Quantum fermions from

classical bits




Fermions are Ising spins

m Fermionic occupation numbers n = 0,1
m Classical bits
B [sing spins s = 2n -1

m Bit configurations = many body states of
fermions



Cellular automaton

At each step :

m cach bit configuration changes to a unique new
bit configuration according to an updating rule

m for a fixed initial configuration : classical
deterministic computing



Updating rule

one — dimensional chain, x : discrete lattice sites

at each x : red and green right movers and left
movers (4 different species at each site )

at each time step: configuration for right(left)
movers moves one position to the right(lett)

it two single particles meet:

colors are exchanged




Updating rule

m at each time step configuration for right(lett) movers moves one
position to the right(left), periodicity in x

m if precisely two single particles meet at a site : colors are exchanged




Half filled ground states




Soliton

black line : two right movers with different colors



Soliton separates different vacua




Probabilistic cellular automaton

Probability distribution for initial configurations

(‘or other probabilistic boundary condition )



Probabilistic formalism for
cellular automata

Generalized Ising model:

. “3 v
8 = 5 Z st @) [s(z‘ +1,z4+1)+os(t+1,z — 1)}
z,l

limit : beta to infinity , sigma to zero :
only one possibility for change , unique jump

probabilistic
aspects only in b(sin,sf) = fr(sz)fin(Sin)
boundary term :




Functional integral for
cellular automata

Generalized Ising model:

- '3 . v
8 = 5 Z st @) [.s(z‘ +1,z4+1)+os(t+1,z — 1)}
z,l

limit : beta to infinity , sigma to zero :
only one possibility for change , unique jump

Functional renormalization for cellutar automata



Probabilistic computing with
static memory materials ?

m | ct general equilibrium classical statistics
transport information from one layer to the next

m Simulation, with D. Sexty



Static memory materials

Generalized Ising model:

s(t, l)[ (t+1,2+1) +os(t+1, l—1>]

Boundary term : sins81) = F1(37) fin(5in)




Classical interference

Depending on boundary conditions :

Positive Negative

interference interference



Static memory material for
1o dimensional Lsing spins

on Euclidean square lattice
can describe propagation of W eyl fermion

mn two- dimensional Minkowski space



Probabilistic cellular automaton is
equivalent to guantum field theory
Jor fermiions with interactions
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Discrete fermion model
in 1+1 dimensions

Grassmann functional integral

Z = Jms exp(—S[4]) = mew;] . S=D" @)
t

L(t)=— Z{"T’na(t +&,2+ €)YRa(t, T) + VLot + 6,2 — €)YLal(t, 2)

z

= [“T’Ra (t, 2)VRa(t, ) + VLalt, 2)¥La(t. 2) + E('l’)] (1+ D(z)) }

D =—(Yr1¥12 — Yr2¥L1) (Yr1¥12 — YroV11) — (YR1VL1 + ¥YR2V12) (YR1YL1 + YR2VL2)




General bit- fermion map

B Fermion model in terms of Grassmann
functional integral is equivalent to generalized
I[sing model

B [somorphism for evolution and observables

m Map 1s general. But not always positive weight
distribution for Ising type model, and unitary
evolution.



Continuum limit

S =J {VRa(t,2) (0t + 0z)VRa(t, ) + Vo (t, 2) (0 — Oz)VLa(t,z) +2D(t,z)}
L,

1
= [¥(t,2) — ¥t — &,z —€)] ' '
u. U(t,2) = V2eUn (t, 2)

(O — Oz)Y(t, x) = :}[uﬂr(t. z) — Yt —e,z+¢€)] 3

(Bt + Bz)U(t, ) =




Lorentz symmetry

YLa

Dirac spinor Yo = ('“:’R“) , Pa=Bras —Vra)
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Quantum field theory for
fermions with interactions

m Thirring model with two colors

m Particular value of coupling

— & . 1 — e ; ]. = ) ab_, J cd
S=- J {lf'-"a‘/'“du Ya + Va7 YaVp1uts + 5V Ybe™ Y rutae }
t.x
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Quantum mechanics
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from classical statistic



Quantum mechanics from
classical statistics

For particular quantum model:

[somorphism between classical statistics
( probabilistic cellular automaton,

generalized Ising model )

and quantum mechanics

( many body quantum system for fermions )



Equivalence

m Fxpectation values of all observables are the
same in both models

m Two equivalent descriptions of the same

physical reality



Can quantum physics be described
by classical probabilities ?

“No go “ theorems
Bell , Clauser , Horne , Shimony , Holt

implicit assumption : use of classical correlation function for all correlations
between measurements

Kochen , Specker

assumption : unique map from quantum operators to classical observables



Probabilistic cellular automaton

Probabilistic initial condition: Specify

at initial time t,, for each bit configuration
a probability

Evolution: every given configuration g at t,,

propagates at t to a configuration
Wl P (t) = P57 (tin)

Updating rule: specifies i (t 1€, ,O(t))




Wave function for
probabilistic cellular automaton

Probability distribution: at every time t a
bit configuration t occurs with probability

Real wave function q(t): probability amplitude

N — component unit vector



Deterministic and probabilistic
cellular automaton

m Deterministic CA : sharp wave function

q/) (tln) a 5P?ﬁ

m Probabilistic CA : arbitrary wave function



Particle wave duality

Particle aspect:
m Bits: yes/no decisions
m Possible measurement values 1 or 0

Discrete spectrum of observables

Wave aspect : continuous wave function

more generally: continuity of probabilistic information



Step evolution operator

m Evolution for basic time step 1s encoded in the
step evolution operator

q(t+¢) = §(t)q(t) qr(t + €)= Srp(t)gp(?)

m Contains the updating rule for CA




Step evolution operator

m Sequence of kinetic ( free ) and interaction part

_

§ — Sint SY\frvee

®m | .ocal interaction

(1) at each time step configuration for right(left) movers
moves one position to the right(left),
(2) if precisely two single particles meet at a site : colors are exchanged



Annihilation and creation
operatots

Step evolution operator can be written in terms
of fermionic annihilation and creation operators

{al(2),a5(y)} = 6,50zy {0 (2), a5(y)} = {a}(2),al(¥)} =0
= NG i /Y 3 i o
Si(2) =exp { 5 [ak, ()ara(2) — af, (2)ar1 (@)] [af  (@)ar2(2) — af y(@)ars (2)] |

~

Siee— 5 © 3 @ 31 o 5V

gL _ N [exp { Z a'(z + ¢)[a(z) — a(z £ )] }]




Hamiltonian

® Define H by S’\:exp(—ieH)

B [nterpolating continuous time evolution

q(t2) =U(ta,t1)q(t1)

m Agrees with discrete evolution for

m Schrodinger equation  [KICAEE sy




Continuum limit

m Hamiltonian simplifies in the continuum limit

H = Hyyoo + Hint + AH [l AH = O(c[Higy, Hpree))

B Standard form of Hamiltonian for fermions

Hine == | do Y {a}(0)0s010(2) — af, (2)0sara(e)

™

i +

Hint = — 22 Jd‘” oy @R2 — ag,ari] [alilau - aizaLl]



General bit fermion map

m [somorphism between generalized Ising model and
Grassmann functional integral

m Based on identical step evolution operator for both
models, with associated map of observables

® In our case: proof that discrete Thirring model with
two colors has the same step evolution operator as the
cellular automaton

L(t)=- Z{f?‘na(t 6,8+ €)VRa(t,2) + Pralt + &2 — E)YLalt, )

xTr

= ["T’Ra (t, 2)YRa(t, 2) + VLot 2)¥La(t, z) + ﬁ(l’)] (1+ D(z)) }




Quantum formalism for
classical statistics

m Formalism for information transport from one
hypersurtace to the next:

m Classical wave functions and density matrix

m Transfer matrix formalism : Heisenberg picture
m Wave functions : Schrodinger picture

m Non commuting operators for observables

m Quantum rules from classical statistical rules



Conclusion

m Particular quantum field theory for interacting
fermions 1s equivalent to the classical statistical
model of a particular probabilistic cellular
automaton.

m HExample for quantum mechanics from classical
statistics

m Useful for simulating fermionic models and
understanding of statistical properties of cellular
automatar






Reduction of wave function

B Reduction of wave function is a convenient
technical method to describe conditional
probabilities

m This must not be a physical process during the
measurement



conditional probability

sequences of events( measurements )
are described by

conditional probabilities

both in classical statistics
and in quantum statistics



not very suitable

for statement , if here and now
a pointer falls down



conditional probability :

if nucleus decays

then cat dead with w_ = 1
(reduction of wave function)



structural elements of
quantum mechanics



unitary time evolution
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Simple conversion factor for units






presence of complex structure



[A,B]=C



non — commuting operators
are necessary to represent
observables in
incomplete statistics



correlation and operator product

m Classical statistical systems admit many product
structures of observables

m Many different definitions of correlation
functions possible , not only classical correlation !

m Type of measurement determines correct
selection of correlation function !

m [deal quantum measurement should be
compatible with information in quantum
subsystem



Deterministic evolution —
probabilistic interpretation

B quantum mechanics arises from

quantum subsystems

m subsystems are genuinely probabilistic

m part of information is lost by focus on
subsystem

m partially “integrating out” degrees of freedom



Determinism vs. Probabilism

“ Does god throw dices ? ”



... an old dispute

Gott wurfelt Gott wurfelt nicht

Einstein: Brief an Cornelius Lanczos am 21. Marz 1942




not todays topic

Gott wurfelt Gott wurfelt nicht

I Lalt) OpL) el



determinism vs. probabilism

my personal view :

B determinism not needed

B one can start with probabilistic theory and
probabilistic evolution

B nevertheless : deterministic evolution is a
possible option



