Quantum mechanics and
quantum computing from

classical bits




Quantum mechanics from
cellular automata

Infinitely many bits : this 1s possible



Deterministic evolution —
probabilistic interpretation

B quantum mechanics arises from

quantum subsystems

m subsystems are genuinely probabilistic

m part of information is lost by focus on
subsystem

m partially “integrating out” degrees of freedom



Determinism vs. Probabilism

“ Does god throw dices ? ”



... an old dispute

Gott wurfelt Gott wurfelt nicht

“Es scheint hart, dem Her

r wiirfelt und sich t

Einstein: Brief an Cornelius Lanczos am 21. Marz 1942




not todays topic

Gott wurfelt Gott wurfelt nicht

I Lalt) OpL) el



determinism vs. probabilism

my personal view :

B determinism not needed

B one can start with probabilistic theory and
probabilistic evolution

B nevertheless : deterministic evolution is a
possible option



Embedding of quantum

mechanics 1n classical statistics

m it works

m quantum mechanics does not need new

fundamental concepts

beyond classical statistics

B raises interesting new ¢

uestions



Does our brain use guantum computing ¢

Do artificial nenral networks eniploy
quantum algorithms ¢

Can classical statistical memory materials
Dperform quantum operations ¢



Quantum subsystem

One qubit from three classical Ising spins

Ising spin : macroscopic two-level observable
Neuron fires above or below certain level
Particle present or not

Bit in a computet



Three Ising spins ( classical bits )

— 1, k=1.2,3

Arbitrary macroscopic two-level observables

— We may number the states by (0,0,0), (0,0,1), (0,1,0),
_jlght States (0,_ 1,1), (1,0,0), (1,0.‘1), (1 1,0), (1,1,1), where 1 denotes

spin up and 0 stands for spin down. The expectation value
of s3 is then given by (s3) = —p1 +p2 — p3s +ps — Ps +Ps —
p7 + ps, or for A = s159 one has (s182) = p1 + p2 — p3 —
s — Ps — Ps + p7r + ps. We denote the expectation values
of the three spins by p., 2 =1,...,3,

T

Classical
statistics



One qubit from three classical bits

Only part of classical statistical RS R RN TR R
. . p2 = —P1 — P2 +P3+Ps—P5s —Pe+ P71+ P8
information used for subsystem |




Subsystem in space of
correlation functions




Thermalization of
pure quantum state

m where does the information go ?

® into n — point functions with extremely high n !
( Avogadro’s number )

m nitial information is no longer visible in low
order correlation functions, which approach
thermal equilibrium values

m subsystem : low order correlation functions

Aarts, Bonini, Berges, Borsany...



Quantum subsystems

Quantum systems are subsystems of

classical statistical systems

They use only part of the available probabilistic

information

Incomplete statistics



Incomplete statistics

Classical correlation function

between Ising spin 1 and Ising spin 2

cannot be computed

from information in subsystem !

It involves information about environment of
subsystem : probabilistic information beyond

Pz = (52)




imcomplete statistics
15 0rigin of
representation of observables by
HON-CONMIMNIING 0perarors



Non-commuting operators

Quantum rule for expectation values

follows from classical statistical rules :




Quantum condition

Positivity of density matrix requites

quantum condition :

This implies uncertainty relation !



Not every classical probability
distribution admits a quantum subsystem




Pure quantum states

saturation of quantum condition :
B pure state

m density matrix can be written as bilinear in
complex wave function



Quantum computing

B quantum computing proceeds by quantum gates

m discrete unitary transformations of density
Mmatrix i consecutive time steps

p(t +€) = Ut)p(t)UT (1)

m a few basic gates are sufficient



Quantum gates

Unitary transtormation

p(t+¢) = U(t)pt)UT(¢)

of density matrix

Single qubit:
Rotation

Hadamard gate

Two qubits:
CNOT gate




Realization of quantum gates

m by deterministic manipulations of classical bits
or Ising spins

cellilar antomata

m by changes of classical probability distribution
for classical bits

Drobabilistic computing



Hadamard gate

PL—>pP3, pP2—>—pP2, pP3—P1

P1<*P3, DP2*DPr, Pa$rDs5, De<?D8g

Can be realized by deterministic spin flip

1 <> 83, S92 — —S892



A few one qubit gates

§1—+ 82,82 —S1 1 p1—=>pP2,pP2 7 —P1° Ul?z(

1
381,81 > =831 p3 > p1, p1 > —p3 i U= —

S1— —S1,82 > —S2 1 p1 = —pP1, P2 P2
§1— —S81,83 > —S3 1 P17 —P1,pP3 7 —P3:

Sp — —Sg, 83 = —S3 1 pp = —p2, p3 = —p3 : Ux =




Bit - quantum map

evolution of

classical classical probabilities

robabili |
p. . ty p'(t) pl(t +e) cl'flssmal_
distribution S(7) [sing spins

f bit quantum map

g U(z) |
quantum p(t) —— p(t+e¢) qubits

subsystem .
unitary

quantum
evolution




Complete bit — quantum map

B cvery positive density matrix of the quantum
subsystem can be realized by suitable classical
probability distribution

m then all quantum operations can be performed by
suitable changes of classical probability distribution




Single qubit quantum gates

Unitary transtormation

p(t+e)=U)pt)U(t)

of density matrix

Rotation

Hadamard gate

can be realized by suitable change of
classical probability distribution
rotation : not deterministic



Two qubits

(]. + p~L~) — (]- + ,OuuL;u/)

1
4

use fifteen classical bits

or use eioght classical bits and correlations
g

<()()>

Sk S

different bit - quantum maps



Quantum gates

Unitary transtormation

p(t+¢) = U(t)pt)UT(¢)

of density matrix

Single qubit:
Rotation

Hadamard gate

Two qubits:
CNOT gate




CNOT gate for two qubits

1

1
p=70+p:Lz) =7 (L4 pu L)

P10 <7 P11 P20 <7 P21, P13 7 —P22,
CNOT — LA 00> <> P32, P03 < P33, P23 < P12

P30, P01, P31 tnvariant.

to be achieved by
suitable change of probability distribution

for fifteen classical bits : deterministic



Entanglement

m CNOT - gate transforms product state for two
qubits into entangled state

(lT) N ) = \/_uu )

b5 = Ucthin = %(m) — 1)) = —= (0,1, -1,0)

- (0,1,0,-1)

m All unitary operations for two qubits can be
constructed from Hadamard, rotation and

CNOT gates.



Scaling for many qubits

m [ndependent classical spins for each entry of

density matrix: classical bits needed

B Use correlations:

Only 3Q classical bits needed !



Probabilistic computing with
static memory materials ?

m | ct general equilibrium classical statistics
transport information from one layer to the next

m Simulation, with D. Sexty



Static memory materials

Generalized Ising model:

s(t, l)[ (t+1,0+1)+os(t+1, l—1>]

Boundary term :




Classical interference

Depending on boundary conditions :

Positive Negative

interference interference



Probabilistic formalism for
cellular automata

Generalized Ising model:

o '3 . v
S = —3 Z s(t, x) [.s(t +1l,z4+1)+os(t+ 1,z — 1)}
z,l

limit beta to infinity , sigma to zero :
only one possibility for change , unique jump

probabilistic
aspects only in b(sin,sf) = fr(ss)fin(sin)
boundary term :




Static memory material for
1o dimensional Lsing spins

on Euclidean square lattice
can describe propagation of W eyl fermion

mn two- dimensional Minkowski space



Quantum formalism for
classical statistics

m Formalism for information transport from one
hypersurtace to the next:

m Classical wave functions and density matrix

m Transfer matrix formalism : Heisenberg picture
m Wave functions : Schroedinger picture

m Non commuting operators for observables

m Quantum rules from classical statistical rules



Arbitrary quantum operations

m Arbitrary quantum gates for an arbitrary number

of qubits can be rea

ized by suitable changes of

probability distributions

B [nfinite number of classical bits or continuous

Ising spins needed

m Similar to description of rotations by classical

bits



Quantum Field Theories

m Continuous classical observables or fields always
involve an infinite number of bits

m Bits: yes/no decisions
B Possible measurement values 1 or 0

or 1 or -1

Discrete spectrum of observables



Artificial neural networks

m Can neural networks learn to perform quantum
operations 7

Emulating quantum computation with artificial neural networks

Christian Pehle,* Karlheinz Meier, and Markus Oberthaler?
Kirchhoff-Institute for Physics
Heidelberg University
Im Neuenheimer Feld 227, D- ())1)0 Heidelberg

Christof Wetterich?
Institute for Theoretical Physus

Heidelberg Uni
Philosophenweg 16, D-69120 H eidelberg

We demonstrate, that artificial neural networks (ANN) can be trained to emulate single or multiple
basic quantum operations. In order to realize a quantum state, we implement a novel ” quantumness
gate” that maps an arbitrary matrix to the real representation of a positive hermitean normalized
density matrix. We train the CNOT gate, the Hadamard gate and a rotation in Hilbert space as
basic building blocks for processing the quantum density matrices of two entangled qubits. During
the training process the neural networks learn to represent the complex structure, the hermiticity,
the normalization and the positivity of the output matrix. The requirement of successful training




Learning unitary operations

— epochs = 1000

step 1: quantumness cate TR o e — 2000
p q . o g . 5 l:':' '| (‘:)()(':Ih’ = :(l(:l'l()
learns to map input information "

on two — qubit density matrix

step 2 : learns basic
quantum gates for
unitary operations individually

14 15

bottleneck dimension [m)|




Learning unitary operations

learns :

max

normalization
hermiticity
Of Output matriX ] 1000 ;('Nvlli 3000 1“(7'!

epoch




Chain of unitary transformations

After the learning phase the network can perform
arbitrary chains of unitary transformations

U(t + ne, t) = U(t+ (n— 1)6)




Conclusion

= Quantum operations can be performed by
classical statistical systems

m Very low temperature ot
well isolated systems of microscopic qubits

not needed !



o

Quantum mechat

‘—

S

from classical statistic



Can quantum physics be described
by classical probabilities ?

“No go “ theorems
Bell , Clauser , Horne , Shimony , Holt

implicit assumption : use of classical correlation function for correlation
between measurements

not part of quantum subsystem

Kochen , Specker

assumption : unique map from quantum operators to classical observables



guantum mechanics can be described
by classical statistics !



Reduction of wave function

B Reduction of wave function is a convenient
technical method to describe conditional
probabilities

m This must not be a physical process during the
measurement



conditional probability

sequences of events( measurements )
are described by

conditional probabilities

both in classical statistics
and in quantum statistics



not very suitable

for statement , if here and now
a pointer falls down



conditional probability :

if nucleus decays

then cat dead with w_ = 1
(reduction of wave function)



structural elements of
quantum mechanics



unitary time evolution

V



|
1

|
|



Simple conversion factor for units






presence of complex structure



[A,B]=C



non — commuting operators
are necessary to represent
observables in
incomplete statistics



correlation and operator product

m Classical statistical systems admit many product
structures of observables

m Many different definitions of correlation
functions possible , not only classical correlation !

m Type of measurement determines correct
selection of correlation function !

m [deal quantum measurement should be
compatible with information in quantum
subsystem



conclusion

quantum statistics emerges from classical statistics

quantum state, superposition, interference,
entanglement, probability amplitude

unitary time evolution of quantum mechanics can be
described by suitable time evolution of classical

probabilities
memory materials are quantum simulators

conditional correlations for measurements both in
quantum and classical statistics



e.



