
Quantum mechanics 
 
 
 
 

from information transport 
in classical statistics 



quantum mechanics can be described 
by classical statistics ! 



quantum particle from  
classical probabilities  



Double slit experiment 

Is there a classical probability 
density w(x,t) describing  
interference ? 
 
 
 
Suitable time evolution law : 
local , causal ?   Yes ! 
 
Bell’s inequalities ? 
Kochen-Specker Theorem ? 

Or hidden parameters w(x,α,t) ?  
  or w(x,p,t) ?  



statistical picture of the world 

 basic theory is not deterministic 
 basic theory makes only statements about 

probabilities for sequences of events and 
establishes correlations 

 probabilism is fundamental , not determinism ! 

quantum mechanics from classical statistics : 
not a deterministic hidden variable theory 



Probabilistic realism 

Physical theories and laws 
only describe  probabilities  
  



Physics only describes probabilities 

Gott würfelt  



Physics only describes probabilities 

      Gott würfelt Gott würfelt nicht 



Physics only describes probabilities 

                Gott würfelt  Gott würfelt nicht 

humans can only deal with probabilities 



probabilistic Physics 

 There is one reality 
 This can be described only by probabilities 

 
one droplet of  water … 
 1020 particles 
 electromagnetic field 
 exponential increase of distance between two 

neighboring trajectories 

 



probabilistic realism 

The basis of Physics are probabilities  
for predictions of real events 



laws are based on probabilities 

determinism as special case : 
       probability for event = 1 or 0 

 
 
 
 

 law of big numbers 
 unique ground state … 



conditional probability 

   sequences of events( measurements )  
   are described by  
   conditional probabilities 

both in classical statistics 
and in quantum statistics 



w(t1) 

 not very suitable  
for statement , if  here and now 
a pointer falls down 

: 



Schrödinger’s cat 

conditional probability : 
if  nucleus decays 
then cat dead with wc = 1  
(reduction of  wave function) 



classical particle  
without  classical trajectory 



no classical trajectories 

also for classical particles : 
 
trajectories with sharp position  
and momentum for each moment  
in time are inadequate idealization ! 
 
still possible formally as limiting case 



quantum particle    classical particle 

 particle-wave duality 
 uncertainty 

 
 no trajectories 

 
 tunneling 

 
 interference for double 

slit 

 particle – wave duality 
 sharp position and 

momentum 
 classical trajectories 

 
 maximal energy limits 

motion 
 only through one slit 



quantum particle    classical particle 
 
 quantum - probability -

amplitude ψ(x) 
 

 Schrödinger - equation 

 classical probability  
     in phase space   w(x,p) 

 
 Liouville - equation for w(x,p) 
      ( corresponds to Newton eq.  
        for trajectories ) 



quantum formalism for 
classical particle 



probability distribution for  
one classical particle 

classical probability distribution 
in phase space 



wave function for classical particle 

classical probability  
distribution in phase space 

wave function for  
classical particle 

  depends on  
  position 
  and momentum !  

C 

C 



wave function for one 
classical particle 

 

   real 
   depends on position and momentum 
   square yields probability 

C C 



quantum laws for observables 

C C 



x 

y 

pz>0 pz<0 

ψ 

Rydberg atom  
– or dust ring around saturn  



particle - wave duality 

wave properties of  particles : 
 
continuous probability distribution 



particle – wave duality 
experiment if  particle at position x – yes or no : 
discrete alternative 
 
 
 
probability distribution  
for finding 
particle at position x : 
continuous 

1 

1 

0 



particle wave duality 

 discreteness          :   observables 
 

 continuous wave  :    probabilities 



quantum formalism for  
classical particles 

All statistical properties of  classical particles 
 
can be described in quantum formalism ! 
 
                           no  quantum particles yet ! 



time evolution of  
classical wave function 



Liouville - equation 

describes classical time evolution of   
classical probability distribution 
for one particle in potential V(x) 



time evolution of  
classical wave function 

C 

C C 



wave equation 

modified Schrödinger - equation 

C C 



wave equation 

C C 

fundamenal equation for classical particle in 
potential V(x) 
replaces Newton’s equations 



 
modification of Liouville equation 



modification of evolution for 
classical probability distribution 

HW 

HW 

C C 



quantum particle 

with evolution equation 
 
 
 
 

all expectation values and correlations for 
quantum – observables , as computed from 
classical probability distribution , 
coincide for all times precisely with predictions  
of quantum mechanics for particle in potential V 

C C C 



Schrödinger equation 

 obtains by coarse graining 
 integrate out variable p 
 introduce complex structure 



classical probabilities –  
not a deterministic classical theory 

quantum particle from  
classical probabilities in phase space ! 



quantum mechanics from 
information transport in  

classical statistics 

 Why wave function ? 
 What determines evolution equation ? 
 Non – commuting observables ? 



discrete variables 

wire with  
discrete points t 

Ising spins  
s = 1, -1 

occupation numbers 
n = 0, 1  (fermions) 



occupation numbers in  
two dimensions 



Ising-type lattice model 

 
x : points  
on lattice 

  n(x) =1 : particle present  ,  n(x)=0 : particle absent 



classical statistical 
probability distribution 

 {n} : configuration of occupation numbers for 
all n(t) 
 
 

         [ ns ] = [0,0,1,0,1,1,0,1,0,1,1,1,1,0,…] 

 

 w[n] : probability distribution 



quasi-local  
probability distribution 

only interactions 
between two 
neighboring t 

boundary conditions 



information transport 

 How do boundary  conditions influence 
expectation values in the bulk ? 

 or at the other boundary ? 



information transport 

important problem in classical statistics and 
information theory 

described by quantum formalism 



quantum formalism for 
information transport 

 go from one t to the next 
 described by generalized Schrödinger 

equation for classical wave function 



local observables 

depend only on occupation numbers 
at given t 

sum over configurations 



local probabilities 
local observable can be computed from 
local probabilities 



classical wave function 

classical wave function integrates the past half 

conjugate wave function integrates the future half 



quantum rule for  
expectation value 



evolution is formulated in terms of 
wave function 

linear equation ,  
superposition principle ! 



evolution is formulated in terms of 
wave function 

expand in 
basis functions f 

matrix equation 

S : related to transfer matrix 



generalized Schrödinger equation 

continuum limit : 

complex structure : 

main difference to quantum mechanics 
G is not hermitean ! 



density matrix 

 local probabilities are diagonal elements of 
density matrix 

 evolution of local probabilities need density 
matrix 

 cannot be formulated in terms of local 
probabilities only 



memory materials 

 statistical systems where J plays no role 
 
 

 bulk preserves memory of boundary conditions 
 quantum simulators 



structural elements of 
quantum mechanics 



unitary time evolution 

ν 



h 



Simple conversion factor for units 



i 



presence of complex structure 



[A,B]=C 



non-commuting observables 

 classical statistical systems admit many product 
structures of observables 

 many different definitions of correlation 
functions possible , not only classical correlation ! 

 type of measurement determines correct selection 
of correlation function ! 

 example 1 : euclidean lattice gauge theories 
 example 2 : function observables 



conclusion 

 quantum statistics emerges from classical statistics 
    quantum state, superposition, interference,   

entanglement, probability amplitude 
 unitary time evolution of quantum mechanics can be 

described by suitable time evolution of classical 
probabilities 

 memory materials are quantum simulators 
 conditional correlations for measurements both in 

quantum and classical statistics 



end 



Can quantum physics be described 
by classical probabilities ? 

“ No go “ theorems 
 

          Bell , Clauser , Horne , Shimony , Holt 
 
    implicit assumption : use of classical correlation function for 

correlation between measurements 
 
          Kochen , Specker 
 
    assumption : unique map from quantum operators to classical 

observables 
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