
Quantum systems 
from 

probabilistic cellular automata



The probabilistic world

■ Physicists describe the Universe by a 
probability distribution for events at all 
times and positions

■ Classical statistics
■ Quantum mechanics follows by focus 

on time-local subsystems



Overall view on 
quantum mechanics

■ Quantum mechanics from quantum 
field theory

■ Functional integral : variables for all 
times ( fields, bit configurations, paths ) 

■ Local time physics : 
   Focus on hypersurfaces
   labeled by t



Quantum mechanics

■ Projection on local time subsystem        
 ( Feynman )
Wave function, operators, 
linear evolution law,    𝜓(t+𝜀)=U(t) 𝜓(t)
superposition of solutions,
formalism of quantum mechanics



Overall probability 
distribution for events at all 

times and positions
■ Euclidean functional integral



Euclidean functional integral

■ Projection on local time subsystem        
 ( Feynman )
Wave function, operators, 
linear evolution law,   
superposition of solutions,
formalism of quantum mechanics



Euclidean functional integral

■ Wave function q(t) is real
■ Loss of information during evolution, 

e.g. approach to equilibrium state with 
some correlation time or length

                     Not always ! 



Probabilistic cellular automata with 
deterministic invertible updating
are classical probabilistic systems

 
No loss of information during evolution

They are discrete quantum systems



Cellular automaton

■ Deterministic manipulation of bit configurations
■ Updating rule of bit configurations in sequential 

steps
■ Updating of a cell depends only on some 

neighboring cells
■ Repetition ( at least after certain number of time 

steps)
   ( Classical computer is an automaton without repetition )



Updating rule for random automaton

Four types of bits

right- and left- movers

red and green

At randomly distributed 
scattering points:
occupied bits change 
direction and color.

Repetition of distribution 
after certain number of time 
steps



Cellular automaton

Updating of bits 
in cell (t, x) 
is influenced only 
by the cells 
(t-𝜀, x-𝜀) and
(t-𝜀, x+𝜀).

Causal structure of 
QFT with light 
cones



Probabilistic cellular 
automaton

Probability distribution for initial configurations

                 deterministic updating



Probabilistic cellular automaton

Probabilistic initial condition: Specify at initial time tin 
for each bit configuration      a probability

Evolution: every given configuration      at tin
propagates at t to a configuration 

Updating rule: specifies



Overall probability distribution

Follow trajectory of some initial configuration
Probabilities are equal for each point on trajectory
Probabilities for arbitrary bit configurations in time and 
space.  They differ from zero only for configurations that 
can be reached allowed trajectories

     Classical probabilistic system



Wave function for 
probabilistic cellular automaton

Local time probability distribution: at every time t a bit configuration τ 
occurs with probability         , which equals the probability for the initial 
bit configuration from which it originates.

Real wave function q(t): probability amplitude

q(t) is a unit vector



Deterministic and probabilistic
cellular automaton

■ Deterministic CA : sharp wave function

■ Probabilistic CA : arbitrary wave function 



Step evolution operator

■ Evolution for basic time step is encoded in the 
step evolution operator

■ Contains the updating rule for CA



Unique jump matrix

■ Step evolution operator for cellular 
automata is unique jump matrix

■ In every row  and column: precisely one 
element +1 or -1, all other elements zero

         
            is orthogonal
            and therefore unitary



Hamiltonian
■ Define H by

■ H is Hermitian and piecewise constant

■ Interpolating continuous time evolution

■ Schrödinger equation

■ Solution agrees with discrete evolution for t=



Complex structure

Suitable set of two discrete transformations for 
complex conjugation and multiplication by i

Configurations at given t with single occupied bit: (x, 𝛾)
Wave function for a single occupied bit: q𝛾(t, x)

red and green correspond to 
real and imaginary parts of complex wave function



Random probabilistic automaton

Four types of bits

right- and left- movers

red and green

At randomly distributed 
scattering points:
change of direction and 
color
Repetition after certain 
number of time steps



Free massless Dirac fermions

■ Without scattering: automaton describes 
quantum field theory for free massless Dirac 
fermions in one space and one time dimension

■ Arbitrary number of fermions
■ Half filled vacuum with all negative energy states 

filled

■ Single fermion state:  𝜓𝛼(t, x)



Momentum observable for 
single fermion state

Fourier transform 

Momentum operator
Continuum limit

Momentum distribution
Expectation value
 



Conserved momentum

Momentum is a conserved quantity

The expectation values
do not depend on time 

Momentum eigenstates : plane waves
They require probabilistic automaton with smooth 
wave functions



Statistical observables

■ Momentum is a statistical observable
■ No fixed value for given bit configuration
■ Characterizes properties of probabilistic 

information ( similar to temperature )
■ Does not commute with position operator
■ Bell’s inequalities do not apply to pair position 

and momentum since no classical correlation 
function can be defined



Numerical solution

Simulate simple system by following 
trajectories numerically



Brownian automaton
■ Single bit occupied

■ Start with smooth probability distribution           
   ( harmonics corresponding to solution of Dirac equation with mass )

■ evolution at different 
    time steps



Conserved energy
■ Mesoscopic Hamiltonian defines conserved 

energy observable
■ H is not known explicitly
■ Single time step

■ Generalized potential 

■ Repeat Mt times: mesoscopic Hamiltonian H



Conserved energy
Energy is conserved, but spectrum and eigenfunctions of
Hamiltonian not known.
Analyze energy spectrum from transition element

Superposition of 
energy eigenstates



Periodic evolution of probability 
distribution for energy eigenstates

Automaton with periodicity in space:
Energy eigenstate found explicitly

Evolution



Conserved coarse grained 
momentum

Space translation invariance by Mx introduces 
conserved coarse grained momentum

Evolution of 
momentum distribution

Diagonalize H on subspace with given coarse 
grained momentum



Naïve continuum limit

If commutator terms in expansion of U can be 
neglected for smooth enough wave functions

Hamiltonian for free massive Dirac particle
with mass proportional to mean number of 
scattering points



Dispersion relation for early 
evolution of Brownian automaton



Conclusion

■ Quantum formalism very useful for 
investigation of random probabilistic 
automaton

■ Continuum limit for random 
automaton not established

■ Extended model for quantum particle
   in a potential ?



Quantum mechanics from 
classical statistics

■ Probabilistic cellular automata are classical 
statistical systems.

■ Probabilistic cellular automata are discrete 
quantum systems. 

■ Quantum mechanics emerges from a classical 
statistical system.

■ No go theorems ( Bell etc. ) do not apply to all 
pairs of observables.



Outlook: How to find overall classical 
probability distribution for quantum 

particle in an arbitrary potential ?

Top down approach: Find automaton for interesting QFT. 
Construct vacuum and one-particle excitation. Find continuum limit.  
Realistic setting, but hard to implement.
Bottom up approach: Explicit construction of probabilistic 
automaton is already done for
■ quantum particle in harmonic potential
■ single qubit with arbitrary time-dependent Hamiltonian
Classical probability distribution not realistic, 
but useful conceptually. No contradictions.



Beyond probabilistic automata

■ “Unitary” change of probability distribution more 
general than probabilistic automata

■ Step evolution operator can be orthogonal, but not a 
unique jump matrix

Small neuromorphic computer has learned how to find the 
classical probability distribution for arbitrary (entangled) 
two-qubit states and to perform arbitrary unitary 
transformations 
( with C. Pehle )



Classical probability distribution for 
maximally entangled 

two-qubit quantum state

6 classical bits,
64 configurations

bit quantum map
from probability 
distribution to 
quantum density 
matrix



Automaton has been constructed for 
discrete fermion model with interactions 

in 1+1 dimensions
Grassmann functional integral



Naïve continuum limit is 
Lorentz invariant

Dirac spinor

Action

Infinitesimal Lorentz transformation

a=1,2



Is this all useful?

■ Quantum formalism offers new insights for the 
dynamics of probabilistic cellular automata

■ New forms of correlated computing
■ Clarification of origin of quantum concepts – 

demystification
■ Probabilistic realism is a philosophical concept
■ Restrictions on fundamental theory?



end



Probabilistic automata 
for 

fermionic quantum field theories



Fermions

■ quantum objects
■ wave function totally antisymmetric 
   ( Pauli principle )
■ anticommutator for annihilation and creation operators 
■ anticommuting Grassmann variables
■ functional integral or partition function for many body 

systems or quantum field theories is Grassmann 
functional integral



Fermions are Ising spins or bits

■ Fermionic occupation numbers n = 0 , 1

■ Classical bits

■ Ising spins  s = 2n -1

■ Bit configurations = many body states of fermions



Fermionic wave function

■ Occupation number basis for multi- 
fermion systems:

■ To each bit configuration one associates a 
component of the wave function

■ Occupation numbers for different space 
points and species



Probabilistic cellular automata for 
fermionic quantum field theories

■ Wave function in same Hilbert space
■ If step evolution operator for 

automaton is the same as for the 
fermionic quantum field theory:       
Both are equivalent



Updating rule for 
Thirring automaton

■ one – dimensional chain, x : discrete lattice sites
■ at each x : red and green right movers and left 

movers ( 4 different species at each site )
■ at each time step:  configuration for right(left) 

movers moves one position to the right(left)
■ if two single particles meet:
    colors are exchanged



Particle wave duality

Particle aspect:
■ Bits: yes/no decisions
■ Possible measurement values 1 or 0
            Discrete spectrum of observables

Wave aspect : continuous wave function
more generally: continuity of probabilistic information



QFT- CA equivalence

A fermionic quantum field theory is 
equivalent to a probabilistic cellular 
automaton if the evolution operator for 
discrete time steps is a 
               unique jump matrix 

( in a real formulation of the evolution equation)



General bit fermion map
■ Isomorphism between generalized Ising model and 

Grassmann functional integral
■ Based on identical step evolution operator for both 

models, with associated map of observables
■ In our case: proof that discrete Thirring model with two 

colors has the same step evolution operator as the 
cellular automaton



Discrete fermion model 
in 1+1 dimensions

Grassmann functional integral



Naïve continuum limit



Lorentz symmetry
Dirac spinor

Action

Infinitesimal Lorentz transformation



Can quantum physics be described by 
classical probabilities ?

“ No go “ theorems

          Bell , Clauser , Horne , Shimony , Holt

    implicit assumption : use of classical correlation function for all correlations 
between measurements

          Kochen , Specker

    assumption : unique map from quantum operators to classical observables



Conclusion

■ Particular quantum field theory for interacting fermions 
is equivalent to the classical statistical model of a 
particular probabilistic cellular automaton.

■ Large family of models – not all models!
■ Examples for quantum mechanics from classical 

statistics
■ Useful for simulating fermionic models and 

understanding of statistical properties of cellular 
automata?


