Quantum mechanics

from information transport in classical statistics

quantum mechanics can be described by classical statistics !

quantum particle from classical probabilities

Double slit experiment

- Is there a classical probability density w(x,t) describing interference ?
- Or hidden parameters $w(x,\alpha,t)$? or w(x,p,t)?
- Suitable time evolution law : local, causal? Yes!
- Bell's inequalities ? Kochen-Specker Theorem ?

statistical picture of the world

basic theory is not deterministic

basic theory makes only statements about probabilities for sequences of events and establishes correlations

probabilism is fundamental, not determinism !

quantum mechanics from classical statistics : not a deterministic hidden variable theory

Probabilistic realism

Physical theories and laws only describe probabilities

Physics only describes probabilities

Gott würfelt

Physics only describes probabilities

Gott würfelt

Gott würfelt nicht

"Es scheint hart, dem Herrgott in die Karten zu gucken. Aber dass er würfelt und sich telepatischer Mittel bedient (wie es ihm von der gegenwärtigen Quantentheorie zugemutet wird), kann ich keinen Augenblick glauben.."

Einstein: Brief an Cornelius Lanczos am 21. März 1942

Physics only describes probabilities

Gott würfelt

Gott würfelt nicht

probabilistic Physics

There is one reality This can be described only by probabilities one droplet of water 10^{20} particles electromagnetic field exponential increase of distance between two neighboring trajectories

probabilistic realism

The basis of Physics are probabilities for predictions of real events

laws are based on probabilities

determinism as special case : probability for event = 1 or 0

law of big numbers
unique ground state ...

conditional probability

sequences of events(measurements) are described by conditional probabilities

both in classical statistics and in quantum statistics

not very suitable for statement, if here and now a pointer falls down

Schrödinger's cat

conditional probability : if nucleus decays then cat dead with $w_c = 1$ (reduction of wave function)

classical particle without classical trajectory

no classical trajectories

also for classical particles :

trajectories with sharp position and momentum for each moment in time are inadequate idealization !

still possible formally as limiting case

quantum particle classical particle

- particle-wave dualityuncertainty
- no trajectories
- tunneling
- interference for double slit

- particle wave duality
 sharp position and momentum
 classical trajectories
- maximal energy limits motion
 only through one slit

quantum particle classical particle

- quantum probability amplitude ψ(x)
- Schrödinger equation

- classical probability in phase space w(x,p)
- Liouville equation for w(x,p)
 (corresponds to Newton eq. for trajectories)

$$\frac{\partial}{\partial t}w = -Lw$$

$$L = \frac{p}{m}\frac{\partial}{\partial x} - \frac{\partial V}{\partial x}\frac{\partial}{\partial p}$$

$$i\hbar \frac{\partial}{\partial t}\psi_{\mathcal{Q}}(x) = -\frac{\hbar^2}{2m}\Delta\psi_{\mathcal{Q}}(x) + V(x)\psi_{\mathcal{Q}}(x)$$

quantum formalism for classical particle

probability distribution for one classical particle

classical probability distribution in phase space

w(x,p;t)

wave function for classical particle

classical probability distribution in phase space

wave function for classical particle

$$w = \psi_{\mathbf{C}}^2$$

$$\psi(x,p;t)$$

depends on position and momentum ! wave function for one classical particle

$$\psi(x,p;t) \qquad w = \psi_{\mathbf{C}}^2$$

- real
- depends on position and momentum
- square yields probability

quantum laws for observables

$$\langle x^2 \rangle = \int_{x,p} \psi^*_{\mathbf{C}}(x,p) x^2 \psi(x,p) \frac{1}{\mathbf{C}} \psi(x,p) \frac$$

$$\langle x^2 \rangle = \int_{x,p} x^2 w(x,p)$$

Χ

Rydberg atom – or dust ring around saturn

particle - wave duality

wave properties of particles :

continuous probability distribution

particle – wave duality

experiment if particle at position x – yes or no : **discrete** alternative

probability distribution for finding particle at position x : **continuous**

particle wave duality

discreteness : observables

continuous wave : probabilities

quantum formalism for classical particles

All statistical properties of classical particles

can be described in quantum formalism !

no quantum particles yet !

time evolution of classical wave function

Liouville - equation

$$\frac{\partial}{\partial t}w = -Lw$$

$$L = \frac{p}{m}\frac{\partial}{\partial x} - \frac{\partial V}{\partial x}\frac{\partial}{\partial p}$$

describes classical time evolution of classical probability distribution for one particle in potential V(x)

time evolution of classical wave function

wave equation

$$\frac{\partial}{\partial t}\psi = -L\psi$$

$$i\hbar\frac{\partial}{\partial t}\psi = H_L\psi_{\mathbf{C}}$$

$$H_L = -i\hbar L = -i\hbar \frac{p}{m} \frac{\partial}{\partial x} + i\hbar \frac{\partial V}{\partial x} \frac{\partial}{\partial p}$$

modified Schrödinger - equation

wave equation

$$i\hbar \frac{\partial}{\partial t}\psi = H_L \psi$$

$$H_L = -i\hbar L = -i\hbar \frac{p}{m} \frac{\partial}{\partial x} + i\hbar \frac{\partial V}{\partial x} \frac{\partial}{\partial p}$$

fundamenal equation for classical particle in potential V(x) replaces Newton's equations

modification of Liouville equation

modification of evolution for classical probability distribution

$$i\hbar\frac{\partial}{\partial t}\psi_{\mathbf{C}} = H_{L}\psi_{\mathbf{C}} \qquad H_{L} = -i\hbar L = -i\hbar\frac{p}{m}\frac{\partial}{\partial x} + i\hbar\frac{\partial V}{\partial x}\frac{\partial}{\partial p}$$
$$H_{L} \longrightarrow H_{W}$$

$$\boldsymbol{H}_{\boldsymbol{W}} = -i\hbar \frac{p}{m} \frac{\partial}{\partial x} + V\left(x + \frac{i\hbar}{2} \frac{\partial}{\partial p}\right) - V\left(x - \frac{i\hbar}{2} \frac{\partial}{\partial p}\right)$$

quantum particle

with evolution equation

$$\partial_t \psi(x,p) = -\frac{p}{m} \partial_x \psi(x,p) + K(x,\partial_p) \psi(x,p),$$

$$K = -i \left[V \left(x + \frac{i}{2} \partial_p \right) - V \left(x - \frac{i}{2} \partial_p \right) \right]$$

all expectation values and correlations for quantum – observables, as computed from classical probability distribution, coincide for all times precisely with predictions of quantum mechanics for particle in potential V

Schrödinger equation

obtains by coarse graining
integrate out variable p
introduce complex structure

quantum particle from classical probabilities in phase space !

classical probabilities – not a deterministic classical theory quantum mechanics from information transport in classical statistics

Why wave function ?
 What determines evolution equation ?
 Non – commuting observables ?

discrete variables

wire with discrete points t

Ising spins s = 1, -1

occupation numbers n = 0, 1 (fermions)

occupation numbers in two dimensions

Ising-type lattice model

x : points on lattice

n(x) = 1: particle present, n(x)=0: particle absent

classical statistical probability distribution

 {n} : configuration of occupation numbers for all n(t)

 $[n_s] = [0,0,1,0,1,1,0,1,0,1,1,1,1,0,...]$

 \square w[n] : probability distribution

quasi-local probability distribution

$$K[n] = \exp(-S[n])$$

= $\exp(-\sum_{t} L([n(t+c)], [n(t)])$
= $\prod_{t} \mathcal{K}(t)$

only interactions between two neighboring t

information transport

How do boundary conditions influence expectation values in the bulk ?
or at the other boundary ?

information transport

important problem in classical statistics and information theory described by quantum formalism

quantum formalism for information transport

go from one t to the next
 described by generalized Schrödinger equation for classical wave function

local observables

depend only on occupation numbers at given t

 $\langle A(t) \rangle = \int Dm A(t, [m(t)]) W[m]$

sum over configurations

local probabilities

local observable can be computed from local probabilities

$$p(t; [nlt]] = \prod_{\substack{t' \neq t}} \int Dn(t') w[n]$$

 $\langle A(t) \rangle = \int Dm(t) A(t, [n(t)]) p(t, [n(t)])$

 $\langle A(t) \rangle = \int Dm A(t, [m(t)]) W[m]$

classical wave function

classical wave function integrates the past half

$$\overline{\psi}(t, [n(t)]) = \int \mathcal{D}n(t'>t) \prod_{\substack{t'>t}} \mathcal{K}(t') \overline{l_{q}}(t_{q})$$

conjugate wave function integrates the future half

quantum rule for expectation value

$$\langle A|t \rangle = \langle Du|t \rangle \overline{\psi}(t, [n(t)]) A(t, [n(t)]) \psi(t, [n(t)])$$

$$\langle A \rangle = \overline{\psi} A' \psi$$

 $\langle A(t) \rangle = \int Dn A(t, [mlt]) W[m] W[m] = \overline{l_{f}[nlt_{f}]} K[n] l_{in} [Wt_{in}]$

evolution is formulated in terms of wave function

$$\psi(t+\varepsilon, [n[t+\varepsilon]]) = (Dn[t) \mathcal{K}[t) \psi(t; [n[t]])$$

$$\psi(t_{j}[nlt]) = \int Dn(t' < t) \prod_{t' < t} K(t') l_{in}(t_{in})$$

linear equation, superposition principle !

evolution is formulated in terms of wave function

$$\psi(t+\varepsilon, [n[t+\varepsilon]]) = (Dn[t) \mathcal{K}[t) \psi(t; [n[t]])$$

 $\Psi(t, [n[t]]) = \Psi_{\tau}(t) f_{\tau}([n[t]])$

expand in basis functions f

$$\psi_{\tau}(t+\varepsilon) = S_{\tau_{g}} \psi(t)$$
 matrix equation

S: related to transfer matrix

generalized Schrödinger equation

continuum limit :

complex structure :

$$i J_{2} \psi = G \psi$$

main difference to quantum mechanics G is not hermitean !

$$G = H + iJ$$
 $H^{\dagger} = H$ $J^{\dagger} = J$

density matrix

$$\partial_t \rho = [W, \rho]$$

- local probabilities are diagonal elements of density matrix
- evolution of local probabilities need density matrix
- cannot be formulated in terms of local probabilities only

memory materials

statistical systems where J plays no role

$$i J_{2} \gamma = G \gamma \quad G = H + i J \quad H^{\dagger} = H \quad J^{\dagger} = J$$

bulk preserves memory of boundary conditionsquantum simulators

structural elements of quantum mechanics

unitary time evolution

Simple conversion factor for units

presence of complex structure

[A,B] = C

non-commuting observables

- classical statistical systems admit many product structures of observables
- many different definitions of correlation functions possible, not only classical correlation !
- type of measurement determines correct selection of correlation function !
- example 1 : euclidean lattice gauge theories
- example 2 : function observables

conclusion

- quantum statistics emerges from classical statistics quantum state, superposition, interference, entanglement, probability amplitude
- unitary time evolution of quantum mechanics can be described by suitable time evolution of classical probabilities
- memory materials are quantum simulators
 conditional correlations for measurements both in quantum and classical statistics

Can quantum physics be described by classical probabilities ?

"No go " theorems

Bell, Clauser, Horne, Shimony, Holt

implicit assumption : use of classical correlation function for correlation between measurements

Kochen, Specker

assumption : unique map from quantum operators to classical observables