Lattice Spinor Gravity

Quantum gravity

Quantum field theoryFunctional integral formulation

Symmetries are crucial

Diffeomorphism symmetry

(invariance under general coordinate transformations)
 Gravity with fermions : local Lorentz symmetry

Degrees of freedom less important : metric, vierbein , spinors , random triangles , conformal fields...

Graviton, metric : collective degrees of freedom in theory with diffeomorphism symmetry

Regularized quantum gravity

- 1 For finite number of lattice points : functional integral should be well defined
- 2 Lattice action invariant under local Lorentztransformations
- 3 Continuum limit exists where gravitational interactions remain present
- 4 Diffeomorphism invariance of continuum limit, and geometrical lattice origin for this

Spinor gravity

is formulated in terms of fermions

Unified Theory of fermions and bosons

Fermions fundamental Bosons collective degrees of freedom

Alternative to supersymmetry

- Graviton, photon, gluons, W-,Z-bosons, Higgs scalar : all are collective degrees of freedom (composite)
- Composite bosons look fundamental at large distances, e.g. hydrogen atom, helium nucleus, pions
 Characteristic scale for compositeness : Planck mass

Massless collective fields or bound states – familiar if dictated by symmetries

for chiral QCD : Pions are massless bound states of massless quarks ! for strongly interacting electrons : antiferromagnetic spin waves Gauge bosons, scalars ...

from vielbein components in higher dimensions (Kaluza, Klein)

concentrate first on gravity

Geometrical degrees of freedom

Ψ(x) : spinor field (Grassmann variable)
 vielbein : fermion bilinear

 $E_{\mu}^{m}(x)=\langle \tilde{E}_{\mu}^{m}(x)\rangle$

Possible Action

$$S_E ~\sim~ \int d^d x \det \left({{{ ilde E}^m_\mu }(x)}
ight)$$

$$\tilde{E} = \frac{1}{d!} \epsilon^{\mu_1 \dots \mu_d} \epsilon_{m_1 \dots m_d} \tilde{E}^{m_1}_{\mu_1} \dots \tilde{E}^{m_d}_{\mu_d} = \det(\tilde{E}^m_{\mu})$$

contains 2d powers of spinors d derivatives contracted with ε - tensor

$$ilde{t}^m_\mu = i ar{\psi} \gamma^m \partial_\mu \psi$$

Symmetries

- General coordinate transformations (diffeomorphisms)
- Spinor $\psi(x)$: transforms as scalarVielbein $\tilde{E}_{\mu}^{m} = i \bar{\psi} \gamma^{m} \partial_{\mu} \psi$: transforms as vectorActionS: invariant

K.Akama, Y.Chikashige, T.Matsuki, H.Terazawa (1978) K.Akama (1978) D.Amati, G.Veneziano (1981) G.Denardo, E.Spallucci (1987) A.Hebecker, C.Wetterich

Lorentz- transformations

Global Lorentz transformations:

- **spinor** ψ
- vielbein transforms as vector
- action invariant

Local Lorentz transformations:
vielbein does not transform as vector
inhomogeneous piece, missing covariant derivative

Two alternatives :

 Gravity with global and not local Lorentz symmetry ?
 Compatible with observation !

2) Action with local Lorentz symmetry ? Can be constructed ! Spinor gravity with local Lorentz symmetry

Spinor degrees of freedom

 ψ^a_γ

- Grassmann variables
- Spinor index $\gamma = 1 \dots 8$
- Two flavors

$$a = 1, 2$$

Variables at every space-time point

$$x^{\mu} = (x^0, x^1, x^2, x^3)$$

Complex Grassmann variables

$$\varphi^a_{\alpha}(x) = \psi^a_{\alpha}(x) + i\psi^a_{\alpha+4}(x)$$

Action with local Lorentz symmetry

$$S = \alpha \int d^4 x A^{(8)} D + c.c.$$

A : product of all eight spinors , maximal number , totally antisymmetric

$$A^{(8)} = \frac{1}{8!} \epsilon_{\epsilon_1 \epsilon_2 \dots \epsilon_8} \varphi_{\epsilon_1} \dots \varphi_{\epsilon_8}$$

= $\frac{1}{(24)^2} \epsilon_{\alpha_1 \alpha_2 \alpha_3 \alpha_4} \varphi^1_{\alpha_1} \dots \varphi^1_{\alpha_4} \epsilon_{\beta_1 \beta_2 \beta_3 \beta_4} \varphi^2_{\beta_1} \dots \varphi^2_{\beta_4}$
= $\varphi^1_1 \varphi^1_2 \varphi^1_3 \varphi^1_4 \varphi^2_1 \varphi^2_2 \varphi^2_3 \varphi^2_4$

D : antisymmetric productof four derivatives ,L is totally symmetricLorentz invariant tensor

$$D = \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4} \partial_{\mu_1} \varphi_{\eta_1} \partial_{\mu_2} \varphi_{\eta_2} \partial_{\mu_3} \varphi_{\eta_3} \partial_{\mu_4} \varphi_{\eta_4} L_{\eta_1 \eta_2 \eta_3 \eta_4}$$

Double index $\eta = (\beta, b)$

Symmetric four-index invariant

Symmetric invariant bilinears

$$S_{\eta_1\eta_2}^{\pm} = (S^{\pm})_{\beta_1\beta_2}^{b_1b_2} = \mp (C_{\pm})_{\beta_1\beta_2} (\tau_2)^{b_1b_2}$$

Lorentz invariant tensors

$$C_{+} = \frac{1}{2}(C_{1} + C_{2}) = \frac{1}{2}C_{1}(1 + \bar{\gamma}) = \begin{pmatrix} \tau_{2} & , & 0\\ 0 & , & 0 \end{pmatrix},$$
$$C_{-} = \frac{1}{2}(C_{1} - C_{2}) = \frac{1}{2}C_{1}(1 - \bar{\gamma}) = \begin{pmatrix} 0 & , & 0\\ 0 & , & -\tau_{2} \end{pmatrix}$$

Symmetric four-index invariant

$$L_{\eta_1\eta_2\eta_3\eta_4} = \frac{1}{6} (S_{\eta_1\eta_2}^+ S_{\eta_3\eta_4}^- + S_{\eta_1\eta_3}^+ S_{\eta_2\eta_4}^- + S_{\eta_1\eta_4}^+ S_{\eta_2\eta_3}^- + S_{\eta_3\eta_4}^+ S_{\eta_1\eta_2}^- + S_{\eta_2\eta_4}^+ S_{\eta_1\eta_3}^- + S_{\eta_2\eta_3}^+ S_{\eta_1\eta_4}^-)$$

Two flavors needed in four dimensions for this construction

Weyl spinors

$$\varphi_+ = \frac{1}{2}(1+\bar{\gamma})\varphi$$
, $\varphi_- = \frac{1}{2}(1-\bar{\gamma})\varphi$

$$\bar{\gamma} = -\gamma^0 \gamma^1 \gamma^2 \gamma^3 = \text{diag} (1, 1, -1, -1)$$

$$\gamma^0 = \tau_1 \otimes 1 , \ \gamma^k = \tau_2 \otimes \tau_k.$$

Action in terms of Weyl - spinors

$$S = \alpha \int d^4x \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4} F^+_{\mu_1 \mu_2} F^-_{\mu_3 \mu_4} + c.c.$$

$$F_{\mu_1\mu_2}^{\pm} = A^{\pm} D_{\mu_1\mu_2}^{\pm}$$

$$A^{+} = \varphi_{+1}^{1} \varphi_{+2}^{1} \varphi_{+1}^{2} \varphi_{+2}^{2} \quad D_{\mu_{1}\mu_{2}}^{\pm} = \partial_{\mu_{1}} \varphi_{\eta_{1}} S_{\eta_{1}\eta_{2}}^{\pm} \partial_{\mu_{2}} \varphi_{\eta_{2}}$$

Relation to previous formulation

$$A^{(8)} = A^{+}A^{-} \qquad D = \epsilon^{\mu_1\mu_2\mu_3\mu_4}D^{+}_{\mu_1\mu_2}D^{-}_{\mu_3\mu_4}$$

$$S = \alpha \int d^4x A^{(8)} D + c.c.$$

SO(4,C) - symmetry

$$\delta\varphi^a_{\alpha}(x) = -\frac{1}{2}\epsilon_{mn}(x)(\Sigma^{mn}_E)_{\alpha\beta}\varphi^a_{\beta}(x)$$

$$\Sigma_E^{mn} = -\frac{1}{4} [\gamma_E^m, \gamma_E^n] , \{\gamma_E^m, \gamma_E^n\} = 2\delta^{mn}$$

Action invariant for arbitrary **complex** transformation parameters ε !

Real ε : SO (4) - transformations

Signature of time

Difference in signature between space and time :

only from spontaneous symmetry breaking , e.g. by expectation value of vierbein – bilinear !

Minkowski - action

$$S = -iS_M \ , \ e^{-S} = e^{iS_M}$$

Action describes simultaneously euclidean and Minkowski theory !

SO (1,3) transformations :
$$\epsilon_{0k} = -i\epsilon_{0k}^{(M)}$$
 $\epsilon_{kl}^{(M)} = \epsilon_{kl}$

$$\begin{split} \delta \varphi &= -\frac{1}{2} \epsilon_{mn}^{(M)} \Sigma_M^{mn} \varphi, \\ \Sigma_M^{mn} &= -\frac{1}{4} [\gamma_M^m, \gamma_M^n] \ , \ \{\gamma_M^m, \gamma_M^n\} = \eta^{mn} \\ \gamma_M^0 &= -i \gamma_E^0, \gamma_M^k = \gamma_E^k \end{split}$$

Emergence of geometry

Euclidean vierbein bilinear

$$\tilde{E}^m_\mu = \varphi^a C \gamma^m \partial_\mu \varphi^b V^{ab} = -\partial_\mu \varphi^a C \gamma^m \varphi^b V^{ab}$$

Minkowski vierbein bilinear

$$\tilde{E}^{(M)m}_{\mu} = \varphi V C \gamma^m_M \partial_{\mu} \varphi$$

$$\tilde{E}^{(M)0}_{\mu} = -i\tilde{E}^{0}_{\mu} , \ \tilde{E}^{(M)k}_{\mu} = \tilde{E}^{k}_{\mu}$$

Global Lorentz - transformation

$$\delta \tilde{E}^{(M)m}_{\mu} = -\tilde{E}^{(M)n}_{\mu} \epsilon^{(M)m}_n$$

vierbein

$$\langle \tilde{E}^{(M)m}_{\mu} \rangle = \langle (\tilde{E}^{M)m}_{\mu})^* \rangle = e^m_{\mu} / \Delta$$

metric

$$g_{\mu\nu} = e^m_\mu e^n_\nu \eta_{mn}$$

Can action can be reformulated in terms of vierbein bilinear ?

$$S = \alpha \int d^4x W \det(\tilde{E}^m_\mu) + c.c.$$

No suitable W exists

How to get gravitational field equations ?

How to determine geometry of space-time, vierbein and metric?

Functional integral formulation of gravity

Calculability

(at least in principle)

Quantum gravity
Non-perturbative formulation

$$Z = \int \mathcal{D}\psi g_f \exp(-S)g_{in},$$
$$\int \mathcal{D}\psi = \prod_x \prod_{a=1}^2 \left\{ \int d\psi_1^a(x) \dots \int d\psi_8^a(x) \right\}$$

$$\langle \mathcal{A} \rangle = Z^{-1} \int \mathcal{D} \psi g_f \mathcal{A} \exp(-S) g_{in}$$

Vierbein and metric

$$E^m_\mu(x) = \langle \tilde{E}^m_\mu(x) \rangle$$

$$g_{\mu\nu}(x) = E^m_\mu(x)E_{\nu m}(x)$$

Generating functional

$$Z[J] = \int \mathcal{D}\psi \exp\left\{-(S+S_J)
ight\}$$

 $S_J = -\int d^d x J^{\mu}_m \tilde{E}^m_{\mu}$

$$E^m_\mu(x) = \langle \tilde{E}^m_\mu(x) \rangle = \frac{\delta \ln Z}{\delta J^\mu_m(x)}$$

If regularized functional measure can be defined (consistent with diffeomorphisms)

Non-perturbative definition of quantum gravity

$$Z[J] = \int \underline{\mathcal{D}\psi} \exp\left\{-\left(S + S_J\right)\right\}$$

Effective action

$$\Gamma[E^m_\mu] = -W[J^\mu_m] + \int d^d x J^\mu_m E^m_\mu \qquad \qquad \mathbf{W=ln} \ \mathbf{Z}$$

Gravitational field equation for vierbein

$$\frac{\delta\Gamma}{\delta E_{\mu}^{m}}=J_{m}^{\mu}$$

similar for metric

Symmetries dictate general form of effective action and gravitational field equation

diffeomorphisms !

Effective action for metric : curvature scalar R + additional terms

Lattice spinor gravity

Lattice regularization

Hypercubic lattice

Even sublattice

Odd sublattice

$$y^{\mu} = \tilde{y}^{\mu}\Delta, \ \tilde{y}^{\mu}$$
 integer, $\Sigma_{\mu}\tilde{y}^{\mu}$ even
 $z^{\mu} = \tilde{z}^{\mu}\Delta, \ \tilde{z}^{\mu}$ integer, $\Sigma_{\mu}\tilde{z}^{\mu}$ odd

Spinor degrees of freedom on points of odd sublattice

Lattice action

Associate cell to each point y of even sublattice

Action: sum over cells

$$S = \tilde{\alpha} \sum_{y} \mathcal{L}(y) + c.c.$$

For each cell : twelve spinors located at nearest neighbors of y (on odd sublattice)

$$\tilde{z}^{\mu}\left(\tilde{x}_{j}(\tilde{y})\right) = \tilde{y}^{\mu} + V_{j}^{\mu}$$

$$V_1 = (-1, 0, 0, 0) , V_5 = (0, 0, 0, 1)$$

$$V_2 = (0, -1, 0, 0) , V_6 = (0, 0, 1, 0)$$

$$V_3 = (0, 0, -1, 0) , V_7 = (0, 1, 0, 0)$$

$$V_4 = (0, 0, 0, -1) , V_8 = (1, 0, 0, 0)$$

Local SO (4,C) symmetry

Basic SO(4,C) invariant building blocks

$$\tilde{\mathcal{H}}^k_{\pm}(\tilde{x}) = \varphi^a_{\alpha}(\tilde{x})(C_{\pm})_{\alpha\beta}(\tau_2\tau_k)^{ab}\varphi^b_{\beta}(\tilde{x})$$

Lattice action

$$\mathcal{L}(y) = \frac{1}{6} \{ \mathcal{F}^{1,2,8,7}_{+} \mathcal{F}^{3,4,6,5}_{-} + \mathcal{F}^{1,3,8,6}_{+} \mathcal{F}^{7,4,2,5}_{-} + \mathcal{F}^{1,4,8,5}_{+} \mathcal{F}^{3,7,6,2}_{-} + (\mathcal{F}_{+} \leftrightarrow \mathcal{F}_{-}) \}.$$

$$\mathcal{F}^{abcd}_{\pm} = \frac{1}{24} \epsilon^{klm} \left[\tilde{\mathcal{H}}^k_{\pm}(\tilde{x}_a) \tilde{\mathcal{H}}^l_{\pm}(\tilde{x}_b) \tilde{\mathcal{H}}^m_{\pm}(\tilde{x}_c) \right.$$
$$\left. + \tilde{\mathcal{H}}^k_{\pm}(\tilde{x}_b) \tilde{\mathcal{H}}^l_{\pm}(\tilde{x}_c) \tilde{\mathcal{H}}^m_{\pm}(\tilde{x}_d) + \tilde{\mathcal{H}}^k_{\pm}(\tilde{x}_c) \tilde{\mathcal{H}}^l_{\pm}(\tilde{x}_d) \tilde{\mathcal{H}}^m_{\pm}(\tilde{x}_a) \right.$$
$$\left. + \tilde{\mathcal{H}}^k_{\pm}(\tilde{x}_d) \tilde{\mathcal{H}}^l_{\pm}(\tilde{x}_a) \tilde{\mathcal{H}}^m_{\pm}(\tilde{x}_b) \right]$$

Lattice symmetries

Rotations by $\pi/2$ in all lattice planes (invariant)

$$\mathcal{F}^{abcd}_{\pm} = \mathcal{F}^{bcda}_{\pm} = \mathcal{F}^{cdab}_{\pm} = \mathcal{F}^{dabc}_{\pm}$$

Reflections of all lattice coordinates (odd)

$$\mathcal{F}^{cbad}_{\pm} = \mathcal{F}^{adcb}_{\pm} = -\mathcal{F}^{abcd}_{\pm}$$

■ Diagonal reflections e.g $z_1 \leftrightarrow z_2$ (odd)

Lattice derivatives

$$\hat{\partial}_{0}\varphi(y) = \frac{1}{2\Delta} (\varphi(\tilde{x}_{8}) - \varphi(\tilde{x}_{1}))$$
$$\hat{\partial}_{1}\varphi(y) = \frac{1}{2\Delta} (\varphi(\tilde{x}_{7}) - \varphi(\tilde{x}_{2}))$$
$$\hat{\partial}_{2}\varphi(y) = \frac{1}{2\Delta} (\varphi(\tilde{x}_{6}) - \varphi(\tilde{x}_{3}))$$
$$\hat{\partial}_{3}\varphi(y) = \frac{1}{2\Delta} (\varphi(\tilde{x}_{5}) - \varphi(\tilde{x}_{4}))$$

and cell averages

$$\bar{\varphi}_{0}(y) = \frac{1}{2} \big(\varphi(\tilde{x}_{1}) + \varphi(\tilde{x}_{8}) \big) , \ \bar{\varphi}_{1}(y) = \frac{1}{2} \big(\varphi(\tilde{x}_{2}) + \varphi(\tilde{x}_{7}) \big) \\ \bar{\varphi}_{2}(y) = \frac{1}{2} \big(\varphi(\tilde{x}_{3}) + \varphi(\tilde{x}_{6}) \big) , \ \bar{\varphi}_{3}(y) = \frac{1}{2} \big(\varphi(\tilde{x}_{4}) + \varphi(\tilde{x}_{5}) \big)$$

express spinors in terms of derivatives and averages

$$\varphi(\tilde{x}_j) = \sigma^{\mu}_j \bar{\varphi}_{\mu} + V^{\mu}_j \Delta \hat{\partial}_{\mu} \varphi$$

$$\sigma_j^\mu = (V_j^\mu)^2$$

Bilinears and lattice derivatives

$$\mathcal{H}^k_{\pm}(\tilde{x}_j) = \sigma^{\mu}_j \bar{\mathcal{H}}^k_{\pm\mu}(y) + 2\Delta V^{\mu}_j \tilde{\mathcal{D}}^k_{\pm\mu}(y) + \Delta^2 \sigma^{\mu}_j \mathcal{G}^k_{\pm\mu}(y)$$

$$\tilde{\mathcal{D}}^{k}_{\pm\mu} = (\bar{\varphi}_{\mu})^{a}_{\alpha} (C_{\pm})_{\alpha\beta} (\tau_{2}\tau_{k})^{ab} \hat{\partial}_{\mu} \varphi^{b}_{\beta} \qquad \tilde{\mathcal{G}}^{k}_{\pm\mu} = \hat{\partial}_{\mu} \varphi^{a}_{\alpha} (C_{\pm})_{\alpha\beta} (\tau_{2}\tau_{k})^{ab} \hat{\partial}_{\mu} \varphi^{b}_{\beta}$$

$$\hat{\mathcal{H}}^k_{\pm\mu} = \bar{\mathcal{H}}^k_{\pm\mu} + \Delta^2 \tilde{\mathcal{G}}^k_{\pm\mu} , \ \mathcal{H}^k_{\pm ab} = \frac{1}{2} (\hat{\mathcal{H}}^k_{\pm a} + \hat{\mathcal{H}}^k_{\pm b})$$

Action in terms of lattice derivatives

$$\mathcal{F}_{+}^{1,2,8,7} = \frac{2\Delta^2}{3} \epsilon^{klm} \mathcal{H}_{+01}^k (\tilde{\mathcal{D}}_{+0}^l \tilde{\mathcal{D}}_{+1}^m - \tilde{\mathcal{D}}_{+1}^l \tilde{\mathcal{D}}_{+0}^m)$$

$$\mathcal{F}_{01}^{\pm} = -\mathcal{F}_{10}^{\pm} = \mathcal{F}_{\pm}^{1,2,8,7}$$

$$\mathcal{F}^{\pm}_{\mu\nu} = \frac{2\Delta^2}{3} \epsilon^{klm} \mathcal{H}^k_{\pm\mu\nu} (\tilde{\mathcal{D}}^l_{\pm\mu} \tilde{\mathcal{D}}^m_{\pm\nu} - \tilde{\mathcal{D}}^l_{\pm\nu} \tilde{\mathcal{D}}^m_{\pm\mu})$$

$$\mathcal{L}(y) = \frac{1}{24} \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4} \mathcal{F}^+_{\mu_1 \mu_2} \mathcal{F}^-_{\mu_3 \mu_4}$$

$$\tilde{\mathcal{D}}^k_{\pm\mu} = (\bar{\varphi}_\mu)^a_\alpha (C_{\pm})_{\alpha\beta} (\tau_2 \tau_k)^{ab} \hat{\partial}_\mu \varphi^b_\beta$$

Continuum limit

$$\mathcal{L}(y) \to \frac{32}{3} \Delta^4 \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4} F^+_{\mu_1 \mu_2} F^-_{\mu_3 \mu_4}$$

$$\Delta^4 \Sigma_y = \frac{1}{2} \int_y$$

Lattice distance Δ drops out in continuum limit !

$$S = \frac{16}{3} \tilde{\alpha} \int_{y} \epsilon^{\mu_{1}\mu_{2}\mu_{3}\mu_{4}} F^{+}_{\mu_{1}\mu_{2}} F^{-}_{\mu_{3}\mu_{4}} + c.c$$

$$\tilde{\alpha} = 3\alpha/16$$

Regularized quantum gravity

- For finite number of lattice points : functional integral should be well defined
- Lattice action invariant under local Lorentztransformations
- Continuum limit exists where gravitational interactions remain present
- Diffeomorphism invariance of continuum limit, and geometrical lattice origin for this

Lattice diffeomorphism invariance

- Lattice equivalent of diffeomorphism symmetry in continuum
- Action does not depend on positioning of lattice points in manifold, once formulated in terms of lattice derivatives and average fields in cells
- Arbitrary instead of regular lattices

 Continuum limit of lattice diffeomorphism invariant action is invariant under general coordinate transformations Lattice action and functional measure of spinor gravity are lattice diffeomorphism invariant !

Lattice action for bosons in d=2

$$\int DH = \prod_{\tilde{z}} \prod_{k} \sum_{H_{k}(\tilde{z})=\pm 1}$$

$$Z = \int DH \exp(-S)$$

$$S = \sum_{\tilde{y}} L(\tilde{y})$$

$$L(\tilde{y}) = \frac{\alpha}{48} \epsilon^{k \ln \alpha} \left[H_k(\tilde{x}_1) + H_k(\tilde{x}_2) + H_k(\tilde{x}_3) + H_k(\tilde{x}_4) \right]$$

×
$$\left[H_1(\tilde{x}_4) - H_1(\tilde{x}_1) \right] \left[H_m(\tilde{x}_3) - H_m(\tilde{x}_2) \right] + \text{ c.c.,}$$

Positioning of lattice points

$$V(\tilde{y}) = \frac{1}{2} \epsilon_{\mu\nu} (x_4^{\mu} - x_1^{\mu}) (x_3^{\nu} - x_2^{\nu})$$

$$\int d^2 x = \sum_{\tilde{y}} V(\tilde{y})$$

Lattice derivatives

$$\begin{split} \hat{\partial}_{0}H_{k}(\tilde{y}) &= \frac{1}{2V(\tilde{y})}\Big\{(x_{3}^{1} - x_{2}^{1})\big(H_{k}(\tilde{x}_{4}) - H_{k}(\tilde{x}_{1})\big) \\ &- (x_{4}^{1} - x_{1}^{1})\big(H_{k}(\tilde{x}_{3}) - H_{k}(\tilde{x}_{2})\big)\Big\}, \\ \hat{\partial}_{1}H_{k}(\tilde{y}) &= \frac{1}{2V(\tilde{y})}\Big\{(x_{4}^{0} - x_{1}^{0})\big(H_{k}(\tilde{x}_{3}) - H_{k}(\tilde{x}_{2})\big) \\ &- (x_{3}^{0} - x_{2}^{0})\big(H_{k}(\tilde{x}_{4}) - H_{k}(\tilde{x}_{1})\big)\Big\}. \end{split}$$

$$H_{k}(\tilde{x}_{j_{1}}) - H_{k}(\tilde{x}_{j_{2}}) = (x_{j_{1}}^{\mu} - x_{j_{2}}^{\mu})\hat{\partial}_{\mu}H_{k}(\tilde{y})$$

Cell average :

$$H_{k}(\tilde{y}) = \frac{1}{4} \sum_{j} H_{k}(\tilde{x}_{j}(\tilde{y}))$$

Lattice diffeomorphism invariance

$$S(x_p) = \int d^2x \overline{L}(\tilde{y}; x_p) = \int d^2x \overline{L}(x; x_p)$$

$$\overline{L}(\tilde{y}; x_p) = \overline{L}(x; x_p) = \frac{\hat{L}(\tilde{y}; x_p)}{V(\tilde{y}; x_p)}$$

$$x'_{p} = x_{p} + \xi_{p}$$
 $\overline{L(\tilde{y}; x_{p} + \xi_{p})} = \overline{L(\tilde{y}; x_{p})}$, $S(x_{p} + \xi_{p}) = S(x_{p})$

$$\hat{L}(\tilde{y}) = \frac{\alpha}{12} \epsilon^{k \ln V} V(\tilde{y}) H_k(\tilde{y}) \epsilon^{\mu \nu} \hat{\partial}_{\mu} H_{\mu}(\tilde{y}) \hat{\partial}_{\nu} H_m(\tilde{y}) + c.c$$

Continuum Limit :

S =
$$\frac{\alpha}{12} \int d^2 x e^{k \ln \alpha} e^{\mu \nu} H_k(x) \partial_{\mu} H_1(x) \partial_{\nu} H_m(x) + c.c.$$

Lattice diffeomorphism transformation

$$\delta_{p}V(\tilde{y}) = \hat{\partial}_{\mu}\xi_{p}^{\mu}(\tilde{y})V(\tilde{y})$$

$$\delta_{\rm p}\hat{\partial}_{\mu}f(\tilde{y}) = -\hat{\partial}_{\mu}\xi_{\rm p}^{\rm v}(\tilde{y})\hat{\partial}_{\rm v}f(\tilde{y})$$

Effective action is diffeomorphism symmetric

$$\exp \left\{ - \Gamma \left[h(x), j(x) \right\} = \int DH(\tilde{z}) \exp\{-SH(x) \right] \right.$$
$$\left. + \int_{x} \left(H_{k}(x) - h_{k}(x) \right) j_{k}^{\Box}(x) + c.c \right\},$$

Same for effective action for graviton !

Lattice action and functional measure of spinor gravity are lattice diffeomorphism invariant !

Gauge symmetries

Proposed action for lattice spinor gravity has also chiral SU(2) x SU(2) local gauge symmetry in continuum limit , acting on flavor indices.

Lattice action : only global gauge symmetry realized

Next tasks

 Compute effective action for composite metric
 Verify presence of Einstein-Hilbert term (curvature scalar)

Conclusions

- Unified theory based only on fermions seems possible
- Quantum gravity
 - functional measure can be regulated
- Does realistic higher dimensional unified model exist ?

Gravitational field equation and energy momentum tensor

$$\frac{\delta\Gamma}{\delta E^m_\mu} = J^\mu_m \qquad \qquad T^{\mu\nu} = E^{-1} E^{m\mu} J^\nu_m$$

Special case : effective action depends only on metric

$$\Gamma_0'[E_\mu^m] = \Gamma_0' \Big[g_{\nu\rho}[E_\mu^m] \Big]$$

$$g_{\mu\nu} = E^m_\mu E_{\nu m}$$

$$T^{\mu\nu}_{(g)} = -\frac{2}{\sqrt{g}} \frac{\delta \Gamma'_0}{\delta g_{\mu\nu}}$$

$$T^{\mu\nu} = -E^{-1}E^{m\mu}\frac{\delta\Gamma_0'}{\delta g_{\rho\sigma}}\frac{\delta g_{\rho\sigma}}{\delta E_\nu^m} = T^{\mu\nu}_{(g)}$$

Unified theory in higher dimensions and energy momentum tensor

 Only spinors , no additional fields – no genuine source
 J^µ_m: expectation values different from vielbein and incoherent fluctuations

Can account for matter or radiation in effective four dimensional theory (including gauge fields as higher dimensional vielbein-components)