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BEC — BCS crossover

Bound molecules of two atoms
on microscopic scale:

Bose-Einstein condensate (BEC ) for low T

Fermions with attractive interactions
(molecules play no role ) :

BCS — supetfluidity at low T
by condensation of Cooper pairs

Crossover by Feshbach resonance

as a transition in terms of external magnetic field



microphysics

m determined by interactions between two atoms

m length scale : atomic scale



Feshbach resonance

detuning

(4)-[11))rv2

interatomic separation —

H.Stoof



scattering length




many body physics

m dilute gas of ultra-cold atoms

m length scale : distance between atoms



chemical potential

o

- inverse scattering length




BEC — BCS crossover

B qualitative and partially quantitative theoretical
understanding

m mean field theory (MET ) and first attempts beyond

concentration : ¢ = a kg
reduced chemical
potential : 6™ = p/eg

Fermi momemtum : kg
Fermi energy : ey

binding energy :




concentration

mc=aky , a(B):scattering length

m needs computation of density n=kg’/(37°)

dilute dense dilute
non- non-
interacting interacting
Fermi gas Bose gas




universality

same curve for 11 and K atoms ?

dilute dense dilute




different methods

Quantum

Monte Carlo ™= i’ :

» Compare to QMC calculations at ¢~ =0
» Compare RGE (diamonds), SDE QMC RGE SDE MFT
(dashed-dotted) and MFT (dashed) § 0.44(2)*,042(2)F 040 050 063

approximation schemes. (* Carlson et al, PRL O1, 050401 (2003),
i Giorgini et al., PRL 03, 200404 (2004)).




who cares about details ?

a theorists game ...?




a theorists dream :

reliable method for strtongly interacting
fermions

“ solving fermionic quantum field theory



experimental precision tests
are crucial !



precision many body theory
- quantum field theory -

so far :
B particle physics : perturbative calculations
magnetic moment of electron :

g/2 = 1.001 159 652 180 85 (76 ) ( Gabrielse et al.)

B statistical physics : universal critical exponents for
second order phase transitions : v = 0.6308 (10)

renormalization group

m Jattice simulations for bosonic systems in particle and

statistical physics (e.g. QCD)



QFT with fermions

needed:

universal theoretical tools for complex
fermionic systems

wide applications :
electrons in solids ,

nuclear matter in neutron stats , ....






(1) bridge from microphysics to
macrophysics

From

Microscopic Laws

Fluctuations!

Macroscopic Observation




(2) different effective degrees
of freedom

microphysics : single atoms
(+ molecules on BEC — side )

macrophysics : bosonic collective degrees of
freedom

compare QCD : from quarks and gluons to
mesons and hadrons



(3) no small coupling



ultra-cold atoms :

m microphysics known

m coupling can be tuned

B for tests of theoretical methods these are
important advantages as compared to solid state
physics !



challenge for ultra-cold atoms :

Non-relativistic fermion systems with precision

similar to particle physics !

(QCD with quarks )



functional renormalization group

m conceived to cope with the above problems

m should be tested by ultra-cold atoms



QFT for non-relativistic fermions

m functional integral, action

Maolecule exchange

perturbation theory:
Feynman rules

7 : euclidean time on torus with circumference 1/T
o : etfective chemical potential



variables

m ) : Grassmann variables

B ¢ : bosonic field with atom number two

What 1s ¢ ?
microscopic molecule,

macroscopic Cooper pair ?

All'l



parameters

m detuning v(B)

Uao+ jip(B — By)

i: _.-J' L/ A

— = [ip
B HE

® Yukawa or Feshbach coupling hCP



fermionic action

equivalent fermionic action , in general not local

Molecule exchange




scattering length a

m broad resonance : pointlike limit

m large Feshbach coupling

(VT (—Q)Y(Q2)) (W Q)Y (—Q3))
)y

h2

A — 20 + (q1 — qa)*/AM + 2miT (ny — ny)




parameters

® Yukawa or Feshbach coupling h(P

B scattering length a

Set of microscopic parameters:

{v(B), hgyol — {a(B), hso}-

= broad resonance : h, drops out



concentration cC




Dimensionless axes: measure in units of Fermi momentum, kg = (372n)'/? and Fermi
energy, eg = k2 /(2M).

Crossover induced by magnetic field (B) dependence of scattering length: Feshbach
resonance.

Narrow resonances: Nonlocal interactions, exact solution possible (S. Diehl, C. Wetterich,
Phys. Rev. A 73 033615 (2006)).

Focus on the broad resonance limit hy — oc: pointlike interactions.

T = TfE;: i

Classical Regime

Unitary Regime

& ¢
BCS Regime ¥ D_q;-’;*\ BEC Regime

=
Degeneracy

=

c~(B) = (ake)~'(B)




universality

B Are these parameters enough for a quantitatively precise
description ?

m Have L1 and K the same crossover when described with
these parameters ?

m Long distance physics looses memoty of detailed
microscopic properties of atoms and molecules !

universality for ¢! = 0 : Ho,...( valid for broad resonance)
here: whole crossover range



analogy with particle physics

microscopic theory not known -

nevertheless “macroscopic theory’” characterized
by a finite number of

“renormalizable couplings™

meDOC; gw >gs ’MW"'°

h _ (only ¢ for broad resonance )

here: c, 0



analogy with
universal critical exponents

only one relevant parameter :

T-T

C



universality

B issue is not that particular Hamiltonian with two

couplings v | h‘P gives good approximation to

microphysics

m large class of different microphysical Hamiltonians lead

to a macroscopic behavior described only by v , hﬁP

m difference in length scales matters !



units and dimensions

mc=1;h=1;ky=1
® momentum ~ length! ~ mass ~ eV

m energies : 2ME ~ (momentum)?

(M : atom mass )
B typical momentum unit : Fermi momentum

m typical energy and temperature unit : Fermi energy

B time ~ (momentum)

®m canonical dimensions different from relativistic QF T !



rescaled action

—hy (P Y1 — PY1Ys) }

m M drops out

m all quantities 1n units of k.,



what i1s to be computed ?

Inclusion of fluctuation effects
via functional integral

leads to effective action.

This contains all relevant information
for arbitrary T and n !



effective action

m integrate out all quantum and thermal
fluctuations

B quantum effective action
m oenerates full propagators and vertices

B richer structure than classical action

+ u) — A Ao+ u(yp
—ho( W P1ths — OPias ._,} + o}




effective potential

minimum determines order parameter

2 /\ D 9 ~Y
uw=myp+—-p- , SYM

/\_ o 3 \ ) ~
U = _}*[ p—po) , SSB

condensate fraction

— - / {01(6r — AA— o)y

+




renormalized fields and couplings

o / (1(0r - AgA = o)
J T

—ho(@ 12 — e1y) + . ..




results
from

functional renormalization group



condensate fraction




gap parametet

: recover BCS gap result
(1)~ 0.9 for ¢ < 2.

MFT (dashed): No boson interactions.
SDE (dashed-dotted): Overestimates
interactions, ap = 2.




Bosons with
’_ scattering length
0.9 a




Yukawa coupling

Both quantities intimately connected by
renormalized Yukawa coupling

Broad resonance universality confirmed:
hs o — oc drops out as physical scale.

» Reduced Yukawa coupling settles to

ed FJ'-.ﬂH'It 32mc 1-




temperature dependence of condensate

Compare free BE condensate fraction to
result for c—1 = 0 (resonance, triangles)
and ¢! = 1 (BEC regime, diamonds).

Low temperature: Condensate fraction
strongly depends on ¢~ 1.
Close to criticality:
» Second order phase transition.
» Similar approach to T.: dominance of
boson fluctuations, system attracted to
universal critical point.




condensate fraction :
second order phase transition

free BEC

universal
critical
behavior




crossover phase diagram

Suroacstancaialt € feaplces

= _ﬁ'_—_—— —-——1

-

BEC

- Deviations from SDE result in the
strongly interacting regime.
(QMC: Bulgac et al.: Te = 0.23;
Prokofev et al.: T, = 0.152(7))




shift of BEC critical temperature

0.25 |

0.2 |

. Shift of T, in BEC regime:

0.15 (Te = T)/ T2 =k -ay - n'/3,
: T3 =0.222=1.02TFEC, k=13,
0.1 f ap = 0.6a
005 /




correlation length

(T-Tc) / Tc






universality for broad resonances

tor large Yukawa couplings h,, :
m only one relevant parameter c

m all other couplings are strongly attracted to
partial fixed points

B macroscopic quantities can be predicted

in terms of ¢ and T'/ep

(in suitable range for ¢! ; density sets scale )



universality for narrow resonances

® Yukawa coupling becomes additional parameter
( marginal coupling )

m also background scattering important



bare molecule fraction

(fraction of microscopic closed channel molecules )

B not all quantities are universal

B bare molecule fraction involves wave function
renormalization that depends on value of Yukawa

coupling

0.01
0.001 |

0.0001
0.00001
1.. 10°°

0.01
0.001
0.0001
0.00001

600 650 700 750 800 850 900 950

Experimental
points by
Partridge et al.






effective action

m includes all quantum and thermal fluctuations
B formulated here in terms of renormalized fields

m involves renormalized couplings



effective potential

m value of g at potential minimum :

order parameter , determines condensate
fraction

m second dertvative of U with respect to @ yields
correlation length

m derivative with respect to o yields density

QQuartic truncation for bosonic potential (displayed in symmetric phase):

“

+ ...

U(6*6) = (v(B) + Am2)6*o + 22 (¢* 6



functional renormalization group

m make effective action depend on scale k :
include only fluctuations with momenta larger than k

(or with distance from Fermi-surface larger than k)

k large : no fluctuations , classical action
k — 0 : quantum effective action

effective average action ( same for effective potential )

running couplings



microscope with variable resolution

From

Microscopic Laws

Fluctuations!

Macroscopic Observation




running couplings :
crucial for universality
tor large Yukawa couplings h,, :

m only one relevant parameter c

m all other couplings are strongly attracted to
partial fixed points

B macroscopic quantities can be predicted
in terms of ¢ and T'/ep

(in suitable range for ¢! )



running potential

micro

macro

here for scalar theory



physics at different length scales

B MICrOSCOPIC theories : where the laws are
formulated

B cffective theories : where observations are made

m cffective theory may involve different degrees of
freedom as compared to microscopic theory

m cxample: microscopic theory only for fermionic
atoms , macroscopic theory involves bosonic
collective degrees of freedom (¢ )



Functional Renormalization Group

describes flow of effective action from small to
large length scales

perturbative renormalization : case where only
couplings change , and couplings are small



conclusions

the challenge of precision :

m substantial theoretical progress needed

B “phenomenology’ has to identity quantities that
are accessible to precision both for experiment
and theory

m dedicated experimental effort needed



challenges for experiment

m study the simplest system

m identify quantities that can be measured with
precision of a few percent and have clear
theoretical interpretation

m precise thermometer that does not destroy

probe

m same for density



functional renormalization group

e block spins
Kadanoff, Wilson

e exact renormalization group equations

Wagner, Houghton
Weinberg
Polchinski
Hasenfratz?

e Lattice finite size scaling
Luscher,...

e coarse grained free energ,}-'/a.\rera.ge action




effective average action

here only for bosons , addition of fermions straightforward



Flow equation for average potential

) 2 a
o) = e R
OWUk(P) =32 | or ) Zed?+ Ry (a)+ M2 ()

+ contribution from fermion fluctuations



Simple one loop structure —
nevertheless (almost) exact




Infrared cutoff

Rﬁ;: : IR-cutoff

Zﬁ;:q?
Efqgl.-"f.ii:g . ].

MI'I];;_;-.[} RF;: =0

lim k— 00 RF;: — OO

(Litim)




Flow equation for Uy,

~_d% O Ri(a°)
(2m)? Zypg?+ Ry, (¢)+ M} ,(¢)

Partial differential
equation for function
U(k,9) depending on

two wvariables

[R-cutoff
Z L4 2
el 2 Jk 2 _ 1

w = ZukE:—)Ok* —¢*)  (Litim)

Z, =cknh

lil_ﬂ.!;:_-‘-,[] R!;: =0

lirﬂ.ii:—':-nx- RF;: —r 00




Regularisation

Zﬂ;:q?

: . " qul,.-’ﬁi:? —1
For suitable R, : T O — g

m Momentum integral is ultraviolet and infrared
finite

m Numerical integration possible

m Flow equation defines a regularization scheme
( ERGE —regularization )




Integration by momentum shells

Momentum integral

is dominated by
G ~ k2.

p p \ noo IZE ':"i R f'{ 2]
di..[ k (‘r’) 2 Ez .l [27.—_]‘3"- ZHE +R; f‘.qll]{_ﬂ,fﬁei{[m

Flow only sensitive to

physics at scale k



Wave function renormalization and
anomalous dimension

Z.. wave function renormalization
kOZr = —iZi

M. anomalous dimension

t =In(k/A)

O)lnZ = —n

for Z, (@,q°) : flow equation is



Flow of ettective potential

Ising model CO, Critical exponents

T}
4 0.049
( 2 (0.049
4 0.047
0.028

030

Experiment :

T.=304.15 K
p- =73.8.bar
S.Seide ... p. =0.442 g cm-2



Critical exponents , d=3

0.590 0.5878 0.039 0.0292
0.6307 0.6308 0.0467 0.0356

0.666 0.6714 0.049 0.0385
0.704 0.7102 0.049 0.0380
0.739 0.7474 0.047 0.0363
0.881 0).886 0.028 0.025
0.990 0.980 0.0030 0.003

ERGE world ERGE world

“average” of other methods

(typically #(0.0010 — 0.0020))




Solution of partial differential equation :

yields highly nontrivial non-perturbative
results despite the one loop structure !

Example:
Kosterlitz-Thouless phase transition



Exact renormalization group
equation

Exact flow equation

for scale dependence of average action

(2) 8°T';
(F ) (9:9) = mocata®

™Y, [ &

(fermions : STr)







Effective average action
and

exact renormalization group equation



Generating functional

generating functional for connected Green’s
functions in presence of quadratic infrared cutoff

Wilj] = In / Dy exp (—S [X] — ArS|[x] + / dz jr,)(n)

Zvq

eg Ry=—5—
S TR T R _

lifh Bp='0
k—0

Rpyoo = 00




Ettective average action

rlf-' [‘3‘9] = _”Tﬁ [] ] T / (fi:]: ]n‘fjn - -B,ES [‘19]

Loop expansion :
perturbation theory
[';. inc ludf s all fluctuations (quantum, thermal) _Wlth

S k2 infrared cutoff

In propagator

with q

['A specifies microphysics




Quantum etfective action

for Kk — 0
all fluctuations (quantum + thermal)
are included




Truncations

Functional differential equation —
cannot be solved exactly
Approximative solution by truncation of

most general form of effective action



Exact tlow equation for etfective
potential

m Fvaluate exact flow equation for homogeneous

field @ .

m R.h.s. involves exact propagator in

homogeneous background field .



two body limit ( vacuum )

» Motivation — Physical parameters measured in low energy scattering experiments —
include vacuum fluctuations.

» Project on physical vacuum by

[(vak) = lim T

ke—0 k|T’::-T}

— massive simplification of full diagrammatic structure.
» Picture: Smooth crossover terminates in second order vacuum phase transition
(i) Atom phase (a=! < 0): ga =0,
(i) Molecule phase (a=! > 0) a4 <0,
(iii) Resonance (a=1 =0) oa =0, m;
with “order parameter’ o4 = €p/2: half the binding energy ey of a molecule.
» Nontrivial vacuum physics: scaling of molecular scattering length ap with fermion
scattering length a (ap/a)
Fermion fluct.s Fermion and boson fluct.s Four-body Schrédinger eq.”
2 0.81 0.6
(* Shlyapnikov et al., PRL 93,000404 (2004))
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