Universality in ultra-cold fermionic atom gases

Universality in ultra-cold fermionic atom gases

S. Diehl, H.Gies, J.Pawlowski

BEC – BCS crossover

Bound molecules of two atoms on microscopic scale:

Bose-Einstein condensate (BEC) for low T

Fermions with attractive interactions (molecules play no role) :

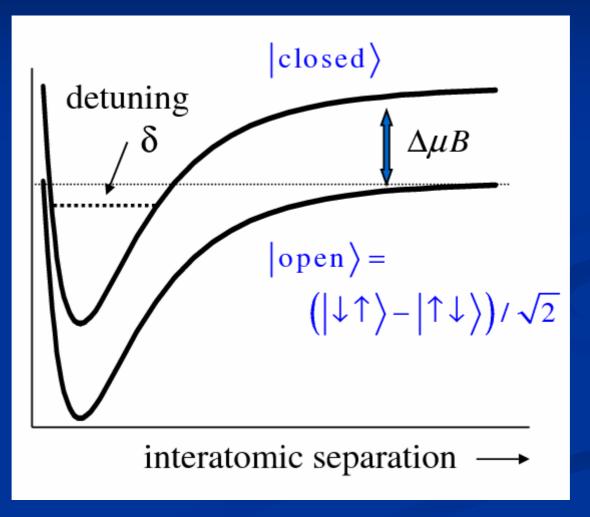
BCS – superfluidity at low T by condensation of Cooper pairs

Crossover by Feshbach resonance as a transition in terms of external magnetic field

microphysics

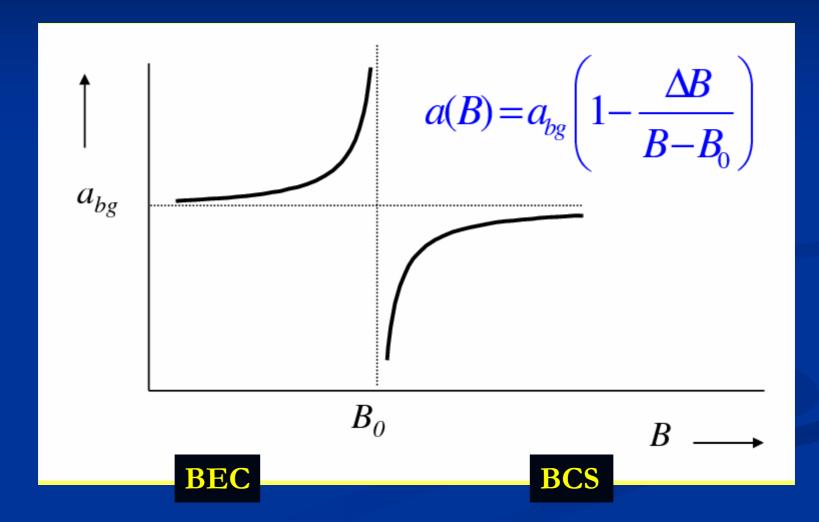
determined by interactions between two atoms
length scale : atomic scale

Feshbach resonance



H.Stoof

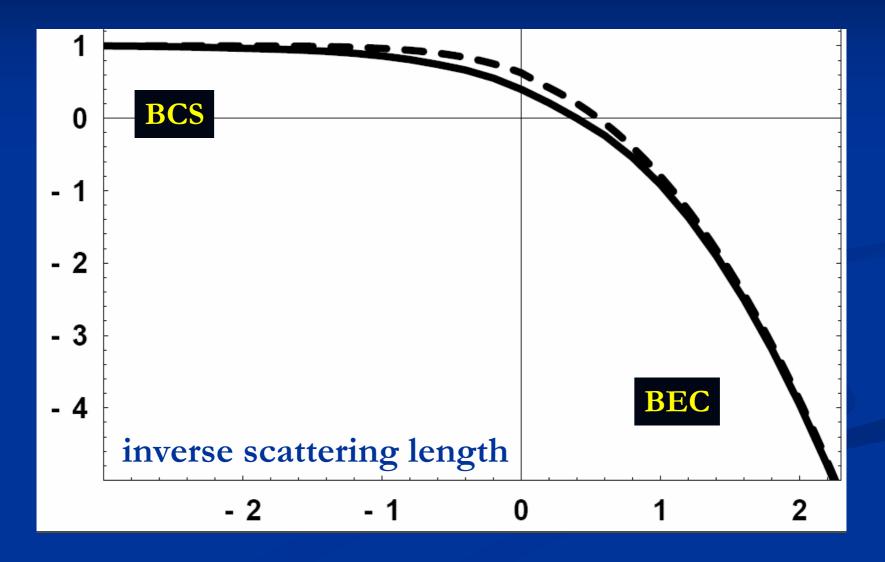
scattering length



many body physics

dilute gas of ultra-cold atoms
length scale : distance between atoms

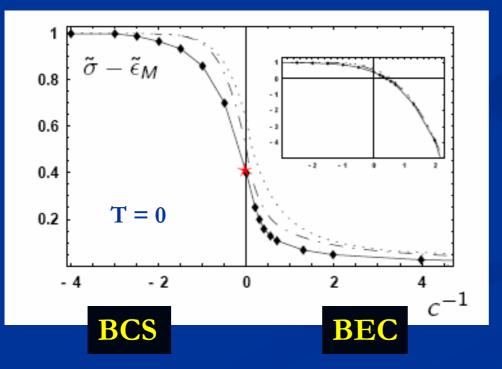
chemical potential



BEC – BCS crossover

 qualitative and partially quantitative theoretical understanding

mean field theory (MFT) and first attempts beyond



concentration : $c = a k_F$ reduced chemical potential : $\sigma^{\sim} = \mu / \epsilon_F$

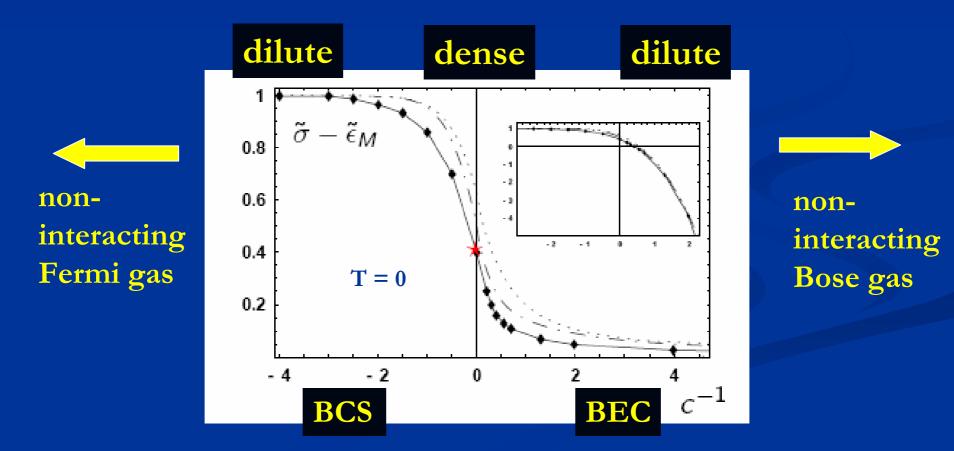
Fermi momentum : $\mathbf{k}_{\mathbf{F}}$ Fermi energy : $\mathbf{\varepsilon}_{\mathbf{F}}$

binding energy:

$$\tilde{\epsilon}_M = -\theta(c^{-1})c^{-2}$$

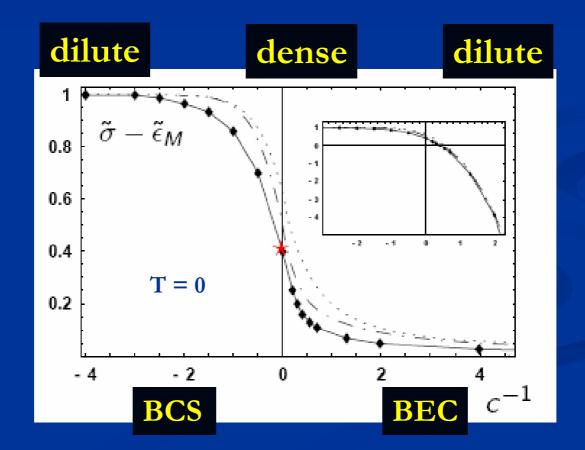
concentration

c = a k_F , a(B) : scattering length
 needs computation of density n=k_F³/(3π²)

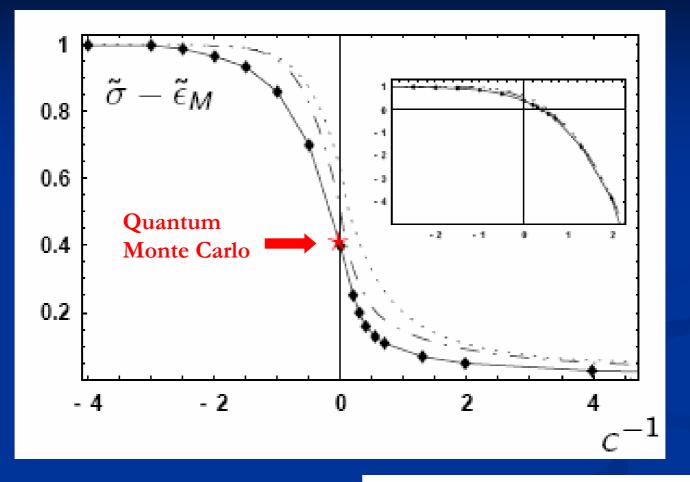


universality

same curve for Li and K atoms ?



different methods

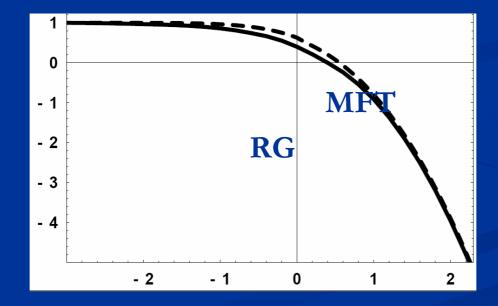


- Compare RGE (diamonds), SDE (dashed-dotted) and MFT (dashed) approximation schemes.
- Compare to QMC calculations at c⁻¹ = 0 QMC
 RGE SDE MFT

 σ 0.44(2)*,0.42(2)[†] 0.40 0.50 0.63 (* Carlson *et al.*, PRL 91, 050401 (2003), [†] Giorgini et al., PRL 93, 200404 (2004)).

who cares about details?

a theorists game ...?



a theorists dream :

reliable method for strongly interacting fermions

" solving fermionic quantum field theory

experimental precision tests are crucial !

precision many body theory - quantum field theory -

so far :

- particle physics : perturbative calculations magnetic moment of electron : g/2 = 1.001 159 652 180 85 (76) (Gabrielse et al.)
 statistical physics : universal critical exponents for second order phase transitions : v = 0.6308 (10) renormalization group
- lattice simulations for bosonic systems in particle and statistical physics (e.g. QCD)

QFT with fermions

needed:

universal theoretical tools for complex fermionic systems

wide applications : electrons in solids , nuclear matter in neutron stars ,

(1) bridge from microphysics to macrophysics

From

Microscopic Laws (Interactions, classical action)

to

Fluctuations!

Macroscopic Observation (Free energy functional, effective action)

(2) different effective degrees of freedom

microphysics : single atoms
(+ molecules on BEC – side)

macrophysics : bosonic collective degrees of freedom

compare QCD : from quarks and gluons to mesons and hadrons

(3) no small coupling

ultra-cold atoms :

microphysics knowncoupling can be tuned

for tests of theoretical methods these are important advantages as compared to solid state physics !

challenge for ultra-cold atoms :

Non-relativistic fermion systems with precision similar to particle physics !

(QCD with quarks)

functional renormalization group

conceived to cope with the above problems
should be tested by ultra-cold atoms

QFT for non-relativistic fermions

functional integral, action

$$S = \int_{x} \{ \psi^{\dagger} (\partial_{\tau} - \frac{\Delta}{2M} - \sigma) \psi + \varphi^{*} (\partial_{\tau} - \frac{\Delta}{4M} + \bar{\nu}_{\Lambda} - 2\sigma) \varphi - \bar{h}_{\varphi} (\varphi^{*} \psi_{1} \psi_{2} - \varphi \psi_{1}^{*} \psi_{2}^{*}) \}$$

Molecule exchange
$$\hat{\phi}^*$$
 \bar{h}_{ϕ} ψ_2

perturbation theory: Feynman rules

 τ : euclidean time on torus with circumference 1/T σ : effective chemical potential

variables

ψ : Grassmann variables
 φ : bosonic field with atom number two

What is φ? microscopic molecule, macroscopic Cooper pair ?

All !

parameters

detuning v(B)

$$\bar{\nu}_{\Lambda} = \bar{\nu}_{\Lambda,0} + \bar{\mu}_B (B - B_0)$$

$$\frac{\partial \bar{\nu}_{\Lambda}}{\partial B} = \bar{\mu}_{B}$$

$$S = \int_{x} \{ \psi^{\dagger} (\partial_{\tau} - \frac{\Delta}{2M} - \sigma) \psi + \varphi^{*} (\partial_{\tau} - \frac{\Delta}{4M} + \bar{\nu}_{\Lambda} - 2\sigma) \varphi - \bar{h}_{\varphi} (\varphi^{*} \psi_{1} \psi_{2} - \varphi \psi_{1}^{*} \psi_{2}^{*}) \}$$

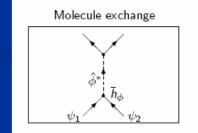
Yukawa or Feshbach coupling h_o

fermionic action

equivalent fermionic action, in general not local

$$S_F = \int_x \psi^{\dagger} (\partial_{\tau} - \frac{\Delta}{2M} - \sigma)\psi + S_{\text{int}}$$

$$S_{\text{int}} = -\frac{1}{2} \int_{Q_1, Q_2, Q_3} (\psi^{\dagger}(-Q_1)\psi(Q_2))(\psi^{\dagger}(Q_4)\psi(-Q_3)) \frac{\bar{h}_{\varphi}^2}{\bar{\nu}_{\Lambda} - 2\sigma + (\bar{q}_1 - \bar{q}_4)^2/4M + 2\pi i T(n_1 - n_4)}$$



scattering length a

$$\bar{\lambda} = -\frac{\bar{h}_{\varphi}^2}{\bar{\nu}_{\Lambda}}$$

 $a = M \lambda / 4\pi$

broad resonance : pointlike limitlarge Feshbach coupling

$$\bar{h}_{\varphi}^2 \to \infty, \ \bar{\nu}_{\Lambda} \to \infty, \ \bar{\lambda} \text{ fixed}$$

$$S_{\text{int}} = -\frac{1}{2} \int_{Q_1, Q_2, Q_3} (\psi^{\dagger}(-Q_1)\psi(Q_2))(\psi^{\dagger}(Q_4)\psi(-Q_3)) \frac{\bar{h}_{\varphi}^2}{\bar{\nu}_{\Lambda} - 2\sigma + (\vec{q}_1 - \vec{q}_4)^2/4M + 2\pi i T(n_1 - n_4)}$$

parameters

Yukawa or Feshbach coupling h_φ scattering length a

Set of microscopic parameters:

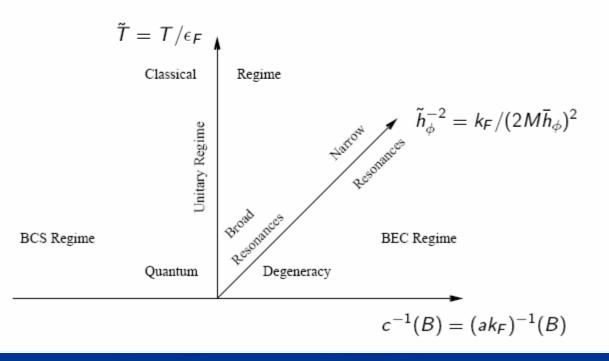
$$\{\nu(B), h_{\phi,0}\} \leftrightarrow \{a(B), h_{\phi,0}\}.$$

broad resonance : h_φ drops out

concentration c

$$c = ak_F = -\frac{Mk_F \bar{h}_{\varphi}^2}{4\pi \bar{\mu}_B (B - B_0)}$$
$$n = \frac{k_F^3}{3\pi^2}$$

- Dimensionless axes: measure in units of Fermi momentum, $k_F = (3\pi^2 n)^{1/3}$ and Fermi energy, $\epsilon_F = k_F^2/(2M)$.
- Crossover induced by magnetic field (B) dependence of scattering length: Feshbach resonance.
- Narrow resonances: Nonlocal interactions, exact solution possible (S. Diehl, C. Wetterich, Phys. Rev. A 73 033615 (2006)).
- ▶ Focus on the broad resonance limit $\tilde{h}_{\phi} \to \infty$: pointlike interactions.



universality

Are these parameters enough for a quantitatively precise description ?

Have Li and K the same crossover when described with these parameters ?

Long distance physics looses memory of detailed microscopic properties of atoms and molecules !

universality for $c^{-1} = 0$: Ho,...(valid for broad resonance) here: whole crossover range

analogy with particle physics

microscopic theory not known nevertheless "macroscopic theory" characterized by a finite number of "renormalizable couplings"

 $m_e, \alpha; g_w, g_s, M_w, \dots$

here: \mathbf{c} , \mathbf{h}_{φ} (only \mathbf{c} for broad resonance)

analogy with universal critical exponents

only one relevant parameter :

universality

- issue is not that particular Hamiltonian with two couplings ν , h_{φ} gives good approximation to microphysics
- Iarge class of different microphysical Hamiltonians lead to a macroscopic behavior described only by ν , h_{ω}

difference in length scales matters !

units and dimensions

- **c** = 1; \hbar = 1; k_B = 1
- \sim momentum \sim length⁻¹ \sim mass \sim eV
- \blacksquare energies : 2ME ~ (momentum)²
 - (M: atom mass)
- typical momentum unit : Fermi momentum
- typical energy and temperature unit : Fermi energy
- \square time ~ (momentum) $^{-2}$
- canonical dimensions different from relativistic QFT !

rescaled action

$$S = \int_{\hat{x}} \{ \hat{\psi}^{\dagger} (\hat{\partial}_{\tau} - \hat{\Delta} - \hat{\sigma}) \hat{\psi} \\ + \hat{\varphi}^{*} (\hat{\partial}_{\tau} - \frac{1}{2} \hat{\Delta} + \hat{\nu} - 2\hat{\sigma}) \hat{\varphi} \\ - \hat{h}_{\varphi} (\hat{\varphi}^{*} \hat{\psi}_{1} \hat{\psi}_{2} - \hat{\varphi} \hat{\psi}_{1}^{*} \hat{\psi}_{2}^{*}) \}$$

$$\hat{\psi} = \hat{k}^{-3/2}\psi, \ \hat{\varphi} = \hat{k}^{-3/2}\varphi,$$
$$\hat{x} = \hat{k}x, \ \hat{\tau} = \frac{\hat{k}^2}{2M}\tau,$$
$$\hat{\sigma} = \frac{2M\sigma}{\hat{k}^2}, \ \hat{h}_{\varphi} = \frac{2M\bar{h}_{\varphi}}{\sqrt{\hat{k}}}$$

M drops out
 all quantities in units of k_F, ε_F if

$$\hat{k} = k_F$$

what is to be computed?

Inclusion of fluctuation effects via functional integral leads to effective action.

This contains all relevant information for arbitrary T and n !

effective action

- integrate out all quantum and thermal fluctuations
- quantum effective action
- generates full propagators and vertices
 richer structure than classical action

$$\Gamma = \int_{x} \{ \psi^{\dagger} (\partial_{\tau} - A_{\psi} \Delta - \sigma) \psi + \varphi^{*} (\partial_{\tau} - A_{\varphi} \Delta) \varphi + u(\varphi) - h_{\varphi} (\varphi^{*} \psi_{1} \psi_{2} - \varphi \psi_{1}^{*} \psi_{2}^{*}) + \dots \}$$

effective potential

minimum determines order parameter

$$\begin{split} u &= m_{\varphi}^2 \rho + \frac{\lambda_{\varphi}}{2} \rho^2 \quad , \quad SYM \\ u &= \frac{\lambda_{\varphi}}{2} (\rho - \rho_0)^2 \quad , \quad SSB \end{split}$$

$$\rho=\varphi^*\varphi$$

condensate fraction

$$\Omega_c = 2 \varrho_0 / n$$

$$\Gamma = \int_{x} \{ \psi^{\dagger} (\partial_{\tau} - A_{\psi} \Delta - \sigma) \psi + \varphi^{*} (\partial_{\tau} - A_{\varphi} \Delta) \varphi + u(\varphi) - h_{\varphi} (\varphi^{*} \psi_{1} \psi_{2} - \varphi \psi_{1}^{*} \psi_{2}^{*}) + \dots \}$$

renormalized fields and couplings

$$\psi \;=\; Z_{\psi}^{1/2} \hat{\psi} \;,\; \varphi = Z_{\varphi}^{1/2} \hat{\varphi}$$

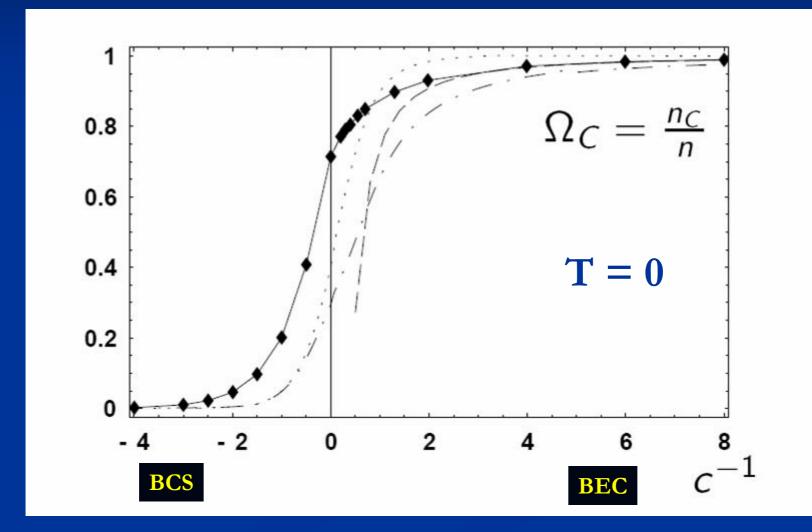
$$h_{\varphi} = Z_{\varphi}^{-1/2} Z_{\psi}^{-1} \hat{h}_{\varphi}$$

$$\Gamma = \int_{x} \{ \psi^{\dagger} (\partial_{\tau} - A_{\psi} \Delta - \sigma) \psi + \varphi^{*} (\partial_{\tau} - A_{\varphi} \Delta) \varphi + u(\varphi) - h_{\varphi} (\varphi^{*} \psi_{1} \psi_{2} - \varphi \psi_{1}^{*} \psi_{2}^{*}) + \dots \}$$

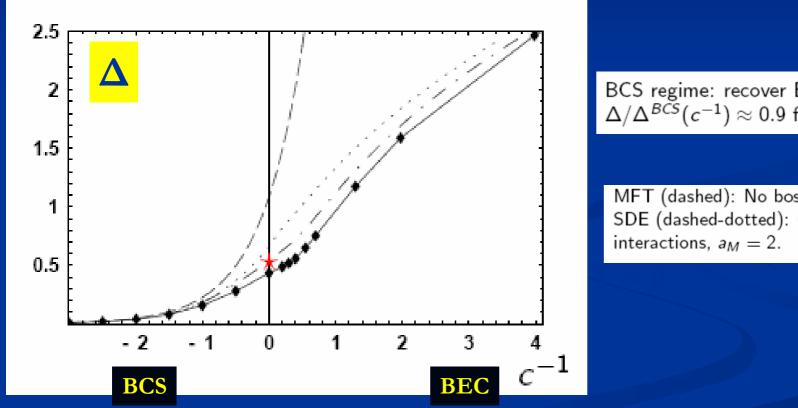
from

functional renormalization group

condensate fraction



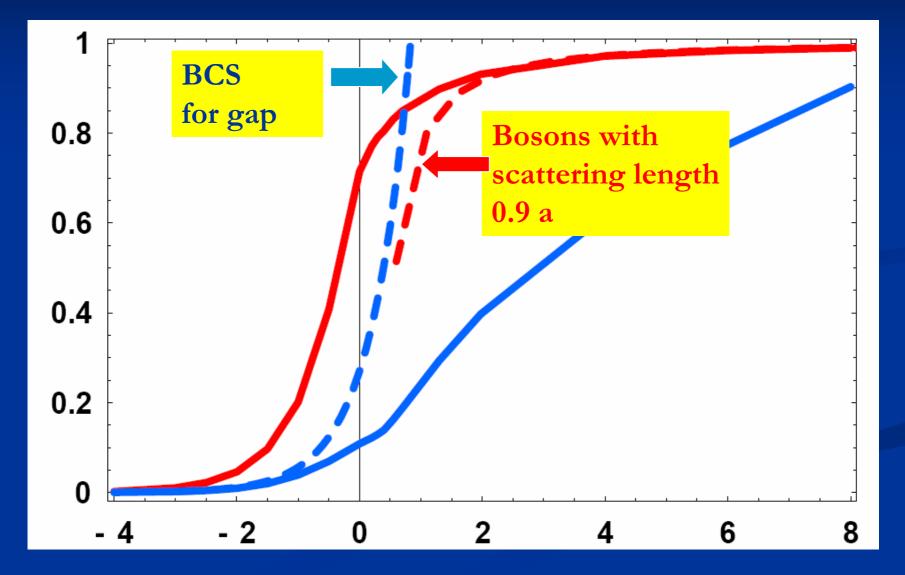
gap parameter



BCS regime: recover BCS gap result $\Delta/\Delta^{BCS}(c^{-1}) pprox 0.9$ for $c^{-1} < -2$.

MFT (dashed): No boson interactions. SDE (dashed-dotted): Overestimates

limits



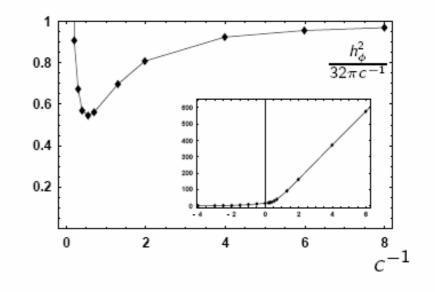
Yukawa coupling

Extract both BCS-type gap parameter $\tilde{\Delta}$ and BEC-type condensate fraction Ω_C .

Both quantities intimately connected by renormalized Yukawa coupling

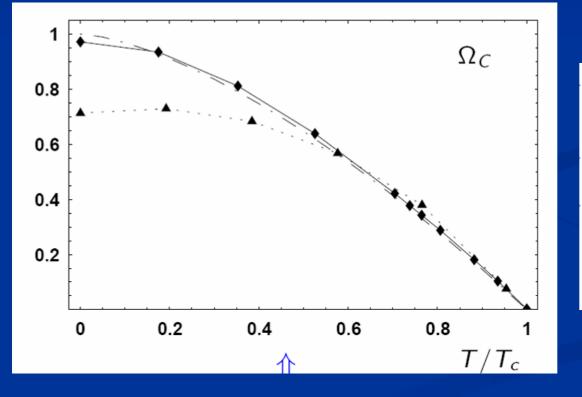
$$h_{\phi}^2 = rac{ ilde{h}_{\phi,0}^2}{Z_{\phi}}, \quad \Omega_C = 6\pi^2 \Big(rac{ ilde{\Delta}}{h_{\phi}}\Big)^2.$$

Broad resonance universality confirmed: $\tilde{h}_{\phi,0} \rightarrow \infty$ drops out as physical scale. Reduced Yukawa coupling on BEC side



 Reduced Yukawa coupling settles to 2-body fixed point 32πc⁻¹.

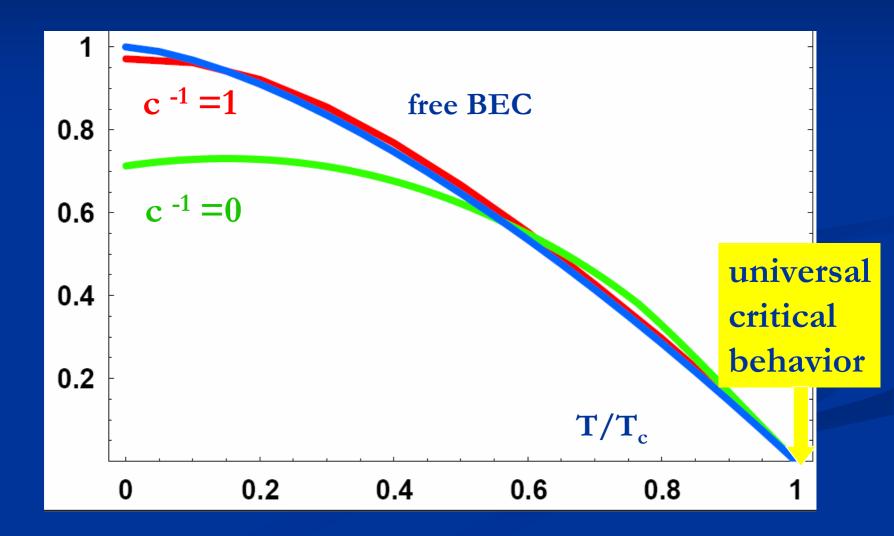
temperature dependence of condensate



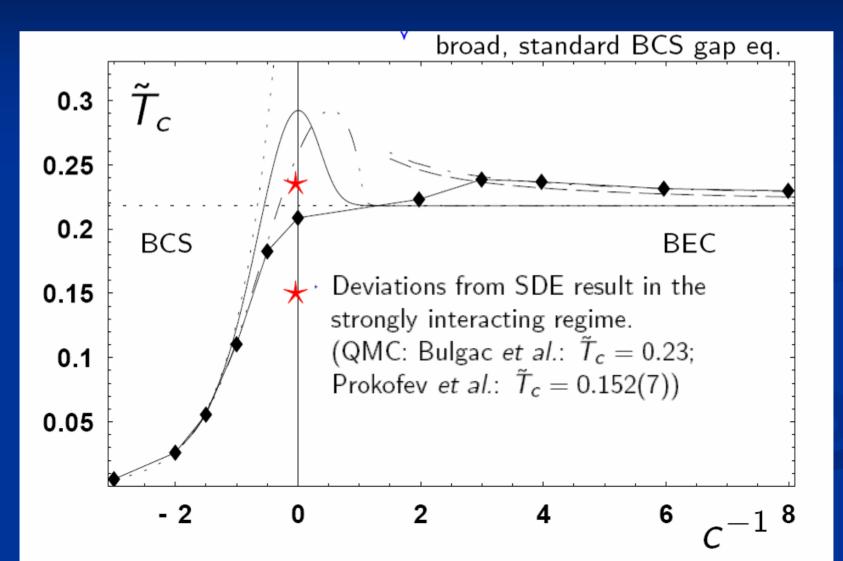
Compare free BE condensate fraction to result for $c^{-1} = 0$ (resonance, triangles) and $c^{-1} = 1$ (BEC regime, diamonds). Low temperature: Condensate fraction strongly depends on c^{-1} . Close to criticality:

- Second order phase transition.
- Similar approach to T_c: dominance of boson fluctuations, system attracted to universal critical point.

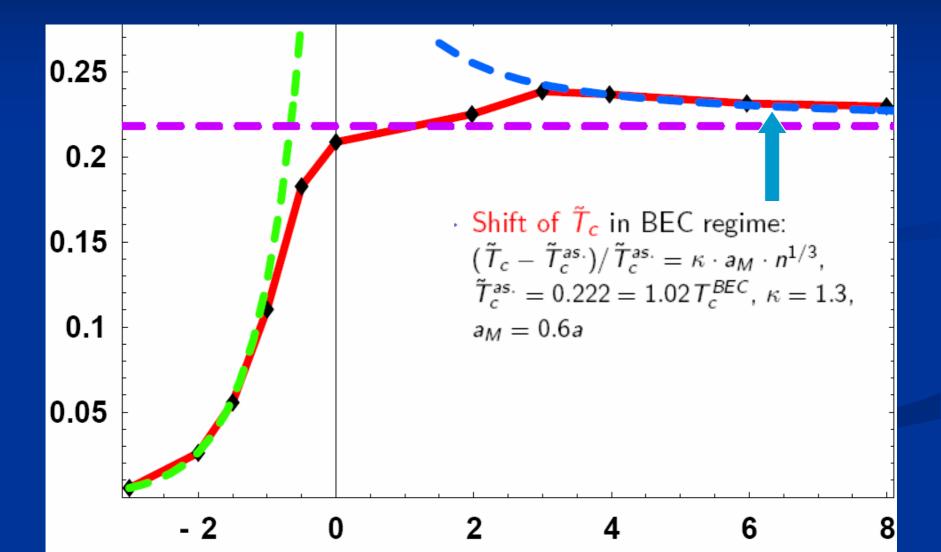
condensate fraction : second order phase transition



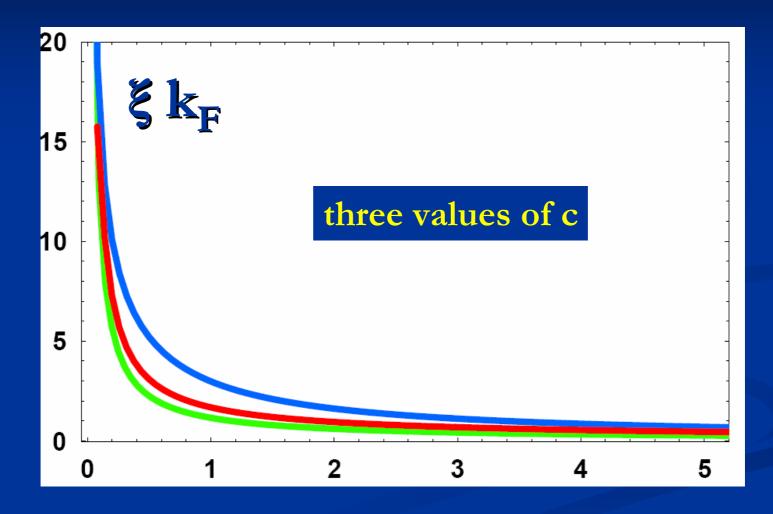
crossover phase diagram



shift of BEC critical temperature



correlation length



 $(T-T_c)/T_c$

universality for broad resonances

for large Yukawa couplings h_{ϕ} :

only one relevant parameter c

all other couplings are strongly attracted to partial fixed points

macroscopic quantities can be predicted

in terms of c and T/ϵ_F

(in suitable range for c^{-1} ; density sets scale)

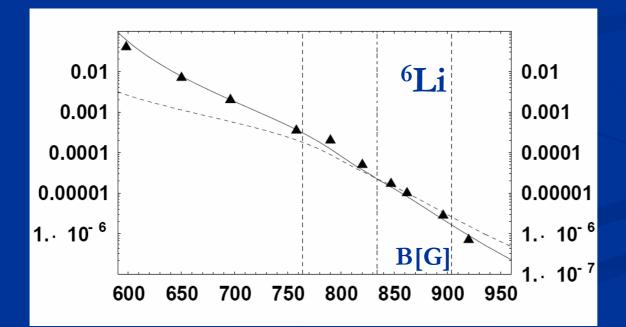
universality for narrow resonances

 Yukawa coupling becomes additional parameter (marginal coupling)
 also background scattering important

bare molecule fraction

(fraction of microscopic closed channel molecules)

- not all quantities are universal
- bare molecule fraction involves wave function renormalization that depends on value of Yukawa coupling



Experimental points by Partridge et al.

method

effective action

$$\Gamma[\psi,\phi] = \int_{0}^{1/T} d au \int d^3x \Big\{ \psi^{\dagger} \big(\partial_{ au} - A_{\psi} riangle - \sigma \big) \psi + \Big\}$$

$$\phi^* \big(\partial_\tau - \mathsf{A}_\phi \triangle \big) \phi + \mathsf{U}(\phi^* \phi) - \frac{h_\phi}{2} \Big(\phi^* \psi^\mathsf{T} \epsilon \psi - \phi \psi^\dagger \epsilon \psi^* \Big) + \ldots \Big\}.$$

includes all quantum and thermal fluctuations
formulated here in terms of renormalized fields
involves renormalized couplings

effective potential

value of φ at potential minimum :
 order parameter , determines condensate fraction

- second derivative of U with respect to φ yields correlation length
- \blacksquare derivative with respect to σ yields density

Quartic truncation for bosonic potential (displayed in symmetric phase):

$$U(\phi^*\phi)=(
u(B)+\Delta m_\phi^2)\phi^*\phi+rac{\lambda_\phi}{2}(\phi^*\phi)^2+...$$

functional renormalization group

 make effective action depend on scale k : include only fluctuations with momenta larger than k (or with distance from Fermi-surface larger than k)

k large : no fluctuations , classical action
 k → 0 : quantum effective action
 effective average action (same for effective potential)
 running couplings

microscope with variable resolution

From

to

Microscopic Laws (Interactions, classical action)

Fluctuations!

Macroscopic Observation (Free energy functional, effective action) running couplings : crucial for universality

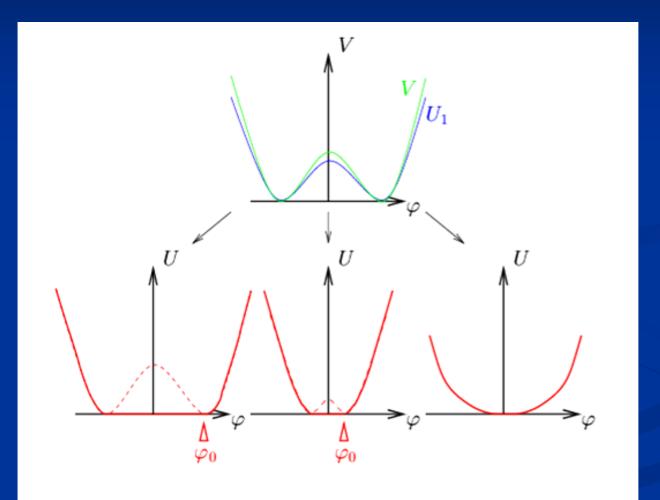
for large Yukawa couplings h_{φ} :

only one relevant parameter c

all other couplings are strongly attracted to partial fixed points

 macroscopic quantities can be predicted in terms of c and T/s_F (in suitable range for c⁻¹)

running potential



micro

macro

here for scalar theory

physics at different length scales

- microscopic theories : where the laws are formulated
- effective theories : where observations are made
 effective theory may involve different degrees of freedom as compared to microscopic theory
 example: microscopic theory only for fermionic atoms , macroscopic theory involves bosonic collective degrees of freedom (φ)

Functional Renormalization Group

describes flow of effective action from small to large length scales

perturbative renormalization : case where only couplings change , and couplings are small

conclusions

the challenge of precision :

 substantial theoretical progress needed
 "phenomenology" has to identify quantities that are accessible to precision both for experiment and theory

dedicated experimental effort needed

challenges for experiment

- study the simplest system
- identify quantities that can be measured with precision of a few percent and have clear theoretical interpretation
- precise thermometer that does not destroy probe
- same for density

functional renormalization group

• block spins

Kadanoff, Wilson

• exact renormalization group equations

Wegner, Houghton Wagner, Houghton Weinberg Polchinski Hasenfratz²

• Lattice finite size scaling Lüscher,...

• coarse grained free energy average action

effective average action

here only for bosons, addition of fermions straightforward

Flow equation for average potential

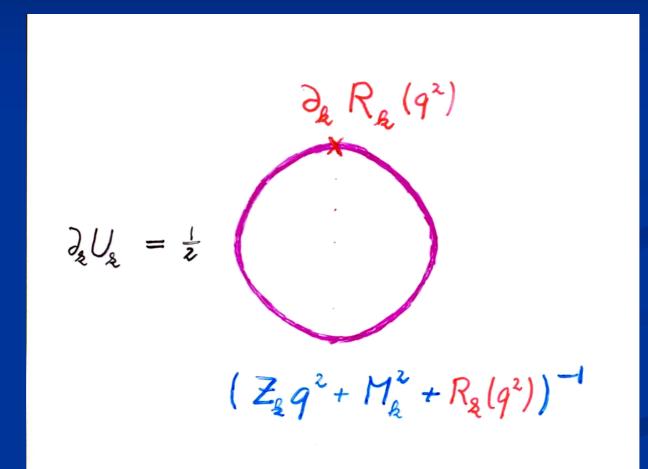
$$\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$$

$$\bar{M}_{k,ab}^2 = \frac{\partial^2 U_k}{\partial \varphi_a \partial \varphi_b}$$
 : Mass matrix

 $\overline{M}_{k,i}^2$: Eigenvalues of mass matrix

+ contribution from fermion fluctuations

Simple one loop structure – nevertheless (almost) exact



Infrared cutoff

 $R_k : \text{IR-cutoff}$ e.g $R_k = \frac{Z_k q^2}{e^{q^2/k^2} - 1}$ or $R_k = Z_k (k^2 - q^2) \Theta(k^2 - q^2) \quad \text{(Litim)}$

 $\lim_{k \to 0} R_k = 0$ $\lim_{k \to \infty} R_k \to \infty$

Flow equation for U_k

$$\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$$

'91

 $\bar{M}_{k,ab}^2 = \frac{\partial^2 U_k}{\partial \varphi_a \partial \varphi_b}$: Mass matrix $\bar{M}_{k,i}^2$: Eigenvalues of mass matrix

 R_k : IR-cutoff

e.g
$$R_k = \frac{Z_k q^2}{e^{q^2/k^2} - 1}$$

or $R_k = Z_k (k^2 - q^2) \Theta(k^2 - q^2)$ (Litim)

 $\lim_{k \to 0} R_k = 0$ $\lim_{k \to \infty} R_k \to \infty$

Partial differential equation for function U(k,φ) depending on two variables

 $Z_{k} = c k^{-\eta}$

Regularisation

For suitable R_k:

$$\begin{aligned} R_k \ &= \ \frac{Z_k q^2}{e^{q^2/k^2} - 1} \\ R_k \ &= \ Z_k (k^2 - q^2) \Theta(k^2 - q^2) \end{aligned}$$

Momentum integral is ultraviolet and infrared finite

Numerical integration possible
 Flow equation defines a regularization scheme (ERGE –regularization)

$$\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}$$

Integration by momentum shells

$$\boxed{\partial_k U_k(\varphi) = \frac{1}{2} \sum_i \int \frac{d^d q}{(2\pi)^d} \frac{\partial_k R_k(q^2)}{Z_k q^2 + R_k(q^2) + \bar{M}_{k,i}^2(\varphi)}}$$

Momentum integral is dominated by $q^2 \sim k^2$.

Flow only sensitive to physics at scale k

Wave function renormalization and anomalous dimension

 Z_k : wave function renormalization

 $k\partial_k Z_k = -\eta_k Z_K$

 η_k : anomalous dimension

 $t = \ln(k/\Lambda)$

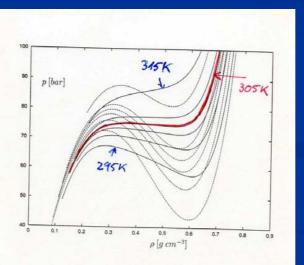
 $\partial_t \ln Z = -\eta$

for $Z_k(\phi,q^2)$: flow equation is exact !

Flow of effective potential

 CO_{2}

Ising model



Critical exponents

 η

0.0292

0.0356

0.0385

0.0380

0.0363

0.025

0.003

1

d = 3

N

0 0.590

1 0.6307

2 0.666

3 0.704

4 0.739

10 0.881

100 0.990

Critical exponents ν and η

V

0.5878 0.039

0.6308 0.0467

0.6714 0.049

0.7102 0.049

0.7474 0.047

0.028

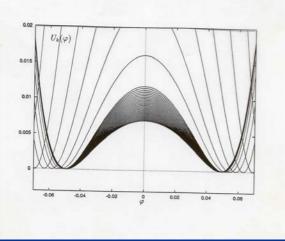
0.0030

"average" of other methods

 $(typically \pm (0.0010 - 0.0020))$

0.886

0.980 ↑



Experiment :

T_{*} =304.15 K p_{*} =73.8.bar ρ_{*} = 0.442 g cm-2

S.Seide ...

Critical exponents, d=3

N		<i>v</i>		η	
		~			
0	0.590	0.5878	0.039		0.0292
1	0.6307	0.6308	0.0467		0.0356
2	0.666	0.6714	0.049		0.0385
3	0.704	0.7102	0.049		0.0380
4	0.739	0.7474	0.047		0.0363
10	0.881	0.886	0.028		0.025
100	0.990	0.980	0.0030		0.003
	ERGE	world	ERGE		world

"average" of other methods (typically $\pm (0.0010 - 0.0020)$)

Solution of partial differential equation :

yields highly nontrivial non-perturbative results despite the one loop structure !

Example: Kosterlitz-Thouless phase transition

Exact renormalization group equation

Exact flow equation

for scale dependence of average action

$$\partial_k \Gamma_k[\varphi] = \frac{1}{2} \operatorname{Tr} \left\{ \left(\Gamma_k^{(2)}[\varphi] + R_k \right)^{-1} \partial_k R_k \right\}$$

'92

$$\left(\Gamma_k^{(2)} \right)_{ab} (q, q') = \frac{\delta^2 \Gamma_k}{\delta \varphi_a(-q) \delta \varphi_b(q')}$$

Tr : $\sum_a \int \frac{d^d q}{(2\pi)^d}$

(fermions : STr)

Effective average action

and

exact renormalization group equation

Generating functional

generating functional for connected Green's functions in presence of quadratic infrared cutoff

$$W_{\boldsymbol{k}}[j] = \ln \int \mathcal{D}\chi \, \exp\left(-S[\chi] - \Delta_{\boldsymbol{k}}S[\chi] + \int d^d x \, j_a \chi_a\right)$$

$$\Delta_{\boldsymbol{k}}S = \frac{1}{2} \int \frac{d^d q}{(2\pi)^d} R_{\boldsymbol{k}}(q^2) \chi_a(-q) \chi_a(q)$$

e.g.
$$R_k = \frac{Z_k q^2}{e^{q^2/k^2} - 1}$$

$$\lim_{k \to 0} R_k = 0$$

 $R_{k\to\infty}\to\infty$

Effective average action

$$\Gamma_{\mathbf{k}}[\varphi] = -W_{\mathbf{k}}[j] + \int d^d x \, j_a \varphi_a - \Delta_{\mathbf{k}} S[\varphi]$$

 $\Gamma_0[\varphi]$: quantum effective action generates 1PI vertices free energy: $F = \Gamma T + \mu nV$

 Γ_k includes all fluctuations (quantum, thermal) with $q^2 > k^2$

 Γ_{Λ} specifies microphysics

$$arphi_a = \langle \chi_a
angle = rac{\delta W_{m k}}{\delta j_a}$$

Loop expansion : perturbation theory with infrared cutoff in propagator

Quantum effective action

for $k \to 0$ all fluctuations (quantum + thermal) are included

knowledge of $\Gamma_{k\to 0} =$ solution of model

Truncations

Functional differential equation – cannot be solved exactly Approximative solution by truncation of most general form of effective action

Exact flow equation for effective potential

 \blacksquare Evaluate exact flow equation for homogeneous field ϕ .

 R.h.s. involves exact propagator in homogeneous background field φ.

two body limit (vacuum)

- ► Motivation Physical parameters measured in low energy scattering experiments → include vacuum fluctuations.
- Project on physical vacuum by

$$\Gamma_k(vak) = \lim_{k_F \to 0} \Gamma_k \big|_{\tilde{T} > \tilde{T}_c}$$

⇒ massive simplification of full diagrammatic structure.

Picture: Smooth crossover terminates in second order vacuum phase transition

- (i) Atom phase $(a^{-1} < 0)$: $\sigma_A = 0, \ \bar{m}_\phi^2 > 0,$
- (ii) Molecule phase $(a^{-1}>0)$ $\sigma_A < 0$, $ar{m}_\phi^2 = 0$,
- (iii) Resonance $(a^{-1} = 0)$ $\sigma_A = 0, \ \bar{m}_{\phi}^2 = 0.$

with "order parameter" $\sigma_A = \epsilon_M/2$: half the binding energy ϵ_M of a molecule.

Nontrivial vacuum physics: scaling of molecular scattering length a_M with fermion scattering length $a(a_M/a)$

Fermion fluct.s Fermion and boson fluct.s Four-body Schrödinger eq.*

2 0.81 0.6 (* Shlyapnikov *et al.*, PRL **93**,090404 (2004))