

SU(4)- generators :

CNOT – gate:

to be achieved by 
suitable change of  probability distribution
for fifteen classical bits : deterministic



Entanglement

n CNOT - gate transforms product state for two 
qubits into entangled state

n All unitary operations for two qubits can be 
constructed from Hadamard, rotation and 
CNOT gates.



Classical probability distribution 
for maximally entangled state



Deterministic computing for 
two qubits

n Determine non-abelian discrete subgroups  D of 
SU(4)

n Look for subgroups D1xD2 , where D1 and D2
each act on single qubit

n CNOT- gate may or may not be realized by D



Scaling for many qubits

n Independent classical spins for each entry of 
density matrix:                  classical bits needed

n Use correlations:

Only 3Q classical bits needed !  



Q qubits

n SU(N) – generators

n density matrix

n correlation map



Probabilistic computing with 
static memory materials ?

n Let general equilibrium classical statistics 
transport information from one layer to the next

n Simulation, with D. Sexty



Static memory materials

Generalized Ising model:

Boundary term :



Classical interference
Depending on boundary conditions :

Positive 
interference

Negative 
interference



Probabilistic formalism for 
cellular automata

Generalized Ising model:

probabilistic
aspects only in 
boundary term :

limit : beta to infinity , sigma to zero :
only one possibility for change , unique jump



Static memory material for 
two dimensional Ising spins 
on Euclidean square lattice 

can describe propagation of Weyl fermion
in two- dimensional Minkowski space 



Quantum formalism for 
classical statistics

n Formalism for information transport from one 
hypersurface to the next:

n Classical wave functions and density matrix
n Transfer matrix formalism : Heisenberg picture
n Wave functions : Schroedinger picture
n Non commuting operators for observables
n Quantum rules from classical statistical rules



Arbitrary quantum operations

n Arbitrary quantum gates for an arbitrary number 
of qubits can be realized by suitable changes of 
probability distributions

n Infinite number of classical bits or continuous 
Ising spins needed

n Similar to description of rotations by classical 
bits



Quantum Field Theories

n Continuous classical observables or fields always 
involve an infinite number of bits

n Bits: yes/no decisions
n Possible measurement values 1 or 0

or 1 or -1

Discrete spectrum of observables



Artificial neural networks

n Can neural networks learn to perform quantum 
operations ?



Learning unitary operations

step 1: quantumness gate
learns to map input information 
on two – qubit density matrix 

step 2 : learns basic 
quantum gates for 
unitary operations individually



Learning unitary operations

learns :

normalization 

hermiticity

of  output matrix



Chain of unitary transformations

After the learning phase the network can perform
arbitrary chains of  unitary transformations



Conclusion

n Quantum operations can be performed by 
classical statistical systems

n Very low temperature or 
well isolated systems of microscopic qubits 

not needed !



Quantum mechanics  

from classical statistics



Can quantum physics be described 
by classical probabilities ?

“ No go “ theorems

Bell , Clauser , Horne , Shimony , Holt

implicit assumption : use of classical correlation function for correlation 
between measurements

not part of quantum subsystem

Kochen , Specker

assumption : unique map from quantum operators to classical observables



quantum mechanics can be described 
by classical statistics !



Reduction of wave function

n Reduction of wave function is a convenient 
technical method to describe conditional 
probabilities

n This must not be a physical process during the 
measurement



conditional probability

sequences of events( measurements ) 
are described by 
conditional probabilities

both in classical statistics
and in quantum statistics



w(t1)

not very suitable 
for statement , if  here and now
a pointer falls down

:



Schrödinger’s cat

conditional probability :
if  nucleus decays
then cat dead with wc = 1 
(reduction of  wave function)



structural elements of
quantum mechanics



unitary time evolution

ν



h



Simple conversion factor for units



i



presence of complex structure



[A,B]=C



non – commuting operators 
are necessary to represent 

observables in 
incomplete statistics



correlation and operator product
n Classical statistical systems admit many product 

structures of observables
n Many different definitions of correlation 

functions possible , not only classical correlation !
n Type of measurement determines correct 

selection of correlation function !
n Ideal quantum measurement should be 

compatible with information in quantum 
subsystem



Deterministic evolution –
probabilistic interpretation

n quantum mechanics arises from 

quantum subsystems
n subsystems are genuinely probabilistic
n part of information is lost by focus on 

subsystem
n partially ”integrating out” degrees of freedom



Determinism vs. Probabilism

“ Does god throw dices ? ”



… an old dispute

Gott würfelt Gott würfelt nicht



not todays topic

Gott würfelt Gott würfelt nicht

humans can only deal with probabilities



determinism vs. probabilism

my personal view :
n determinism not needed
n one can start with probabilistic theory and 

probabilistic evolution
n nevertheless : deterministic evolution is a 

possible option



conclusion

n quantum statistics emerges from classical statistics
quantum state, superposition, interference,   
entanglement, probability amplitude

n unitary time evolution of quantum mechanics can be 
described by suitable time evolution of classical 
probabilities

n memory materials are quantum simulators
n conditional correlations for measurements both in 

quantum and classical statistics



end


