# Lattice Spinor Gravity

# Quantum gravity

- Quantum field theory
- Functional integral formulation

### Symmetries are crucial

- Diffeomorphism symmetry
   (invariance under general coordinate transformations)
- Gravity with fermions: local Lorentz symmetry

```
Degrees of freedom less important:

metric, vierbein, spinors, random triangles,
conformal fields...
```

Graviton, metric: collective degrees of freedom in theory with diffeomorphism symmetry

## Regularized quantum gravity

- For finite number of lattice points : functional integral should be well defined
- Lattice action invariant under local Lorentztransformations
- Continuum limit exists where gravitational interactions remain present
- Diffeomorphism invariance of continuum limit, and geometrical lattice origin for this

# Spinor gravity

is formulated in terms of fermions

# Unified Theory of fermions and bosons

# Fermions fundamental Bosons collective degrees of freedom

- Alternative to supersymmetry
- Graviton, photon, gluons, W-,Z-bosons, Higgs scalar:
   all are collective degrees of freedom (composite)
- Composite bosons look fundamental at large distances,
   e.g. hydrogen atom, helium nucleus, pions
- Characteristic scale for compositeness: Planck mass

# Massless collective fields or bound states – familiar if dictated by symmetries

for chiral QCD:

Pions are massless bound states of massless quarks!

for strongly interacting electrons:
antiferromagnetic spin waves

Gauge bosons, scalars ...

from vielbein components in higher dimensions (Kaluza, Klein)



concentrate first on gravity

## Geometrical degrees of freedom

- $\blacksquare \Psi(x)$ : spinor field (Grassmann variable)
- vielbein: fermion bilinear

$$ilde{E}^m_\mu \,=\, i ar{\psi} \gamma^m \partial_\mu \psi$$

$$E_{\mu}^{m}(x)=\langle \tilde{E}_{\mu}^{m}(x)\rangle$$

#### Possible Action

$$S_E \sim \int d^d x \det \left( \tilde{E}_{\mu}^m(x) \right)$$

$$\tilde{E} = \frac{1}{d!} \epsilon^{\mu_1 \dots \mu_d} \epsilon_{m_1 \dots m_d} \tilde{E}_{\mu_1}^{m_1} \dots \tilde{E}_{\mu_d}^{m_d} = \det(\tilde{E}_{\mu}^m)$$

contains 2d powers of spinors d derivatives contracted with ε - tensor



## Symmetries

 General coordinate transformations (diffeomorphisms)

■ Spinor  $\psi(x)$ : transforms as scalar

■ Vielbein  $\tilde{\mathbb{Z}}_{\mu}^{m} = i \bar{\psi} \gamma^{m} \partial_{\mu} \psi$ : transforms as vector

■ Action S : invariant

K.Akama, Y.Chikashige, T.Matsuki, H.Terazawa (1978)

K.Akama (1978)

D.Amati, G.Veneziano (1981)

G.Denardo, E.Spallucci (1987)

#### Lorentz- transformations

#### Global Lorentz transformations:

- spinor ψ
- vielbein transforms as vector
- action invariant

#### Local Lorentz transformations:

- vielbein does **not** transform as vector
- inhomogeneous piece, missing covariant derivative

$$ilde{E}_{\mu}^{m}=iar{\psi}\gamma^{m}\partial_{\mu}\psi$$

#### Two alternatives:

1) Gravity with global and not local Lorentz symmetry?
Compatible with observation!

2) Action with local Lorentz symmetry? Can be constructed!

## Spinor degrees of freedom

- Grassmann variables  $\psi_{\gamma}^{a}$
- Spinor index  $\gamma = 1...8$
- Two flavors a = 1, 2
- Variables at every space-time point

$$x^{\mu} = (x^0, x^1, x^2, x^3)$$

Complex Grassmann variables

$$\varphi_{\alpha}^{a}(x) = \psi_{\alpha}^{a}(x) + i\psi_{\alpha+4}^{a}(x)$$

# Action with local Lorentz symmetry

$$S = \alpha \int d^4x A^{(8)}D + c.c.$$

A: product of all eight spinors, maximal number, totally antisymmetric

$$A^{(8)} = \frac{1}{8!} \epsilon_{\epsilon_1 \epsilon_2 \dots \epsilon_8} \varphi_{\epsilon_1} \dots \varphi_{\epsilon_8}$$

$$= \frac{1}{(24)^2} \epsilon_{\alpha_1 \alpha_2 \alpha_3 \alpha_4} \varphi_{\alpha_1}^1 \dots \varphi_{\alpha_4}^1 \epsilon_{\beta_1 \beta_2 \beta_3 \beta_4} \varphi_{\beta_1}^2 \dots \varphi_{\beta_4}^2$$

$$= \varphi_1^1 \varphi_2^1 \varphi_3^1 \varphi_4^1 \varphi_1^2 \varphi_2^2 \varphi_3^2 \varphi_4^2$$

D: antisymmetric product of four derivatives,
L is totally symmetric
Lorentz invariant tensor

$$D = \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4} \partial_{\mu_1} \varphi_{\eta_1} \partial_{\mu_2} \varphi_{\eta_2} \partial_{\mu_3} \varphi_{\eta_3} \partial_{\mu_4} \varphi_{\eta_4} L_{\eta_1 \eta_2 \eta_3 \eta_4}$$

### Symmetric four-index invariant

Symmetric invariant bilinears

$$S_{\eta_1\eta_2}^{\pm} = (S^{\pm})_{\beta_1\beta_2}^{b_1b_2} = \mp (C_{\pm})_{\beta_1\beta_2}(\tau_2)^{b_1b_2}$$

Lorentz invariant tensors

$$C_{+} = \frac{1}{2}(C_{1} + C_{2}) = \frac{1}{2}C_{1}(1 + \bar{\gamma}) = \begin{pmatrix} \tau_{2} & , & 0 \\ 0 & , & 0 \end{pmatrix},$$

$$C_{-} = \frac{1}{2}(C_{1} - C_{2}) = \frac{1}{2}C_{1}(1 - \bar{\gamma}) = \begin{pmatrix} 0 & , & 0 \\ 0 & , & -\tau_{2} \end{pmatrix}$$

Symmetric four-index invariant

$$L_{\eta_1\eta_2\eta_3\eta_4} = \frac{1}{6} (S_{\eta_1\eta_2}^+ S_{\eta_3\eta_4}^- + S_{\eta_1\eta_3}^+ S_{\eta_2\eta_4}^- + S_{\eta_1\eta_4}^+ S_{\eta_2\eta_3}^- + S_{\eta_3\eta_4}^+ S_{\eta_1\eta_2}^- + S_{\eta_2\eta_4}^+ S_{\eta_1\eta_3}^- + S_{\eta_2\eta_3}^+ S_{\eta_1\eta_4}^-)$$

Two flavors needed in four dimensions for this construction

## Weyl spinors

$$\varphi_+ = \frac{1}{2}(1+\bar{\gamma})\varphi$$
,  $\varphi_- = \frac{1}{2}(1-\bar{\gamma})\varphi$ 

$$\bar{\gamma} = -\gamma^0 \gamma^1 \gamma^2 \gamma^3$$
 = diag (1,1,-1,-1)

$$\gamma^0 = \tau_1 \otimes 1 , \ \gamma^k = \tau_2 \otimes \tau_k.$$

# Action in terms of Weyl - spinors

$$S = \alpha \int d^4x \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4} F^{+}_{\mu_1 \mu_2} F^{-}_{\mu_3 \mu_4} + c.c.$$

$$F^{\pm}_{\mu_1\mu_2} = A^{\pm}D^{\pm}_{\mu_1\mu_2}$$

$$A^{+} = \varphi_{+1}^{1} \varphi_{+2}^{1} \varphi_{+1}^{2} \varphi_{+2}^{2}$$

$$A^{+} = \varphi_{+1}^{1} \varphi_{+2}^{1} \varphi_{+1}^{2} \varphi_{+2}^{2} \quad D_{\mu_{1}\mu_{2}}^{\pm} = \partial_{\mu_{1}} \varphi_{\eta_{1}} S_{\eta_{1}\eta_{2}}^{\pm} \partial_{\mu_{2}} \varphi_{\eta_{2}}$$

Relation to previous formulation

$$A^{(8)} = A^+A^-$$

$$A^{(8)} = A^{+}A^{-} \qquad D = \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4} D^{+}_{\mu_1 \mu_2} D^{-}_{\mu_3 \mu_4}$$

$$S = \alpha \int d^4x A^{(8)}D + c.c.$$

## SO(4,C) - symmetry

$$\delta \varphi_{\alpha}^{a}(x) = -\frac{1}{2} \epsilon_{mn}(x) (\Sigma_{E}^{mn})_{\alpha\beta} \varphi_{\beta}^{a}(x)$$

$$\Sigma_E^{mn} = -\frac{1}{4} [\gamma_E^m, \gamma_E^n] , \{\gamma_E^m, \gamma_E^n\} = 2\delta^{mn}$$

Action invariant for arbitrary complex transformation parameters  $\varepsilon$ !

Real  $\varepsilon: SO(4)$  - transformations

## Signature of time

Difference in signature between space and time:

only from spontaneous symmetry breaking,
e.g. by
expectation value of vierbein — bilinear!

#### Minkowski - action

$$S = -iS_M \ , \ e^{-S} = e^{iS_M}$$

Action describes **simultaneously** euclidean and Minkowski theory!

SO (1,3) transformations:  $\epsilon_{0k} = -i\epsilon_{0k}^{(M)}$   $\epsilon_{kl}^{(M)} = \epsilon_{kl}$ 

$$\epsilon_{0k} = -i\epsilon_{0k}^{(M)}$$

$$\epsilon_{kl}^{(M)} = \epsilon_{kl}$$

$$\delta \varphi = -\frac{1}{2} \epsilon_{mn}^{(M)} \Sigma_M^{mn} \varphi,$$

$$\Sigma_M^{mn} = -\frac{1}{4} [\gamma_M^m, \gamma_M^n] , \{\gamma_M^m, \gamma_M^n\} = \eta^{mn}$$

$$\gamma_M^0 = -i\gamma_E^0, \gamma_M^k = \gamma_E^k$$

# Emergence of geometry

Euclidean vierbein bilinear

$$\tilde{E}^m_\mu = \varphi^a C \gamma^m \partial_\mu \varphi^b V^{ab} = -\partial_\mu \varphi^a C \gamma^m \varphi^b V^{ab}$$

Minkowski vierbein bilinear

$$\tilde{E}_{\mu}^{(M)m} = \varphi V C \gamma_M^m \partial_{\mu} \varphi$$

$$\tilde{E}^{(M)0}_{\mu} = -i\tilde{E}^{0}_{\mu} , \ \tilde{E}^{(M)k}_{\mu} = \tilde{E}^{k}_{\mu}.$$

Global Lorentz - transformation

$$\delta \tilde{E}_{\mu}^{(M)m} = -\tilde{E}_{\mu}^{(M)n} \epsilon_{n}^{(M)m}$$

vierbein

$$\langle \tilde{E}_{\mu}^{(M)m} \rangle = \langle (\tilde{E}_{\mu}^{M)m})^* \rangle = e_{\mu}^m / \Delta$$

$$e_{\mu}^{m}$$
 /  $\Delta$ 

metric

$$g_{\mu\nu} = e_{\mu}^m e_{\nu}^n \eta_{mn}$$

# Action can be reformulated in terms of vierbein bilinear

$$S = \alpha \int d^4x W \det(\tilde{E}_{\mu}^m) + c.c.,$$

# How to get gravitational field equations?

How to determine geometry of space-time, vielbein and metric?

# Functional integral formulation of gravity

- Calculability(at least in principle)
- Quantum gravity
- Non-perturbative formulation

$$Z = \int \mathcal{D}\psi g_f \exp(-S)g_{in},$$

$$\int \mathcal{D}\psi = \prod_x \prod_{a=1}^2 \left\{ \int d\psi_1^a(x) \dots \int d\psi_8^a(x) \right\}$$

$$\langle \mathcal{A} \rangle = Z^{-1} \int \mathcal{D} \psi g_f \mathcal{A} \exp(-S) g_{in}.$$

#### Vierbein and metric

$$E_{\mu}^{m}(x)=\langle \tilde{E}_{\mu}^{m}(x)\rangle$$

$$g_{\mu\nu}(x) = E_{\mu}^{m}(x)E_{\nu m}(x)$$

#### Generating functional

$$Z[J] = \int \mathcal{D}\psi \exp\left\{-\left(S + S_J\right)\right\}$$

$$S_J = -\int d^dx J_m^\mu \tilde{E}_\mu^m$$

$$E_{\mu}^{m}(x) = \langle \tilde{E}_{\mu}^{m}(x) \rangle = \frac{\delta \ln Z}{\delta J_{m}^{\mu}(x)}$$

# If regularized functional measure can be defined (consistent with diffeomorphisms)

# Non- perturbative definition of quantum gravity

$$Z[J] = \int \underline{\mathcal{D}\psi} \exp \left\{ - (S + S_J) \right\}$$

#### Effective action

$$\Gamma[E_{\mu}^{m}] = -W[J_{m}^{\mu}] + \int d^{d}x J_{m}^{\mu} E_{\mu}^{m}$$
 W=ln Z

#### Gravitational field equation for vierbein

$$\frac{\delta\Gamma}{\delta E_{\mu}^{m}} = J_{m}^{\mu}$$

similar for metric

# Symmetries dictate general form of effective action and gravitational field equation

diffeomorphisms!

Effective action for metric:

curvature scalar R + additional terms

# Lattice regularization

- Hypercubic lattice
- Even sublattice

```
y^{\mu} = \tilde{y}^{\mu} \Delta, \ \tilde{y}^{\mu} \text{ integer}, \ \Sigma_{\mu} \tilde{y}^{\mu} \text{ even}
```

$$\Box$$
 Odd sublattice  $z^{\mu} = \tilde{z}^{\mu} \Delta$ ,  $\tilde{z}^{\mu}$  integer,  $\Sigma_{\mu} \tilde{z}^{\mu}$  odd

Spinor degrees of freedom on points of odd sublattice

#### Lattice action

- Associate cell to each point y of even sublattice
- Action: sum over cells

$$S = \tilde{\alpha} \sum_{y} \mathcal{L}(y) + c.c.$$

For each cell: twelve spinors located at nearest neighbors of y (on odd sublattice)

$$\tilde{z}^{\mu}(\tilde{x}_j(\tilde{y})) = \tilde{y}^{\mu} + V_j^{\mu}$$

$$\tilde{z}^{\mu}(\tilde{x}_{j}(\tilde{y})) = \tilde{y}^{\mu} + V_{j}^{\mu}$$

$$V_{1} = (-1,0,0,0) , V_{5} = (0,0,0,1)$$

$$V_{2} = (0,-1,0,0) , V_{6} = (0,0,1,0)$$

$$V_{3} = (0,0,-1,0) , V_{7} = (0,1,0,0)$$

$$V_{4} = (0,0,0,-1) , V_{8} = (1,0,0,0)$$

## Local SO (4,C) symmetry

#### Basic SO(4,C) invariant building blocks

$$\tilde{\mathcal{H}}_{\pm}^{k}(\tilde{x}) = \varphi_{\alpha}^{a}(\tilde{x})(C_{\pm})_{\alpha\beta}(\tau_{2}\tau_{k})^{ab}\varphi_{\beta}^{b}(\tilde{x})$$

#### Lattice action

$$\mathcal{L}(y) = \frac{1}{6} \left\{ \mathcal{F}_{+}^{1,2,8,7} \mathcal{F}_{-}^{3,4,6,5} + \mathcal{F}_{+}^{1,3,8,6} \mathcal{F}_{-}^{7,4,2,5} + \mathcal{F}_{+}^{1,4,8,5} \mathcal{F}_{-}^{3,7,6,2} + (\mathcal{F}_{+} \leftrightarrow \mathcal{F}_{-}) \right\}.$$

$$\mathcal{F}_{\pm}^{abcd} = \frac{1}{24} \epsilon^{klm} \left[ \tilde{\mathcal{H}}_{\pm}^{k}(\tilde{x}_{a}) \tilde{\mathcal{H}}_{\pm}^{l}(\tilde{x}_{b}) \tilde{\mathcal{H}}_{\pm}^{m}(\tilde{x}_{c}) \right]$$

$$+\tilde{\mathcal{H}}_{\pm}^{k}(\tilde{x}_{b})\tilde{\mathcal{H}}_{\pm}^{l}(\tilde{x}_{c})\tilde{\mathcal{H}}_{\pm}^{m}(\tilde{x}_{d})+\tilde{\mathcal{H}}_{\pm}^{k}(\tilde{x}_{c})\tilde{\mathcal{H}}_{\pm}^{l}(\tilde{x}_{d})\tilde{\mathcal{H}}_{\pm}^{m}(\tilde{x}_{a})$$

$$+\tilde{\mathcal{H}}_{\pm}^{k}(\tilde{x}_{d})\tilde{\mathcal{H}}_{\pm}^{l}(\tilde{x}_{a})\tilde{\mathcal{H}}_{\pm}^{m}(\tilde{x}_{b})$$

### Lattice symmetries

■ Rotations by  $\pi/2$  in all lattice planes

$$\mathcal{F}_{\pm}^{abcd} = \mathcal{F}_{\pm}^{bcda} = \mathcal{F}_{\pm}^{cdab} = \mathcal{F}_{\pm}^{dabc}$$
.

Reflections of all lattice coordinates

$$\mathcal{F}_{\pm}^{cbad} = \mathcal{F}_{\pm}^{adcb} = -\mathcal{F}_{\pm}^{abcd}$$

■ Diagonal reflections e.g  $z_1 \leftrightarrow z_2$ 

#### Lattice derivatives

$$\hat{\partial}_{0}\varphi(y) = \frac{1}{2\Delta} (\varphi(\tilde{x}_{8}) - \varphi(\tilde{x}_{1}))$$

$$\hat{\partial}_{1}\varphi(y) = \frac{1}{2\Delta} (\varphi(\tilde{x}_{7}) - \varphi(\tilde{x}_{2}))$$

$$\hat{\partial}_{2}\varphi(y) = \frac{1}{2\Delta} (\varphi(\tilde{x}_{6}) - \varphi(\tilde{x}_{3}))$$

$$\hat{\partial}_{3}\varphi(y) = \frac{1}{2\Delta} (\varphi(\tilde{x}_{5}) - \varphi(\tilde{x}_{4}))$$

and cell averages

$$\bar{\varphi}_0(y) = \frac{1}{2} \left( \varphi(\tilde{x}_1) + \varphi(\tilde{x}_8) \right) , \ \bar{\varphi}_1(y) = \frac{1}{2} \left( \varphi(\tilde{x}_2) + \varphi(\tilde{x}_7) \right)$$

$$\bar{\varphi}_2(y) = \frac{1}{2} \left( \varphi(\tilde{x}_3) + \varphi(\tilde{x}_6) \right) , \ \bar{\varphi}_3(y) = \frac{1}{2} \left( \varphi(\tilde{x}_4) + \varphi(\tilde{x}_5) \right)$$

express spinors in derivatives and averages

$$\varphi(\tilde{x}_j) = \sigma_j^{\mu} \bar{\varphi}_{\mu} + V_j^{\mu} \Delta \hat{\partial}_{\mu} \varphi$$

$$\sigma_j^{\mu} = (V_j^{\mu})^2$$

#### Bilinears and lattice derivatives

$$\mathcal{H}_{\pm}^{k}(\tilde{x}_{j}) = \sigma_{j}^{\mu} \bar{\mathcal{H}}_{\pm\mu}^{k}(y) + 2\Delta V_{j}^{\mu} \tilde{\mathcal{D}}_{\pm\mu}^{k}(y) + \Delta^{2} \sigma_{j}^{\mu} \mathcal{G}_{\pm\mu}^{k}(y).$$

$$\tilde{\mathcal{D}}_{\pm\mu}^{k} = (\bar{\varphi}_{\mu})_{\alpha}^{a} (C_{\pm})_{\alpha\beta} (\tau_{2}\tau_{k})^{ab} \hat{\partial}_{\mu} \varphi_{\beta}^{b} \qquad \tilde{\mathcal{G}}_{\pm\mu}^{k} = \hat{\partial}_{\mu} \varphi_{\alpha}^{a} (C_{\pm})_{\alpha\beta} (\tau_{2}\tau_{k})^{ab} \hat{\partial}_{\mu} \varphi_{\beta}^{b}$$

$$\tilde{\mathcal{G}}_{\pm\mu}^{k} = \hat{\partial}_{\mu} \varphi_{\alpha}^{a} (C_{\pm})_{\alpha\beta} (\tau_{2}\tau_{k})^{ab} \hat{\partial}_{\mu} \varphi_{\beta}^{b}$$

$$\hat{\mathcal{H}}_{\pm\mu}^{k} = \bar{\mathcal{H}}_{\pm\mu}^{k} + \Delta^{2} \tilde{\mathcal{G}}_{\pm\mu}^{k} , \ \mathcal{H}_{\pm ab}^{k} = \frac{1}{2} (\hat{\mathcal{H}}_{\pm a}^{k} + \hat{\mathcal{H}}_{\pm b}^{k}).$$

$$\mathcal{F}_{+}^{1,2,8,7} = \frac{2\Delta^{2}}{3} \epsilon^{klm} \mathcal{H}_{+01}^{k} (\tilde{\mathcal{D}}_{+0}^{l} \tilde{\mathcal{D}}_{+1}^{m} - \tilde{\mathcal{D}}_{+1}^{l} \tilde{\mathcal{D}}_{+0}^{m}). \qquad \mathcal{F}_{01}^{\pm} = -\mathcal{F}_{10}^{\pm} = \mathcal{F}_{\pm}^{1,2,8,7}$$

$$\mathcal{F}_{01}^{\pm} = -\mathcal{F}_{10}^{\pm} = \mathcal{F}_{\pm}^{1,2,8,7}$$

$$\mathcal{F}_{\mu\nu}^{\pm} = \frac{2\Delta^2}{3} \epsilon^{klm} \mathcal{H}_{\pm\mu\nu}^k (\tilde{\mathcal{D}}_{\pm\mu}^l \tilde{\mathcal{D}}_{\pm\nu}^m - \tilde{\mathcal{D}}_{\pm\nu}^l \tilde{\mathcal{D}}_{\pm\mu}^m)$$

$$\mathcal{L}(y) = \frac{1}{24} \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4} \mathcal{F}_{\mu_1 \mu_2}^+ \mathcal{F}_{\mu_3 \mu_4}^-$$

#### Continuum limit

$$\mathcal{L}(y) \to \frac{32}{3} \Delta^4 \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4} F^+_{\mu_1 \mu_2} F^-_{\mu_3 \mu_4}$$

$$\Delta^4 \Sigma_y = \frac{1}{2} \int_y,$$

Lattice distance  $\Delta$  drops out in continuum limit!

$$S = \frac{16}{3}\tilde{\alpha} \int_{y} \epsilon^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}} F_{\mu_{1}\mu_{2}}^{+} F_{\mu_{3}\mu_{4}}^{-} + c.c$$

### Regularized quantum gravity

- For finite number of lattice points : functional integral should be well defined
- Lattice action invariant under local Lorentztransformations
- Continuum limit exists where gravitational interactions remain present
- Diffeomorphism invariance of continuum limit, and geometrical lattice origin for this

#### Conclusions

- Unified theory based only on fermions seems possible
- Quantum gravity –
   functional measure can be regulated
- Does realistic higher dimensional unified model exist?

# Gravitational field equation and energy momentum tensor

$$\frac{\delta\Gamma}{\delta E_{\mu}^{m}} = J_{m}^{\mu}$$

$$T^{\mu\nu} = E^{-1}E^{m\mu}J_m^{\nu}$$

Special case: effective action depends only on metric

$$\Gamma_0'[E_\mu^m] = \Gamma_0' \Big[ g_{\nu\rho}[E_\mu^m] \Big]$$

$$g_{\mu\nu} = E_{\mu}^m E_{\nu m}$$

$$T_{(g)}^{\mu\nu} = -\frac{2}{\sqrt{g}} \frac{\delta \Gamma_0'}{\delta g_{\mu\nu}}$$

$$T^{\mu\nu} = -E^{-1}E^{m\mu}\frac{\delta\Gamma_0'}{\delta g_{\rho\sigma}}\frac{\delta g_{\rho\sigma}}{\delta E_\nu^m} = T_{(g)}^{\mu\nu}$$

# Unified theory in higher dimensions and energy momentum tensor

- Only spinors, no additional fields no genuine source
- J<sup>μ</sup><sub>m</sub>: expectation values different from vielbein and incoherent fluctuations

 Can account for matter or radiation in effective four dimensional theory (including gauge fields as higher dimensional vielbein-components)

# Time space asymmetry from spontaneous symmetry breaking

C.W., PRL, 2004

# Idea: difference in signature from spontaneous symmetry breaking

With spinors: signature depends on signature of Lorentz group

- Unified setting with complex orthogonal group:
- Both euclidean orthogonal group and minkowskian
   Lorentz group are subgroups
- Realized signature depends on ground state!

### Complex orthogonal group

d=16,  $\psi: 256$  – component spinor, real Grassmann algebra

$$\delta\psi = \left(\begin{array}{cc} \rho, & -\tau \\ \tau, & \rho \end{array}\right)\psi$$

$$\rho = -\frac{1}{2} \epsilon_{mn} \hat{\Sigma}^{mn} , \ \tau = \frac{1}{2} \bar{\epsilon}_{mn} \hat{\Sigma}^{mn}$$

$$\begin{split} \Sigma_E^{mn} &= \; \hat{\Sigma}^{mn} \, \mathbbm{1} \;, \; B^{mn} = -\hat{\Sigma}^{mn} I, \\ I &= \; \begin{pmatrix} 0 \; -1 \\ 1 \; & 0 \end{pmatrix}, \; I^2 = -1 \end{split}$$

SO(16,C)

**φ**,τ: antisymmetric 128 x 128 matrices

Compact part : **Q**Non-compact part : **τ** 

#### vielbein

$$\tilde{E}^0_\mu = \psi_\alpha \partial_\mu \psi_\alpha \ , \ \tilde{E}^k_\mu = \psi_\alpha (\hat{a}^k I)_{\alpha\beta} \partial_\mu \psi_\beta$$

$$\{\hat{a}^k, \hat{a}^l\} = -2\delta^{kl}, \ k, l = 1...15$$

$$\hat{\Sigma}^{kl} = \frac{1}{4}[\hat{a}^k, \hat{a}^l], \ \hat{\Sigma}^{0k} = -\frac{1}{2}\hat{a}^k$$

$$E_{\mu}^{m} = \delta_{\mu}^{m}$$
:  
SO(1,15) - symmetry

#### however:

Minkowski signature not singled out in action!

# Formulation of action invariant under SO(16,C)

■ Even invariant under larger symmetry group SO(128,C)

Local symmetry!

#### complex formulation

so far real Grassmann algebra introduce complex structure by

$$\varphi_{\hat{\alpha}} = \psi_{\hat{\alpha}} + i\psi_{128+\hat{\alpha}} , \ \varphi_{\hat{\alpha}}^* = \psi_{\hat{\alpha}} - i\psi_{128+\hat{\alpha}}$$

$$\delta\varphi_{\hat{\alpha}} = \sigma_{\hat{\alpha}\hat{\beta}}\varphi_{\hat{\beta}} , \ \sigma = \rho + i\tau$$

 $\sigma$  is antisymmetric 128 x 128 matrix, generates SO(128,C)

#### Invariant action

(complex orthogonal group, diffeomorphisms)

$$S = \alpha \int d^dx W[\varphi] R(\varphi, \varphi^*) + c.c.,$$

$$W[\varphi] = \frac{1}{16!} \epsilon^{\mu_1 \dots \mu_{16}} \partial_{\mu_1} \varphi_{\hat{\alpha}_1} \dots \partial_{\mu_{16}} \varphi_{\hat{\alpha}_{16}} L^{\hat{\alpha}_1 \dots \hat{\alpha}_{16}}$$

$$L^{\hat{\alpha}_1\dots\hat{\alpha}_{16}}=sym\left\{\delta^{\hat{\alpha}_1\hat{\alpha}_2}\delta^{\hat{\alpha}_3\hat{\alpha}_4}\dots\delta^{\hat{\alpha}_{15}\hat{\alpha}_{16}}\right\}$$

$$R(\varphi,\varphi^*) = T(\varphi) + \tau T(\varphi^*) + \kappa T(\varphi) T(\varphi^*),$$

$$T(\varphi) = \frac{1}{128!} \epsilon^{\hat{\beta}_1 \dots \hat{\beta}_{128}} \varphi_{\hat{\beta}_1} \dots \varphi_{\hat{\beta}_{128}}$$

SO(128,C)
and therefore also
with respect to subgroup
SO (16,C)

contractions with δ and ε – tensors

no mixed terms φ φ\*

For  $\tau = 0$ : local Lorentz-symmetry!!

### Generalized Lorentz symmetry

■ Example d=16 : SO(128,C) instead of SO(1,15)

■ Important for existence of chiral spinors in effective four dimensional theory after dimensional reduction of higher dimensional gravity

S.Weinberg

#### Unification in d=16 or d=18?

- Start with irreducible spinor
- Dimensional reduction of gravity on suitable internal space
- Gauge bosons from Kaluza-Klein-mechanism
- 12 internal dimensions : SO(10) x SO(3) gauge symmetry : unification + generation group
- 14 internal dimensions : more U(1) gener. sym. (d=18 : anomaly of local Lorentz symmetry)

L.Alvarez-Gaume, E. Witten

# Ground state with appropriate isometries:

guarantees massless gauge bosons and graviton in spectrum

### Chiral fermion generations

 Chiral fermion generations according to chirality index

C.W., Nucl.Phys. B223,109 (1983); E. Witten, Shelter Island conference,1983

- Nonvanishing index for brane geometries (noncompact internal space)
   C.W., Nucl.Phys. B242,473 (1984)
- and wharpingC.W., Nucl.Phys. B253,366 (1985)
- d=4 mod 4 possible for 'extended Lorentz symmetry' (otherwise only d = 2 mod 8)

#### Rather realistic model known

■ d=18 : first step : brane compactification



- $\blacksquare$  d=6, SO(12) theory: (anomaly free)
- second step: monopole compactification



- d=4 with three generations, including generation symmetries
- SSB of generation symmetry: realistic mass and mixing hierarchies for quarks and leptons (except large Cabibbo angle)

## Comparison with string theory

| Unification | of | bosons | and |
|-------------|----|--------|-----|
| fermions    |    |        |     |

- Unification of all interactions (d >4)
- Non-perturbative (functional integral) formulation
- Manifest invariance under diffeomophisms

| SStrings | Sp.Grav. |
|----------|----------|
| ok       | ok       |
| ok       | ok       |
| OK       | OK       |
| _        | ok       |
|          |          |
|          |          |
| _        | ok       |

## Comparison with string theory

|             | ,     |        |       |
|-------------|-------|--------|-------|
| Finiteness/ | 'regu | lariza | ation |

- Uniqueness of ground state/ predictivity
- No dimensionless parameter

| SStrings | Sp.Grav. |
|----------|----------|
| ok       | ok       |

