Probabilisitic cellular automata for
fermionic quantum field theories




Some interacting fermionze quantum freld
theories or many body systenss
are equivalent to
Drobabilistic cellular antomata



Quantum field theory and
quantum mechanics

m [s the Thirring model a model for
quantum mechanics ?
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m Yes, for a given vacuum consider the
one-particle state.



Quantum mechanics from
classical statistics

m Probabilistic Cellular automata are
classical statistical systems

s Quantum mechanics emerges from a
classical statistical system.

m All no go theorems ( Bell etc. ) are
circumvented



Fermions

= quantum obijects
= wave function totally antisymmetric
( Pault principle )
= anticommutator for annihilation and creation operators
= anticommuting Grassmann variables

s functional integral or partition function for many body
systems or quantum field theories is Grassmann
functional integral



Cellular automaton

s Deterministic manipulation of bits

s Updating rule of bit configurations in sequential
steps

= usually: repetition
( Classical computer is a type of cellular automaton

without repetition )



Cellular automaton

At each step :

s cach bit configuration changes to a unique new
bit configuration according to an updating rule

s for a fixed 1nitial configuration : classical
deterministic computing



Updating rule for
Thirring automaton

one — dimensional chain, x : discrete lattice sites

at each x : red and green right movers and left
movers (4 different species at each site )

at each time step: configuration for right(left)
movers moves one position to the right(left)

if two single particles meet:

colors are exchanged




Updating rule

= at each time step configuration for right(lett) movers moves one
position to the right(left), periodicity in x

m if precisely two single particles meet at a site : colors are exchanged




Half filled ground states




Soliton

black line : no right movers,
or two right movers with different colors



Soliton separates different vacua




Probabilistic cellular
automaton

Probability distribution for initial configurations

(‘or other probabilistic boundary condition )



Equivalence with fermionic QFT

The probabilistic Thirring automaton 1s
equivalent with a fermionic quantum
field theory in 1+1 dimensions, namely a

type of Thirring model
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two colors: a,b = 1,2 = red, green



Fermions are Ising spins or bits

Fermionic occupation numbers n =0 , 1
Classical bits
Ising spins s = 2n -1

Bit configurations = many body states of fermions



Fermionic wave function

s Occupation number basis for multi-
fermion systems:

m To each bit conﬁguration one associlates an
element of the wave function

s Occupation numbers for different space
points and species



Probabilistic cellular

automaton
Probabilistic initial condition: Specity

at initial time t,, for each bit configuration |

a probability [

Evolution: every given conﬁguraﬂon at t,

propagates at t to a configuration g
Sl - () = P5(r) (tin)

Updating rule: specifies | (t + &, p(t))




Wave function for
probabilistic cellular automaton

Probability distribution: at every time t a bit configuration t
occurs with probability , which equals the probability for

the 1nitial bit configuration from which it originates.

Real wave function q(t): probability amplitude

N — component unit vector



Deterministic and probabilistic
cellular automaton

= Deterministic CA : sharp wave function

dp (tin) = 5p,ﬁ

s Probabilistic CA : arbitrary wave function



Particle wave duality

Particle aspect:
s Bits: yes/no decisions
m Possible measurement values 1 or 0

Discrete spectrum of observables

Wave aspect : continuous wave function

more generally: continuity of probabilistic information



Step evolution operator

s Evolution for basic time step is encoded in the
step evolution operator

AN

AN

Q(t T 6) — S(t)Q(t) qr(t+¢)= STf)(t)QP(t)

s Contains the updating rule for CA




Unique jump matrix

= Step evolution operator for cellular
automata 1s unique jump matrix

m In every row and coloumn: precisely
one element +1 or -1, all other
elements zero




QFT- CA equivalence

A fermionic quantum field theory is
equivalent to a probabilistic cellular

automaton if the evolution operator for
discrete time steps is a

unique jump matrix

(1n a real formulation of the evolution equation)



Continuum limit

m Discretized fermionic QFT (e.g. on
lattice ) makes model well defined

» Regularized functional integral
= Step evolution operator

s Needs continuum limit



Step evolution operator

s Sequence of kinetic ( free ) and interaction part

_

§ — Sint §fnee

m l.ocal interaction

Sint = Si(@in) ® Si(@in + €) ® Si(in +26) ® . ..

(1) at each time step configuration for right(left) movers
moves one position to the right(left),
(2) if precisely two single particles meet at a site : colors are exchanged



Annihilation and creation
operators

Step evolution operator for Thirring automaton
can be written in terms of fermionic annihilation
and creation operators

{al(2),a5(y)} = 0,50zy {0 (2), a5(y)} = {a} (), af ()} =0

Si() = exp { L [ah (2)aga (@) — afo(@)ar: (2)] [a]  (@)ar2(2) - afy(@)ars (@)
2

SRRL) _ N [exp { Z a'(z + ¢)[a(z) — a(z £ ¢)] }]



Hamiltonian

Interpolating continuous time evolution

q(t2) =Ul(ta,t1)q(t1)

Agrees with discrete evolution for

Schrodinger equation  [RGTESEE|




Naive continuum limit

s Hamiltonian simplifies in the continuum limit
H = Hyree + Hint + AH [l AH = O (¢[Hiny, Hiro)

s Standard form of Hamiltonian for fermions

Hine == | do Y {a}(0)0s01(2) — al, (2)0sara(e)

Hint = — % Jd“’ [al];laR‘Z - aﬁzam] [alilaLQ B altzaLl]




General bit fermion map

s [somorphism between generalized Ising model and
Grassmann functional integral

» Based on identical step evolution operator for both
models, with associated map of observables

m In our case: proof that discrete Thirring model with two
colors has the same step evolution operator as the
cellular automaton

L(t)=— Z{Em(t +6,2+€)YRa(t, ) + Ypo(t + 6,2 — e)PLalt, 2)

xr

~ [PRa(t, 2)¥Ralt. 2) + DLa(t. 2)YLalt,2) + D(@)] (1 +ﬁ(m))}




Quantum field theory and
quantum mechanics

m [s the Thirring model a model for
quantum mechanics ?
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m Yes, for a given vacuum consider the
one-particle state.



Discretization remains a quantum
model, if evolution is unitary

Grassmann functional integral

7 = J'Du’) exp(—S[]) = J'Dd)w[y’)] . S= L)
t
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Quantum formalism for
classical statistics

m Formalism for information transport from one
hypersurtace to the next:

s Classical wave functions and density matrix
s Transfer matrix formalism : Heisenberg picture
= Wave functions : Schrodinger picture

s Non commuting operators for observables

s Quantum rules from classical statistical rules



Momentum observable

s Measures periodicity of wave function

» Statistical observable, similar to
temperature

s \No fixed value in microstate

s Classical correlation function with
occupation numbers does not exist

s Needs probabilistic information



Quantum mechs

‘—

from classical sta



Quantum mechanics from
classical statistics

For particular quantum model:

Isomorphism between classical statistics
( probabilistic cellular automaton,

generalized Ising model )

and quantum mechanics

( many body quantum system for fermions )



Equivalence

m Expectation values of all observables
are the same in both models

= Two equivalent descriptions of the
same physical reality



Important conceptual
consequences

» Probabilistic cellular automata are
classical statistical systems
s Fermionic quantum field theories are
quantum systems
s Quantum mechanics emerges from classical statistics

s Quantum formalism can be used for classical
statistics



Can quantum physics be described by
classical probabilities ?

“No go ““ theorems
Bell , Clauser , Horne , Shimony , Holt

implicit assumption : use of classical correlation function for all correlations
between measurements

Kochen , Specker

assumption : unique map from quantum operators to classical observables



Conclusion

Particular quantum field theory for interacting fermions
is equivalent to the classical statistical model of a
particular probabilistic cellular automaton.

Large tamily of models — not all models!

Examples for quantum mechanics from classical
statistics

Usetul for simulating fermionic models and
understanding of statistical properties of cellular
automatar






Reduction of wave function

m Reduction of wave function is a
convenient technical method to
describe conditional probabilities for
sequences of measurements

= This must not be a physical process
during the measurement



conditional probability

sequences of events( measurements )

are described by

conditional probabilities

both in classical statistics
and. in quantum statistics



not very suitable

for statement , if here and now
a pointer falls down



conditional probability :
it nucleus decays
then cat dead with w, = 1

(reduction of wave function)



Probabilistic cellular
automaton

Probability distribution for initial configurations

(‘or other probabilistic boundary condition )



Probabilistic formalism for
cellular automata

Generalized Ising model:

_:——Z t,x [ (t+1,z+1)+o0s (IL+1.JT—1)}

limit : B to infinity , o to zero :
only one possibility for change , unique jump
probabilistic

aspects only in b(sin,sf) = fr(sf)fin(sin)
boundary term :




Functional integral for
cellular automata

Generalized Ising model:

- 3 . v
S = —3 Z s(t, x) [.5(2‘ +1l,z4+1)+os(t+ 1,z — 1)}
z,l

limit : beta to infinity , sigma to zero :
only one possibility for change , unique jump

Functional renormalization for cellular antomata



Probabilistic computing with
static memory materials ?

s Let general equilibrium classical
statistics transport information from
one layer to the next

s Simulation, with D. Sexty



Static memory materials

Generalized Ising model:

s(t, l)[ (t+1,0+1)+os(t+1, l—1>]

Boundary term :




Classical interference
Depending on boundary conditions :

0
5 10 15 20 25 30 0 5 10 15 20 25 30

Positive Negative
intetrference interference



Static memory material for
1o dimensional Lsing spins

on Euclidean square lattice
can describe propagation of W eyl fermion

m two- dimensional NVinkowski space



Discrete fermion model
in 1+1 dimensions

Grassmann functional integral
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Continuum limit

S =J {VRa(t,2)(0f + 0z)VRa(t, ) + Vo (t, 2) (0 — Oz)VLa(t,x) + 2D(t,z)}
t.x
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=
[
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Lorentz symmetry

Dirac spinor
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structural elements of
quantum mechanics



unitary time evolution

V
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Simple conversion factor for units






presence of complex structure



[A,B]=C



non — commuting operators
are necessary to represent
observables in
incomplete statistics



correlation and operator
product

Classical statistical systems admit many product
structures of observables

Many different definitions of correlation functions
possible , not only classical correlation !

Type of measurement determines correct selection of
correlation function !

Ideal quantum measurement should be compatible with
information in quantum subsystem



Deterministic evolution —
probabilistic interpretation

s quantum mechanics arises from

quantum subsystems

m subsystems are genuinely probabilistic

s part of information 1s lost by focus on
subsystem

s partially “integrating out” degrees of freedom



Determinism vs. Probabilism

“Does god throw dices ? ”



... an old dispute

Gott wurfelt Gott wurfelt nicht

Einstein: Brief an Cornelius Lanczos am 21. Marz 1942




not todays topic

Gott wurfelt Gott wurfelt nicht

L W) 109010

DUNANS vl OpL) D¢l



determinism vs. probabilism

my personal view :
s determinism not needed, nor useful

s start with probabilities as basic concept for the
description of the world ( not related to lack of
knowledge for deterministic state !)

s nevertheless : deterministic evolution is a
possible option



