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1. Introduction

1.1. From Microphysics to Macrophysics

Fundamental laws for basic interactions do not explain everything, e. g. the description of
macroscopic objects, consisting of many particles (solids, fluids, gases).

A typical number of particles is Avogadro's number: Na ' 6 · 1023. It denotes the number of
molecules per mol, e. g. the number of water molecules in 18 g water.

Typical questions are:

• connections between pressure (p), volume (V ), and temperature (T ) of gases (equation of
state)

• specific heat capacity of a material

• conductivity of a solid, colour of a fluid

• connection between magnetization and magnetic field

• melting of ice

• How does a refrigerator work?

• How does a supernova explode?

• energy budget of the Earth's atmosphere

• diffusion through a membrane in a plant

• particle beam in a high energy collider

Typical area of application:

• systems with many degrees of freedom ↔ macroscopic objects

For example a water droplet:

• Consider an isolated system – a droplet of water with volumeV and number of particles N .
A classical mechanical description needs 6N initial conditions ↔ 6N degrees of freedom.

• The distance between two trajectories, which initially are close to each other, grows
exponentially with time. Initial state can never be prepared (known) with arbitrary
precision: Limit for predictability (weather forecast)

11



1. Introduction

• Try deterministic classical mechanics as a description of a water droplet for one second.
One needs more information than can be saved in the entire universe, even if one stores
one bit in every volume with Planck size (10−34 m)3

The goal of the statistical physics is to develop laws for the macrostates by deriving them from
the microphysics with the help of statistical methods.

1.2. Macroscopic laws and simplicity

• qualitatively new laws

• new concepts, e. g. entropy

• statistic laws are very exact, relative fluctuations ∼ 1√
N

• predictive power only for systems with many degrees of freedom; uncertainty about the
behaviour of single atoms (quantum physics), but precise predictions about the whole
system

• thermodynamics

• material properties

• non-equilibrium processes

Scales for macroscopic systems:

• L � mean distance between particles in fluids and solids ' 10−7 cm, N � 1

• t � timescale of the microscopic motions:

– motion of an atom: 10−13 s

– motion of an electron (in solids): 10−15 s

1.3. Fundamental laws are of probabilistic nature

Fundamental laws are of probabilistic nature

The role of the statistical physics in the building of physics is huge: it is the foundation of the
modern physics! There are two two major strategies in physics, as illustrated in Figure 1.1:

1. Fundamental theory: systems with many (infinite) degrees of freedom; QFT, String theory
(for scattering of two particles) are formulated as statistical theories.

2. The role of statistics to understand complex systems is obvious.

12



1.3. Fundamental laws are of probabilistic nature

Abstraction

Fundamental laws

Understanding
of the complexity

(1) (2)

Figure 1.1.: The two major strategies in physics

To calculate the predictions, which follow from the fundamental theory, one uses methods of
statistical physics just like in this lecture.

Basic laws of physics are statistical in nature!

They make statements about:

• the probability that, when measuring an observable A once, one gets the value Ai

• the conditional probability for two measurements: if one measures a value Ai for an ob-
servableA, what is the probability that one measures the value Bj for a second observable
B?

Remarks

1. From microphysics to microphysics and from Planck's scale (1019 GeV) to the energy scale
of LHC (1000GeV) – 16 orders of magnitude.

2. Universality: one does not consider all the details of the microscopic laws → predictive
power of the QFT!

3. Conceptional revolution due to the statistical physics.
Modern physics: Plank, Boltzmann, Einstein.

4. (((((((Determinism → probabilistic theory → predictive power
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2. Basic concepts of statistical physics

2.1. Probability distribution and expectation values

2.1.1. States (Microstates)

We will denote states with τ and the number of states with Ω. In the beginning, we will examine
only a finite number of states Ω < ∞.

2.1.2. Probability distribution

To every state τ we associate a probability pτ , the “probability that this state is realized”:

τ → pτ . (2.1)

The probabilities pτ have to obey two conditions

pτ ≥ 0 positivity, (2.2)∑
τ

pτ = 1 normalization. (2.3)

The range of pτ is therefore
0 ≤ pτ ≤ 1 . (2.4)

The probability distribution is {pτ } = {p1,p2,p3, . . . }, which is an ordered sequence of Ω numbers.

2.1.3. Observables

Capital roman letters are used for observables, e. g. A. A classical observable A has a fixed value
Aτ in every state τ :

τ → Aτ ∈ SpecA , (2.5)

where the spectrum SpecA of an observable is the set of all possible measurement values {λA},
λA ∈ R.

The probability to measure a certain value λA is given by:

pλA =
∑
τ

�����Aτ =λA
pτ , (2.6)

where one sums over all states for which Aτ = λA. A linear combination of two classical
observables A and B is again a classical observable:

C = fAA + fBB with fA,B ∈ R , (2.7)
Cτ = fAAτ + fBBτ . (2.8)
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2. Basic concepts of statistical physics

τ 1 2 3 4

A(2) 0 1 0 0
A(3) 0 0 1 0

Table 2.1.: A system with A(σ ) = δστ

And a function of A is an observable, too:(
f (A)

)
τ
= f (Aτ ) . (2.9)

2.1.4. Expectation value

The expectation value of an observable is defined as

〈A〉 =
∑
τ

pτAτ . (2.10)

2.1.5. Dispersion

The dispersion is given by

∆A2 =
∑
τ

pτ (Aτ − 〈A〉)
2 (2.11)

=
∑
τ

(A2
τ − 2Aτ 〈A〉 + 〈A〉

2) (2.12)

=
∑
τ

pτA
2
τ − 〈A〉

2 (2.13)

= 〈A2〉 − 〈A〉2 . (2.14)

2.1.6. Expectation values and probability distribution

The expectation values of a complete set of observables determine the probability distribution
{pτ } uniquely. Consider Ω observables A(σ ) with A(σ )

τ = δστ , as illustrated in Table 2.1. Then, it
is

〈A(σ )〉 =
∑
τ

pτA
(σ )
τ = pσ . (2.15)

The observables A(σ ) are called projectors. They can be considered as a basis for observables.
All classical observables can be expressed as linear combinations of projector observables. An
association of A(σ ) with possible events (i. e. that state σ is realized) leads to the Kolmogorov
axioms for probabilities.
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2.2. Simple examples

2.2. Simple examples

2.2.1. Two-state system

Typical two-state systems would a coin, a spin, occupied / unoccupied states or computer bits.
States, possibilities and observables in these are usually denoted by:

τ : ↑, ↓ or 〈1〉, 〈2〉 or 1, 0

pτ : p↑, p↓ or p1, p2,
p1 + p2 = 1

A: number up – number down, spin, particle number

As an example, let us define the observable A, for which holds that A1 = 1 for state ↑ and
A2 = −1 for state ↓. Then, we can express the spin in z-direction in terms of A:

Sz =
~

2
A . (2.16)

The number of particles is given by N = 1
2 (A + 1), which corresponds to N1 = 1 and N2 = 0.

The expectation values of A and N are

〈A〉 = p1A1 + p2A2 (2.17)
= p1 − (1 − p1) (2.18)
= 2p1 − 1 , (2.19)

〈N 〉 = 〈 12 (A + 1)〉 (2.20)
= p1N1 + p2N2 (2.21)
= p1 . (2.22)

Their dispersions are easily calculated. For A we first need

〈A2〉 = p1A
2
1 + p2A

2
2 (2.23)

= p1 + (1 − p1) (2.24)
= 1 , (2.25)

where we used A2
1 = A2

2 = 1. Then,

∆A2 = 〈A2〉 − 〈A〉2 (2.26)
= 1 − (2p1 − 1)

2 (2.27)
= 4p1 (1 − p1) , (2.28)

and therefore
∆A2 = 0 for p1 = 0 or p1 = 1 . (2.29)

And for N accordingly:

〈N 2〉 = 1 · p1 + 0 · p2 = p1 , (2.30)
∆N 2 = p1 (1 − p1) . (2.31)
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2. Basic concepts of statistical physics

� ↑↓ ↑↓ �

11 10 01 00

|1〉 |2〉 |3〉 |4〉

Table 2.2.: States τ in a four-state system

|1〉 |2〉 |3〉 |4〉

Aτ 2 0 0 −2 total spin
Bτ 1 1 −1 −1 spin 1
Cτ 1 −1 1 −1 spin 2

Table 2.3.: Observables in a four-state system

2.2.2. Four-state system

An example of a four-state system are two particles, each with a spin in two possible directions.
Different possibilities to denote these states are listed in Table 2.2. We can now introduce a
variable called the total spin A. Other possible observables are the spin of the first particle B
and the spin of the second particle C . Values of these observables are given in Table 2.3.

For the particular case of equal probabilities for all states, p1 = p2 = p3 = p4 =
1
4 , we can

compute the expectation values:

〈A〉 = 〈B〉 = 〈C〉 = 0 , (2.32)

and the dispersions:

〈B2〉 = 〈C2〉 = 1 , 〈A2〉 = 2 , (2.33)
∆B2 = ∆C2 = 1 , ∆A2 = 2 . (2.34)

2.3. Reduced system or subsystem

Formost parts of this lecture the basic concepts of section 2.1, classical statistics, are sufficient. So,
we want to describe quantum systems, but often use classical statistics. This needs justification!
The following parts of chapter 2 motivate why this is possible for many purposes.

The basic observation is that classical statistics and quantum statistics have much in common!
Many “quantum features” appear when one considers subsystems of classical statistical systems.
When only part of the information in {pτ } is needed or available, we can “integrate out” the
redundant information, which results in a reduced probability distribution.

Examples

1. Consider the previous example of a four-state system again. Suppose we only have
information about spin 1. Then, we can combine the probabilities for states with the

18



2.3. Reduced system or subsystem

same Bτ and arbitrary Cτ . As a consequence, the system turns into an effective two-state
system.

Here, τ̄ = |1̄〉 groups together these “microscopic states” τ = |1〉, τ = |2〉, in which Bτ
has the same values Bτ = 1. Similarly, τ̄ = |2̄〉 groups together τ = |3〉 and τ = |4〉 with
Bτ = −1. The states of this reduced ensemble are illustrated in Table 2.4. The probabilities
of the subsystem states are

p̄1 = p1 + p2 , (2.35)
p̄2 = p3 + p4 . (2.36)

Using B̄1 = 1 and B̄2 = −1, which are the classical observalbles in the subsystem, the
expectation value of B can be computed from the subsystem:

〈B〉 = p̄1B̄1 + p̄2B̄2 (2.37)
= p̄1 − p̄2 (2.38)
= p1 + p2 − p3 − p4 . (2.39)

As it should be, this is the same as computed from the underlying microscopic system:

〈B〉 =
4∑

τ=1

Bτpτ . (2.40)

In this case, B is a “system observable”, which means that the information in the system
is enough to compute the distribution of the measurement values. In contrast, A and C
are “environment observables”.

2. Consider the case when A is the system observable of the subsystem. Thus, the system
becomes an effective three-state system with

Ā1 = 2 , Ā2 = 0 , Ā3 = −2 . (2.41)

The probabilities for these states are

p̄1 = p1 , p̄2 = p2 + p3 , p̄3 = p4 . (2.42)

State |2̄〉 of the subsystem groups together the states |2〉 and |3〉 of the microsystem that
both have Aτ = 0. The states |1̄〉 and |3̄〉 of the subsystem are identical to the microstates
|1〉 and |4〉 with Aτ = 2 and Aτ = −2. We will continue examining this example in
section 2.4.
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2. Basic concepts of statistical physics

↑ ↓

|1̄〉 |2̄〉

Table 2.4.: States of the reduced ensemble τ̄ in example 1

2.4. Probabilistic observables

In every state τ a classical observable has a fixed value Aτ . Is this the most general case? No,
more general is the concept of probabilistic observables. In every state τ a probabilistic observable
takes its possible measurement values λB with a certain probabilitywτ (λB ).

Examples

1. Water on earth:

Divide all probes of H2O-molecules into three states (using some criterion):
τ = 1: solid (ice)
τ = 2: liquid (water)
τ = 3: gas (vapor)

So, pτ are the probabilities to find water in the form of solid, liquid or gas. One would
like to determine the average density of water on earth, and the dispersion. Therefore,
one needs the probability distribution of density in each of the three statesw1 (n),w2 (n),
w3 (n). (the distributions depend on the state, but in each state the density has no fixed
value). Then, the average density is given by

〈n〉 = p1

∫
dn nw1 (n) + p2

∫
dn nw2 (n) + p3

∫
dn nw3 (n) (2.43)

= p1n̄1 + p2n̄2 + p3n̄3 , (2.44)

where
n̄τ =

∫
dn nwτ (n) (2.45)

is the mean value in state τ . We use normalized probability distributions:
∫
dnwτ (n) = 1.

The Motivation of these concepts is, to characterize “microstates” by density and “state”
of water. So, we have microstates (n,τ ) with probability distribution P (n,τ ), obeying∑

τ

∫
dn P (n,τ ) = 1 . (2.46)

In this setting, n is a classical observable with fixed value n in each state (n,τ ). It is

〈n〉 =

∫
dn P (n,τ ) n , (2.47)

〈n2〉 =

∫
dn P (n,τ ) n2 . (2.48)
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2.4. Probabilistic observables

Define probabilities for states τ of reduced system:

pτ =

∫
dn P (n,τ ) , (2.49)

and probabilities to find n in a state τ :

wτ (n) =
P (n,τ )

pτ
. (2.50)

Their normalization is given by ∫
dnwτ (n) = 1 . (2.51)

Then,
P (n,τ ) = pτ wτ (n) , (2.52)

and we can rewrite (2.47) and (2.48) as

〈n〉 =
∑
τ

∫
dnwτ (n) n =

∑
τ

pτ n̄τ , (2.53)

〈n2〉 =
∑
τ

pτ

∫
dnwτ (n) n

2 =
∑
τ

pτ (n̄
2)τ . (2.54)

One finds (n̄2)τ , (n̄τ )
2 due to fluctuations of n in state τ . Therefore,

〈n2〉 ,
∑
τ

(n̄τ )
2 . (2.55)

For 〈n〉 the specification of n̄τ for every state is sufficient (at this point no distinction from
classical observable), but 〈n2〉 needs additional information about distribution of values n
in each state τ .

n is a probabilistic observable on the level of states τ .

2. Subsystem of states with total spin:

Probabilistic observables typically occur for subsystems. For example we can identify
the two-spin system with the “microstates” (n,τ ) of water. Then, the three states τ
characterized by total spin A in subsection 2.2.2:

Ā1 = 2 , Ā2 = 0 , Ā3 = −2 , (2.56)

are analogous to the states ice, water, vapor in the first example.
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2. Basic concepts of statistical physics

For this subsystem the first spin B is a probabilistic observable. As B̄1 = 1 and B̄3 = −1, B
behaves as a classical observable in the states τ̄ = 1,3. But what about B in state τ̄ = 2?
In that case, there is no fixed value for B. Instead, we have the probabilities

w2 (1) =
p2

p2 + p3
to find B = 1 , (2.57)

w2 (−1) =
p3

p2 + p3
to find B = −1 . (2.58)

The mean value of B in state τ̄ = 2 is

B̄2 = w2 (1) · 1 +w2 (−1) · (−1) =
p2 − p3
p2 + p3

. (2.59)

Let us check this:

〈B〉 = p̄1B̄2 + p̄2B̄2 + p̄3B̄3 (2.60)

= p1 + (p2 + p3)︸    ︷︷    ︸
p̄2

·
p2 − p3
p2 + p3︸  ︷︷  ︸

B̄2

− p4 (2.61)

= p1 + p2 − p3 − p4 q. e. d. (2.62)

However,
(B̄2)2 = 1 , (2.63)

which differs from (B̄2)
2! Thus,

〈B2〉 = 1 ,
3∑

τ̄=1

p̄τ B̄
2
τ . (2.64)

This is a clear sign of a probabilistic observable. And probabilistic observables need
additional information about the probability distribution of measurement values in a
given state, which we have sketched in Figure 2.1. So, we conclude:

B environment observable
additional information
−−−−−−−−−−−−−−−−−→ B system observable. (2.65)

We have listed all the observables that we just have computed in Table 2.5.

3. Quantum mechanics:

Consider two-state quantum mechanics:

τ = 1 : S̃z = 1 , (2.66)

τ = 2 : S̃z = −1 , (2.67)

where Sk = ~2 S̃k .
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2.5. Quantum statistics and density matrix

wτ

B
−1 1

Figure 2.1.: Probability distribution of the probabilistic variable B in given state τ

|1̄〉 |2̄〉 |3̄〉

p̄ p1 p2 + p3 p4
A 2 0 −2
N 2 1 0
B̄ 1 p2−p3

p2+p3
−1

B̄2 1 1 1

Table 2.5.: Observables in the reduced system in example 2

The additional observable S̃x has no fixed value in the states τ , only probabilities to find
S̃x = ±1:

w1 (1) = a , w1 (−1) = 1 − a , (2.68)
w2 (1) = b , w2 (−1) = 1 − b , (2.69)
(S̄x )1 = 2a − 1 , (S̄x )2 = 2b − 1 . (2.70)

Its expectation value is given by

〈S̃x 〉 = p1 · (2a − 1) + p2 · (2b − 1) (2.71)
= 2p1a + 2p2b − 1 . (2.72)

So,
− 1 ≤ 〈S̃x 〉 ≤ 1 , (2.73)

where 〈S̃x 〉 = 1 for a = b = 1 and 〈S̃x 〉 = −1 for a = b = 0.

2.5. Quantum statistics and density matrix

2.5.1. Expectation value

In quantum statistics the expectation value is computed as

〈A〉 = tr (ρÂ) , (2.74)
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2. Basic concepts of statistical physics

where Â is the operator associated with A and ρ is the density matrix.
Let us look at the particular case of a pure state. For pure states the density matrix can be

expressed as
ρστ = ψσψ

∗
τ , (2.75)

whereψ is a complex vector field. Then, we find

〈ψ |Â|ψ 〉 = ψ ∗τ Aτ σ ψσ (2.76)
= ψσψ

∗
τ Aτ σ (2.77)

= ρστ Aτ σ (2.78)

= tr (ρÂ) . (2.79)

2.5.2. Dispersion

Accordingly, the dispersion is given by

〈A2〉 = tr (ρÂ2) , (2.80)
∆A2 = 〈A2〉 − 〈A〉2 . (2.81)

2.5.3. Diagonal operators

When A is diagonal:

Â =

*......
,

A1 0 · · · 0

0 A2
. . .

...
...
. . .

. . . 0
0 · · · 0 AN

+//////
-

, (2.82)

Âτ σ = An δτ σ , (2.83)

then the expectation value is just

〈A〉 = tr (ρÂ) (2.84)

=
∑
τ ,σ

ρστ Âτ σ (2.85)

=
∑
τ

ρτ τ Aτ . (2.86)

So, one only needs the diagonal elements of the density matrix. They can be associated with
probabilities pτ = ρτ τ , where ρτ τ ≥ 0. This way, we recover classical statistics:

〈f (A)〉 =
∑
τ

pτ f (Aτ ) . (2.87)
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2.5. Quantum statistics and density matrix

Example

• A two-state system:

Let Â =
(
A1 0
0 A2

)
and ρ =

(ρ11 ρ12
ρ∗12 ρ22

)
, then:

ρÂ =

(
ρ11 ρ12
ρ∗12 ρ22

)
·

(
A1 0
0 A2

)
=

(
A1 ρ11 A2 ρ12
A1 ρ

∗
12 A2 ρ22

)
, (2.88)

tr (ρÂ) = A1 ρ11 +A2 ρ22 , (2.89)

〈A〉 =
∑
n

ρτ τ Aτ =
∑
τ

pτAτ . (2.90)

2.5.4. Properties of the density matrix

The density matrix ρ is a N × N matrix with the following properties:

1. Hermicity: ρ† = ρ, so all eigenvalues λn are real

2. Positivity: ∀n : λn ≥ 0

3. Normalization: tr ρ = 1, so
∑

n λn = 1 and ∀n : 0 ≤ λn ≤ 1

2.5.5. Diagonal elements of ρ define the probability distribution

From the properties in subsection 2.5.4 it follows that ρτ τ ≥ 0 and
∑
τ ρτ τ = 1. So, {ρτ τ } has all

the properties of a probability distribution.

Example

• Quantum mechanical two-state system:

In this case, the density matrix ρ is a complex 2 × 2 matrix of the form

ρ =

(
ρ11 ρ12
ρ∗12 1 − ρ11

)
, (2.91)

with ρ11 ∈ R, 0 ≤ ρ11 ≤ 1. Consider the observable

Â =

(
1 0
0 −1

)
. (2.92)

We can find its expectation value:

〈A〉 =
~

2
tr

[ (
1 0
0 −1

)
·

(
ρ11 ρ12
ρ∗12 1 − ρ11

) ]
(2.93)

=
~

2
tr

(
ρ11 ρ12
−ρ∗12 −1 + ρ11

)
(2.94)

=
~

2
(2ρ11 − 1) . (2.95)

From the classical statistics we have 〈A〉 = p1A1 + p2A2. If we set p1 = ρ11, p2 = 1 − ρ11,
A1 =

~
2 , A2 = −

~
2 , then we will get the same result (2.95).
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2. Basic concepts of statistical physics

ρ11 (1 − ρ11)

ρ11

1
4

0 1
2 1

Figure 2.2.: Positivity condition for two state density matrix

2.5.6. Positivity constraints for the elements of ρ

To determine the eigenvalues λn of the density matrix (2.91), we have to solve

0 = (ρ11 − λ) (1 − ρ11 − λ) − f (2.96)
= λ2 − λ + ρ11 (1 − ρ11) − f , (2.97)

where
f = |ρ12 |

2 ≥ 0 . (2.98)

We find
λ1,2 =

1
2

(
1 ±

√
1 − 4[ρ11 (1 − ρ11) − f ]

)
. (2.99)

Using the positivity conditions for the eigenvalues, λ1,2 ≥ 0, we arrive at

ρ11 (1 − ρ11) − f ≥ 0 , (2.100)

and therefore,
ρ11 (1 − ρ11) ≥ 0 . (2.101)

The full positivity condition for the two-state matrix is

f = |ρ12 |
2 ≤ ρ11 (1 − ρ11) . (2.102)

In Figure 2.2 we have plotted ρ11 (1 − ρ11). From the positivity condition it follows that |ρ12 |2
only can take values on or below this curve.

2.5.7. Non-diagonal operators

One may ask why we need the information in ρ12, as for the expectation value it holds 〈A〉 =∑
τ ρτ τ Âτ , provided that Â is diagonal. The answer is that ρ12 carries additional information

for the probabilistic observables.
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2.5. Quantum statistics and density matrix

|1〉 |2〉

〈S̃z〉 1 −1
〈S̃x 〉 ρ12 + ρ

∗
12 ρ12 + ρ

∗
12

〈S̃2x 〉, 〈S̃2z〉 1 1

Table 2.6.: Mean values of spin observables in the states |1〉 and |2〉

Example

• Spin in arbitrary direction S̃i =
2
~Si :

The spin components S̃z and S̃x are different types of observables:

S̃z : Classical observable (
S̃z

)
1
= 1 ,

(
S̃z

)
2
= 1 , (2.103)(

S̃2z
)
1
= 1 ,

(
S̃2z

)
2
= 1 . (2.104)

S̃x : Probabilistic observable

There is a probability distribution for finding the values +1 or −1 in the states |1〉
and |2〉:

〈S̃x 〉1 = 〈S̃x 〉2 = ρ12 + ρ
∗
12 . (2.105)

But in both states the square has a fixed value:(
S̃2x

)
1
=

(
S̃2x

)
2
= 1 . (2.106)

For a better overview, we have listed these observables in Table 2.6.

The probabilities to find S̃x = ±1 in state |1〉 are given by

w1 (1) = 1
2 (1 + ρ12 + ρ

∗
12) , (2.107)

w1 (−1) = 1
2 (1 − ρ12 − ρ

∗
12) , (2.108)

such that
w1 (1) +w1 (−1) = 1 . (2.109)

With these probabilities we arrive at

〈S̃x 〉1 = w1 (1) −w1 (−1) = ρ12 + ρ
∗
12 . (2.110)

Both,w1 (1) andw1 (−1), have to be positive, which can be inferred from the condition

|ρ12 + ρ
∗
12 | ≤ 1 , (2.111)

or equivalently
| Re ρ12 | ≤ 1

2 . (2.112)
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2. Basic concepts of statistical physics

This follows from (2.102):

| Re ρ12 | =
√
|ρ12 |2 − | Im ρ12 |2 (2.113)

≤

√
ρ11 (1 − ρ11) − | Im ρ12 |2 (2.114)

≤

√
ρ11 (1 − ρ11) (2.115)

≤ 1
2 . (2.116)

By similar calculations we find the same results forw2 (1) andw2 (−1).
We shall check if classical statistics (with probabilistic observables) and quantum statistics
produce discrepancies:

Classical: 〈S̃x 〉 = p1 〈S̃x 〉1 + p2 〈S̃x 〉2 (2.117)
= ρ11 (ρ12 + ρ

∗
12) + (1 − ρ11) (ρ12 + ρ

∗
12) (2.118)

= ρ12 + ρ
∗
12 (2.119)

= 2 Re ρ12 (2.120)

Quantum: 〈S̃x 〉 = tr

[ (
ρ11 ρ12
ρ∗12 ρ22

)
·

(
0 1
1 0

) ]
(2.121)

= tr

(
ρ12 ρ11
ρ∗22 ρ∗12

)
(2.122)

= ρ12 + ρ
∗
12 (2.123)

= 2 Re ρ12 . (2.124)

One can see that (2.120) and (2.124) give exactly the same result.

Actually, this could be generalized for any hermitian quantum operator

Â = Â† =

(
A11 A12

A∗12 A22

)
. (2.125)

The probabilistic observable has mean values in the states |1〉 and |2〉, given by 〈A〉1 and 〈A〉2:

〈A〉1 = A11 + ρ
∗
12A12 + ρ12A

∗
12 (2.126)

〈A〉2 = A22 + ρ
∗
12A12 + ρ12A

∗
12 . (2.127)

It turns out that quantum mechanics can be interpreted as classical statistics, but with additional
information for probabilistic observables. As long as we are dealing with diagonal observables,
there is no difference between both approaches. In this case, non-diagonal elements of ρ are of
no importance. Actually, the last statement is only true for a given point in time or for a static ρ.
Non-diagonal elements of ρ are important for the time evolution of the probability distribution:

{pτ (t )} � {ρτ τ (t )} , (2.128)

where the sum over repeated indices is implied.
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2.5. Quantum statistics and density matrix

2.5.8. Pure quantum states

Consider a special form of the density matrix ρστ = ψσ ·ψ ∗τ , whereψ is a complex vector with
N components and

∑
τ ψ
∗
τψτ = 1. In other words,ψτ is a wave function. Then,

〈A〉 = tr (ρÂ) (2.129)

= ρστ Âτ σ (2.130)

= ψ ∗τ Âτ σ ψσ (2.131)

= 〈ψ |Â|ψ 〉 , (2.132)

where, again, the sum over repeated indices is implied, and

pτ = ρτ τ = |ψτ |
2 ≥ 0 . (2.133)

As already mentioned, only ρτ τ is needed for diagonal observables. So, for diagonal observables
there is no difference between pure and mixed states.

We can state the condition for pure states as

ρ2 = ρ , (2.134)

because

ρστ ρτ α = ψσψ
∗
τψτψ

∗
α (2.135)

= ψσψα (2.136)
= ρσα . (2.137)

2.5.9. Change of the basis by unitary transformation

A unitary transformation is of the kind ρ → ρ ′ = U ρU †, where U †U = 1. ρ ′ has still all
the properties of the density matrix: (ρ ′)† = ρ ′, tr ρ = 1, positivity. Operators also can be
transferred unitarily: Â → Â′ = UÂU †. Nevertheless, the expectation values are invariant
under this transformation:

〈A〉 = tr (ρ ′Â′) (2.138)

= tr (U ρU †UÂU †) (2.139)

= tr (U ρÂU †) (2.140)

= tr (U †U ρÂ†) (2.141)

= tr (ρÂ†) . (2.142)

Let us list several important properties:

• Even if Â is diagonal,UÂU † can be non-diagonal in the general case.

• If ρ can be diagonalized, then ρ ′ = diag (λ1,λ2, . . . ,λN )
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2. Basic concepts of statistical physics

lz 1 2 -1

pure states
*..
,

1
0
0

+//
-

*..
,

0
1
0

+//
-

*..
,

0
0
1

+//
-

density matrix
*..
,

1 0 0
0 0 0
0 0 0

+//
-

*..
,

0 0 0
0 1 0
0 0 0

+//
-

*..
,

0 0 0
0 0 0
0 0 1

+//
-

probability p1 p2 p3

Table 2.7.: z-component of the angular momentum

• Pure states are invariant:
ρ2 = ρ → ρ ′2 = ρ ′ . (2.143)

One can see this via

ρ ′2 = U ρU †U ρU † (2.144)

= U ρ2U † (2.145)

= U ρU † (2.146)
= ρ ′ . (2.147)

From this it follows that λ2n = λn , leaving only the possible values λn = 0,1. This means that
ρ ′στ = δσ β δτ β and therefore,

ψ ′σ = δσ βe
iα , (2.148)

ψ ‘∗
τ = δτ βe

−iα , (2.149)

which is a pure state.

2.5.10. Pure and mixed states

Consider an observable l = 1, which could be associated with the angular momentum. Then, lz
could be -1, 0 or 1. The system is described in Table 2.7.

Of course, p1 + p2 + p3 = 1 must be satisfied. The density matrix of the system is

ρ =
*..
,

p1 0 0
0 p2 0
0 0 p3

+//
-
. (2.150)

This is a mixed state as long as there are pi , 0,1. One could check and see that in this case

ρ2 =
*..
,

p21 0 0
0 p22 0
0 0 p23

+//
-
, 0 . (2.151)
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2.6. Microstates

Example

• Let us examine a system characterized by the following density matrix:

ρ =
*..
,

1
3 0 0
0 1

3 0
0 0 1

3

+//
-
. (2.152)

Here, all the states lz = −1,0,1 have equal probability, so 〈lz〉 = 0. If we compare this
with a pure state:

ρ =
1
√
3

*..
,

1
1
1

+//
-

(2.153)

leading to the density matrix

ρ =
1
3

*..
,

1 1 1
1 1 1
1 1 1

+//
-
. (2.154)

we can see that both, (2.152) and (2.154), have the same diagonal elements. Consequently,
〈lz〉 = 0, again. They differ, though, in the mean values of the probabilistic observables,
because of the different off-diagonal elements.

2.6. Microstates

Back to the quantum-mechanical point of view: provided that |ψτ 〉 is a complete orthonormal
basis, thenψτ are microstates.

Examples

1. Hydrogen atom:

Here, τ = (n̂,l ,m,s ) is a multiple index. We assume that the microstates are countable,
although it is commonly otherwise. Often, they are also limited, e. g. only microstates
with E < E0

5 . The energy of a state with quantum number n̂ is given by

E = −
E

n̂2
. (2.155)

Let us consider the following states:

ψ1,2 : n̂ = 1, l = 0,m = 0, s = ±1; E = −E0 , (2.156)

ψ3, ...,10 : n̂ = 2, l = 0,1,m, s; E = −
E0
4
, (2.157)

where N = 2 + 8 = 10. The energy operator is given by Ê = −E0 diag
(
1,1, 14 , . . . ,

1
4

)
. Let

the distribution be uniform: ρ = diag
(
1
10 , . . . ,

1
10

)
. Then, the expectation value of the

energy is
〈E〉 = 1

10

(
2 + 8

4

)
(−E0) = −0.4E0 . (2.158)
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cos
(
π
Lx

)
x

mx =
1
2

sin
(
2π
L x

)
x

mx = 1

cos
(
3π
L x

)
x

mx =
3
2

Figure 2.3.: Wave functions of a particle in a box

2. A particle in a box:

The particle is described by the wave equation

−
~∆

2M
ψ = Eψ . (2.159)

Consider a cubic box with an edge length L. Then, the solution is found to be

ψ = e
ipx x
~ e

ipyy
~ e

ipz z
~ ψ0 (2.160)

= e
ipx
~ ψ0 , (2.161)

where
E =

1
2M

p2 . (2.162)

The periodical boundary conditions giveψ
(
−L

2 ,y,z
)
= ψ

(
L
2 ,y,z

)
(and the same for y and

z). Then px,y,z have discrete values:

p = ~
2π
L

m , (2.163)

with
m = (mx ,my ,mz ) , mx,y,z ∈ Z . (2.164)

Three examples of these periodical wave functions are illustrated in Figure 2.3.
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2.7. Partition function

2.7. Partition function

What is the number of states for a given Energy E of a single particle (N = 1) in an one-
dimensional (d = 1) cubic box with edge length L? We will denote the number of states in
[E,E + δE] by Ω(E,V ). For our purposes, assume that E � ~2π2

2ML2 . It is

p2

2M
=

π2~2

2M
n2

L2
, (2.165)

so,

E <
π2~2

2M
n2

L2
< E + δE . (2.166)

If δE � E, we can approximate

√
E + δE ≈

√
E

(
1 +

1
2
δE

E

)
(2.167)

=
√
E +

1
2
δE
√
E
, (2.168)

leading to
√
2ME

π~
L < n <

√
2ME

π~
L +

1
2π~

(
2M
E

) 1/2

LδE . (2.169)

Therefore, the number of states Ω(E,V ) is given by

Ω(E,V ) =
V

2π~

(
2M
E

) 1/2

δE , (2.170)

which means that Ω ∼ V !

2.8. Continuous distribution and continuous variables

We will examine the continuous description of “closely situated” discrete States. We need to
define the probability density p (x ) with:

∫
dx p (x ) = 1∫

dx p (x )A(x ) = 〈A〉 .
(2.171)

We will use the following definitions:

I (x ): interval of states τ which belong to the interval
[
x − dx

2 ,x +
dx
2

]
,

p̄ (x ): mean probability in I (x ),

Ω(x ): number of states belonging to I (x ),
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2. Basic concepts of statistical physics

A(x ): 〈A〉x , i. e, mean value of A in interval I (x ) (probabilistic variable).

We can express the probability of the reduced system with states x as

p (x ) dx =
∑

τ ∈I (x )

pτ = p̄ (x ) Ω(x ) , (2.172)

and A(x ) is given by

A(x ) = 〈A〉x =

∑
τ ∈I (x ) pτAτ∑
τ ∈I (x ) pτ

. (2.173)

Let us check if the continuous case is equivalent to the discrete one:

∫
dx p (x )A(x ) =

∑
x

dx p (x )A(x ) (2.174)

=
∑
x

( ∑
τ ∈I (x )

pτ

)
︸       ︷︷       ︸

dx p (x )

∑
τ ∈I (x ) pτAτ∑
τ ∈I (x ) pτ

(2.175)

=
∑
x

∑
τ ∈I (x )

pτAτ (2.176)

=
∑
τ

pτAτ q. e. d. (2.177)

Note that 〈A2〉 =
∫
dx p (x )A2 (x ) =

∑
τ pτAτ holds only, if the dispersion of A vanishes in the

continuum limit dx → 0.
We shall see that p (x ) depends on the choice of the variables x . For that purpose, consider

the explicit coordinate transformation

x = f (x ′) , (2.178)

dx =
d f

dx ′
dx ′ . (2.179)

The expectation value of A in the new coordinates becomes:

〈A〉 =

∫
dx p (x )A(x ) =

∫
dx ′

d f

dx ′
p[f (x ′)]︸         ︷︷         ︸
p′(x ′)

A[f (x ′)]︸    ︷︷    ︸
A′(x ′)

. (2.180)

This can be generalized for many variables:

〈A〉 =

∫
dx1 · · · dxn p (x1, . . . ,xn )A(x1, . . . ,xn ) (2.181)
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2.9. Probability density of energy

where p (x ) is transformed by the Jacobi determinant:

p ′(x ′) =
�����
d f

dx ′

�����
· p[f (x ′)] , (2.182)

xi = fi (x
′
j ) , (2.183)

�����
d f

dx ′

�����
= det

*....
,

df1
dx ′1

· · ·
dfn
dx ′1

...
. . .

...
df1
dx ′n

· · ·
dfn
dx ′n

+////
-

. (2.184)

2.9. Probability density of energy

The probability density of energy can be inferred from

p (E) dE = p̄ (E)
Ω(E)

δE
dE , (2.185)

via
Ω(E)

δE

change of symbols
−−−−−−−−−−−−−−→

δΩ(E)

δE

continuum limit
−−−−−−−−−−−−→

∂Ω(E)

∂E
, (2.186)

leading us to

p (E) dE = p̄ (E)
∂Ω

∂E
dE . (2.187)

An example would be one particle in a linear box (d = 1, N = 1).

2.9.1. Equal probability for all values τ

We know that

δΩ(E) ≡ Ω(E) =
V

2π~

(
2M
E

)1/2
δE . (2.188)

So, we can conclude that
δΩ

δE
→

V

2π~

(
2M
E

)1/2
. (2.189)

Then,

pj (E) =



V
2π~

(
2M
E

)1/2
Z−1 for E < Emax,

0 else.
(2.190)

Here, Z is a constant factor, which could be determined by the normalization condition∫
dE p (E) = 1:

Z =
V

2π~

∫ Emax

0
dE

(
2M
E

)1/2
. (2.191)
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pτ

Eτ

(a) Equipotential distribution

pτ

Eτ

(b) Boltzmann distribution

Figure 2.4.: Comparison of equipotential and Boltzmann distribution

2.9.2. Boltzmann distribution for microstates τ

The Boltzmann distribution is given by the formula:

pτ = Z−1e−
Eτ
kbT = Z−1e−

Eτ
T . (2.192)

We have set kb = 1, which means that we measure the temperature in energy units. Eτ is the
energy of state τ . In Figure 2.4 the Boltzmann distribution is compared to an equipotential one.

We find

pb (E) =
V

2π~

(
2M
E

)1/2
e−

E
T Z−1 , (2.193)

〈E〉 =

∫ Emax

0
dE p (E) E , (2.194)

〈E2〉 =

∫ Emax

0
dE p (E) E2 . (2.195)

It should be marked that p (E) is the macroscopic probability distribution and pτ is the micro-
scopic one.

2.9.3. Number of one particle states in a momentum interval

Number of one particle states in a momentum interval ∆px , ∆py , ∆pz

First, the one-dimensional case:
Ω(p) =

L

2π~
∆px . (2.196)

Periodical boundary conditions would give

px <
2π~
L

n < px + ∆px . (2.197)

For an arbitrary dimension d we have Ω(p) = V
(2π~)d

∆p1 · · ·∆pd , which in the most usual case
of d = 3 is

∂3Ω

∂px ∂py ∂pz
=

V

(2π~)3
∆p1 ∆p2 ∆p3 . (2.198)
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2.9. Probability density of energy

Number of one particle states with energy E for arbitrary d

Using the usual energy-momentum relation, we find

∂Ω

∂E
=

∫
ddp

∂dΩ

∂p1 · · · ∂pd
δ

(
p2

2M
− E

)
, (2.199)

∂Ω

∂E
=

V

(2π~)d

∫
ddp δ

(
p2

2M
− E

)
. (2.200)

For d = 1 it is ∫ ∞

−∞

dp δ

(
p2

2M
− E

)
=
√
2M

∫ ∞

0
dε ε−1/2 δ (ε − E) (2.201)

=

(
2M
E

)1/2
, (2.202)

with ε = p2

2M . We have used that |p | =
√
2ME and

∫ ∞

−∞

dp = 2
∫ ∞

0
d|p | (2.203)

= 2
∫ ∞

0
dε
√
2M

1
2
ε−

1/2 . (2.204)

So, we arrive at
∂Ω

∂E
=

L

2π~

(
2M
E

)1/2
. (2.205)

For d = 3 we have ∫
d3p = 4π

∫ ∞

0
d|p | |p |2 , (2.206)

with ε = |p |
2

2M . So, we find

∫
ddp δ

(
p2

2M
− E

)
= 4π

∫ ∞

0
dε δ (ε − E)

√
M

2
ε−

1/2︸      ︷︷      ︸
∂ |p |
∂ε

2Mε︸︷︷︸
|p |2

(2.207)

= 4π
√
2M 3/2E

1/2 , (2.208)

and the number of states per energy is given by

∂Ω

∂E
=

V

(2π~)3
4π
√
2M 3/2E

1/2 . (2.209)

37



2. Basic concepts of statistical physics

Boltzmann probability distribution for one particle

This Boltzmann probability distribution for one particle is given by

p (E) =
∂Ω

∂E
e−

E
T Z−1 , (2.210)

where Z is the normalization factor. To find it, we use∫
dE p (E) = 1 . (2.211)

So, we get

Z =

∫ ∞

0
dE
∂Ω

∂E
e−

E
T , (2.212)

where ∂Ω∂E = F E1/2. Therefore,

Z = F

∫
dE E1/2 e−E/T = F Z̃ (2.213)

and
p (E) = Z̃−1E

1/2 e−
E
T (2.214)

So, it is possible to find an expression for this probability, where ~ does not longer appear.

2.10. Correlation functions

If there are two observables A and B, what is the probability that a measurement of A and
B yields specific values λA and λB? Imagine that B is measured after A, then the probability
becomes p (λB ,λA).

2.10.1. Conditional probability p (λB |λA)

The probability to find λB , if λA is measured for A, is called conditional probability and is
written as p (λB |λA). It is

p (λB ,λA) = p (λB |λA) p (λA) . (2.215)

2.10.2. Product observable B ◦ A

The product observable is defined as

〈B ◦A〉 =
∑

(λB,λA )

p (λB ,λA) λB λA (2.216)

=
∑
λB

∑
λA

p (λB |λA) p (λA) λB λA . (2.217)

Its spectrum is given by
Spec (B ◦A) = {λB λA} . (2.218)

〈B ◦A〉 depends on conditional probabilities, not only on p (λB ) and p (λA).

38



2.10. Correlation functions

2.10.3. Correlation function

The (connected) correlation function is defined as

〈B ◦A〉c = 〈B ◦A〉 − 〈B〉 〈A〉 . (2.219)

If 〈B ◦A〉c , 0, then B and A are correlated.

Example

• A falling marble:

Imagine a marble that is falling out of pipe on a prism, as illustrated in Figure 2.5a.
Moreover, it can roll down on any of the sides of the prismwith equal probability. However,
there are two detectors A and B on the left side. The corresponding measurement values
are λA = 1 and λB = 1 if the marble goes through the detectors and 0 otherwise.

The probability to measure λA = 1 is 1
2 . It is easy to see that p (λB |λA) = 1. Therefore,

p (λB ,λA) =
1
2 . With this we calculate

〈B ◦A〉 = 1
2 , (2.220)

〈A〉 =
∑
λA

pA λA =
1
2 , (2.221)

〈B〉 =
∑
λB

pB︸︷︷︸
1
2

λB =
1
2 , (2.222)

〈B〉 〈A〉 = 1
4 , (2.223)

〈B ◦A〉c =
1
2 −

1
4 =

1
4 (2.224)

Is 〈B ◦A〉 = 〈A ◦ B〉 true? Although it is true in this case, in general it is not. A simple
example is shown in Figure 2.5b.

2.10.4. Independent observables

If the measurement of A does not influence B, then the condtional probability is independent of
λA:

p (λB |λA) = p (λB ) . (2.225)

So, only for independent observables it is

p (λB ,λA) = p (λB ) p (λA) . (2.226)
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1
2

1
2

A

B

(a) Two possibilities

1
2

1
2

A

B

1
2

1
2

(b) Three possibilities

Figure 2.5.: A marble falling down on a prism

But we must keep in mind that this is not true in general! In this case, the correlation function
can be written as

〈B ◦A〉 =
∑
λB

∑
λA

p (λB ) p (λA) λB λA (2.227)

=

(∑
λB

p (λB ) λB

) (∑
λA

p (λA) λA

)
(2.228)

= 〈B〉 〈A〉 . (2.229)

Then,
〈B ◦A〉c = 0 . (2.230)

It is important to note that the reverse statement is not true!

2.10.5. Classical correlation function

It is
(B ◦A)τ = BτAτ . (2.231)

The classical correlation function is

〈BA〉c =
∑
τ

pτBτAτ︸        ︷︷        ︸
〈BA〉

−

(∑
τ

pτBτ

)
︸       ︷︷       ︸

〈B〉

(∑
τ

pτAτ

)
︸        ︷︷        ︸

〈A〉

. (2.232)

In general, 〈BA〉c , 0. Setting B = A, we find

〈AA〉c = ∆A2 . (2.233)

There is an easy recipe for calculating conditional probabilities p (λB |λA):
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2.10. Correlation functions

1. We eliminate all τ for which Aτ , λA.

2. Now we have a new system with states τ ′ and

p̄τ ′ =
pτ ′∑
τ ′ pτ ′

. (2.234)

It is Aτ ′ = λA and Bτ ′ = Bτ .

3. The result is:
p (λB ,λA) =

∑
τ

Aτ =λA
Bτ =λB

pτ . (2.235)

One should note that after the measurement of A the relative probabilities pτ ′
pρ′

are the same as
pτ
pρ

before the measurement of A:
pτ ′

pρ′
=
pτ
pρ
. (2.236)

In this lecture we will be mostly concerned with classical products of two observables, i. e.
BA = AB, and with classical correlation functions, which are special correlation functions.
However, if the relative probabilities change after the measurement of A, then we have different
conditional probabilities: B ◦A , BA. Note that every consistent choice of conditional proba-
bilities p (λB |λA) leads to the definition of a product of two observables B ◦A. Many different
products and correlation functions are possible. In general, the correct choice depends on the
way how measurements are performed. This choice is important for the statistical description of
systems with few states like atoms (with bounded energy), where the measurement of a Fermi
observable has a strong influence on the possible outcome of the measurement of a second
observable.

2.10.6. Quantum correlations

We now have

〈B ◦A〉 = tr

(
ρ
ÂB̂ + B̂Â

2

)
, (2.237)

with Â, B̂ being diagonal: Â = diag (Aτ ). Therefore,

〈B ◦A〉 =
∑
τ

ρτ τ Aτ Bτ . (2.238)

The quantum product coincides with the classical one, in this case. However, if Â and B̂ do
not commute, this is no longer correct, because in that case Â and B̂ cannot simultaneously be
diagonal.
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3. Statistical description of many-particles
systems

N is the particle number. Typically N ≈ NAvogadro ≈ 6 · 1023.

3.1. Chain withN lattice sites

3.1.1. Probability distribution

We consider N fermions being distributed over the chain. If site j is occupied by a fermion, we
denote this by sj = +1 � ↑. If it is not, we denote it by sj = −1 � ↓. The possible states of such a
system is given by τ = {sj } where sj = ±1 for every j. So Ω = 2N . A possible configuration is
shown in Figure 3.1. Later, in subsection 3.2.1, we will interpret this as a chain of spins. In the
following, for notational convenience, we will denote any quantity f , which depends on the
complete microscopical state {sj }, as f {sj } ≡ f ({sj }).

Let us define the number of fermions N . For every collection {sj }, the corresponding value of
the fermion number is

N {sj } =
∑
j

1
2 (sj + 1) . (3.1)

Lattice sites are independent and we say that the probability of a site being occupied is q. So,
1 − q is the probability of it being unoccupied. Then

p{sj } =
N∏
j=1

[
1
2 +

(
q − 1

2

)
sj

]
(3.2)

= qN (1 − q)N−N . (3.3)

3.1.2. Macroscopic probability

We want to compute the macroscopic probability to find N fermions (particles), that is p (N ):

p (N ) = qN (1 − q)N−N Ω(N ) (3.4)

where

Ω(N ) =
N !

N ! (N − N )!
(3.5)

is the number of microscopic states with N particles.
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3. Statistical description of many-particles systems

1 j N
↑ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↑

Figure 3.1.: Fermions on a chain

It is given by the number of possible ways to distribute N indistinguishable particles on N
different sites:

Particle 1 N sites → Ω(1) = N

Particle 2 (N − 1) sites → Ω(2) =
N (N − 1)

2

Particle 3 (N − 2) sites → Ω(3) =
N (N − 1) (N − 2)

2 · 3
...

All in all, we find the probability to be given by the binomial distribution

p (N ) = qN (1 − q)N−N
N !

N ! (N − N )!
. (3.6)

Using the general relation

(q + r )N =
N∑
N=0

N !
N ! (N − N )!

qN rN−N , (3.7)

we can prove that p (N ) has the correct normalization

N∑
N=0

p (N ) = 1 (3.8)

by setting r = 1 − q.
We conclude that there are two different levels at which one can characterize this system.

One can consider the 2N microstates τmicro = {sj } or the N + 1 macrostates τmacro = N .
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3.1. Chain with N lattice sites

3.1.3. Expectation value

The expectation value is given by

〈N 〉 =
N∑
N=0

p (N ) N (3.9)

=

N∑
N=0

N !
N ! (N − N )!

N qN (1 − q)N−N (3.10)

=

N∑
N=0

N !
N ! (N − N )!

q
∂

∂q
qN rN−N

�����r=1−q
(3.11)

= q
∂

∂q

N∑
N=0

N !
N ! (N − N )!

qN rN−N
�����r=1−q

(3.12)

= q
∂

∂q
(q + r )N

�����r=1−q
(3.13)

= N (q + r )N−1q
�����r=1−q

(3.14)

= Nq . (3.15)

To arrive at this result, we used the following trick: We expressed N via a q-derivative acting
on qN . Thereto we considered r to be independent of q. Only in the end, after using (3.7) and
performing the q-derivative, we substituted r = 1 − q again.

3.1.4. Dispersion

The dispersion can be computed using the same trick as above:

〈N 2〉 =

N∑
N=0

p (N ) N 2 (3.16)

=

(
q
∂

∂q

) 2
(q + r )N

�����r=1−q
(3.17)

= q
∂

∂q

(
Nq (q + r )N−1

) �����r=1−q
(3.18)

= qN
[
(q + r )N−1 + (N − 1) q (q + r )N−2

] �����r=1−q
(3.19)

= qN + q2N (N − 1) (3.20)
= q2N 2 +N (q − q2) . (3.21)
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3. Statistical description of many-particles systems

From the expectation value and the dispersion we can calculate the variance

∆N 2 = 〈N 2〉 − 〈N 〉2 (3.22)
= Nq (1 − q) . (3.23)

and the relative standard deviation

∆N

〈N 〉
=

√
Nq (1 − q)

Nq
(3.24)

=
1
√
N

√
1 − q

q
(3.25)

=
1
√
〈N 〉

√
1 − q . (3.26)

Notice that the relative standard deviation is proportional to 1√
N
! So, the distribution gets

sharper with increasing N . For example:

N = 1020 →
∆N

〈N 〉
∼ 10−10 ! (3.27)

This is one of themain reasons why statistical physics has such a predictive power. The
statistical uncertainty is so small that one virtually can calculate deterministically
by using mean values.

3.2. Uncorrelated probability distribution

Here, uncorrelated means that the probabilities q do not depend on other lattice sites. It does
not mean that correlation functions between different sites have to vanish.

3.2.1. N spins on a chain

We consider a chain of N spins. Therefore the total spin S , which is a macroscopic observable,
is given by

S =
∑
j

sj . (3.28)

In quantum mechanics the spin is ~2S . The number of ↑-spins (compare to (3.1)) is

N =
N∑
j=1

1
2 (sj + 1) (3.29)

= 1
2S +

1
2N (3.30)
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3.2. Uncorrelated probability distribution

and therefore

S = 2N − N (3.31)
= N (2q − 1) . (3.32)

Spin expectation value, dispersion, variance and relative standard deviation are then found to
be

〈S〉 = 2 〈N 〉 − N (3.33)
= N (2q − 1) , (3.34)

〈S2〉 = 4 〈N 2〉 − 4N 〈N 〉 +N 2 , (3.35)

∆S2 = 4
(
〈N 2〉 − 〈N 〉

) 2
(3.36)

= 4∆N 2 (3.37)
= 4Nq (1 − q) , (3.38)

∆S

〈S〉
∼

1
√
N
, (3.39)

where the last equation only holds if 〈S〉 , 0, i. e. q , 1
2 .

Now, using equation (3.6), the macroscopic probability is given by

p (S ) = p
(
N = N+S2

)
(3.40)

= q
N+S
2 (1 − q)

N−S
2

N !(
N+S
2

)
!
(
N−S
2

)
!

(3.41)

and the microscopic probability by

p{sj } =
N∏
j=1

[
1
2 +

(
q − 1

2

)
sj

]
(3.42)

=

N∏
j=1

P (sj ) . (3.43)

The latter is a product of independent probabilities for each spin sj . That is because we assumed
“uncorrelated spins”, i. e. the spin sj does not know anything about its neighbours. In the
following this property is used to compute correlation functions.

3.2.2. Correlation functions

Let us compute the correlation function for l , k in a microstate τ = {sj }:

〈slsk 〉 =
∑
{sj }

slsk p{sj } (3.44)
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3. Statistical description of many-particles systems

Using (3.43) and the fact that the sum over all micro-states can be written as∑
{sj }

=
∏
j

∑
sj=±1

(3.45)

=
∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1

, (3.46)

we find

〈slsk 〉 =
(∏

j

∑
sj=±1

)
·

(∏
j

P (sj )
)
slsk (3.47)

=
∏
j

( ∑
sj=±1

P (sj )
)
slsk (3.48)

=
∏
j,l,k

∑
sj=±1

P (sj )
( ∑
sl=±1

∑
sk=±1

P (sl )P (sk ) slsk

)
. (3.49)

Moreover, we can use the normalisation of p{sj }∏
j

∑
sj=±1

P (sj ) = 1 (3.50)

to compute ∏
j,l,k

∑
sj=±1

P (sj ) =
1∑

sl=±1
∑

sk=±1 P (sl )P (sk )
. (3.51)

With this, we finally arrive at

〈slsk 〉 =

∑
sl=±1

∑
sk=±1 P (sl )P (sk ) slsk∑

sl=±1
∑

sk=±1 P (sl )P (sk )
. (3.52)

Notice, that this is the same expression as for a system consisting of only two spins! We conclude
that in the case of uncorrelated spins the spins sj , j , l ,k , do not matter for 〈slsk 〉.

By a similar calculation we also get an expression for the expectation value:

〈sk 〉 =

∑
sk=±1 P (sk ) sk∑
sk=±1 P (sk )

. (3.53)

So, obviously
〈slsk 〉 = 〈sl 〉 〈sk 〉 , (3.54)

which leads to the observation that the connected correlation function, defined in (2.219) as

〈slsk 〉c = 〈slsk 〉 − 〈sl 〉 〈sk 〉 , (3.55)

vanishes for the system we are looking at:

〈slsk 〉c = 0 . (3.56)
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3.2. Uncorrelated probability distribution

This resembles the fact that we are dealing with uncorrelated spins here.
In contrast to that, an example for a system with correlated spins is the Ising model. Its

microscopic probability is given by

p{sj } = e−κ
∑
j (sj sj+1) . (3.57)

In this case there are next neighbour interactions, so the spins know about each other. We will
come back to this later.

3.2.3. Independent measurement

Consider a sequence of independent measurements of one spin. We denote the individual
measurements by j = 1, . . . ,N . Then such a sequence is denoted as

{sj } = {s1,s2, . . . ,sN } . (3.58)

If the probability for one spin is P (sk ), the probability for a given sequence is

p{sj } =
∏
j

P (sj ) , (3.59)

just like throwing dice N times.
The average of s for a sequence of N measurements is

〈s〉 =
〈S〉

N
(3.60)

= 2q − 1 . (3.61)

Of course, there always is some statistical error for a finite sequence, i. e. the value of the “total
spin” S fluctuates between different sequences. The dispersion is computed as

∆S2 = 〈S2〉 − 〈S〉2 , (3.62)

where 〈S2〉 =
∑
{sj }

p{sj } S
2 , (3.63)

and S2 =

(∑
m

sm

) 2
. (3.64)

From (3.38) we know that
∆S = 2

√
N

√
q (1 − q) , (3.65)

which can be related to ∆s via

∆s =
∆S

N
(3.66)

=
2

√
q (1 − q)
√
N

(3.67)

∼
1
√
N
. (3.68)

49



3. Statistical description of many-particles systems

Therefore, large sequences give accurate results.
But beware of the fact that the statistical measurement error ∆s has nothing to do with the

fluctuations ∆sj of the actual spin:

∆s2j = 〈s
2
j 〉 − 〈sj 〉

2 (3.69)

= 1 − (2q − 1)2 (3.70)
= 4q (1 − q) . (3.71)

So,

∆sj = 2
√
q (1 − q) ,

2
√
q (1 − q)
√
N

= ∆s . (3.72)

∆s is an effect of measuring, whereas ∆sj is a quantum mechanical effect as every single
measurement either yields sj = +1 or sj = −1 (if q = 1

2 , ∆sj = 1). Or in other words, s is a
macroscopic, whereas sj is a microscopic variable.

Summary

1. Different physical situations are described by the same probability distribution p{sj }:

a) Fermions on a lattice of N sites,

b) N independent spins,

c) Random walk (exercise),

d) Sequence of measurements.

2. One major theme in statistical physics is to compute macroscopic probability distributions
from microscopic probability distributions.

3.3. Statistical Ensembles

A statistical ensemble is constituted by specifying the states τ and the probability
distribution pτ or the density matrix ρτ , respectively.

In such an ensemble different operators / variables can be defined.
We can imagine an ensemble as a collection of infinitely many similar, uncorrelated exper-

imental set-ups in which we can measure the values of the state variables. From this their
probability distributions can be inferred (“sequences of measurements with N → ∞”).

For example, consider an ensemble of 1-particle systems with spin, i. e. an ensemble of 2-state
systems (τ = {↑,↓}). This is a sequence of measurements on a single spin and should not be
confused with systems with many degrees of freedom (many spins). These would be described
by ensembles with many lattice sites or particles.

Of course, real sequences of measurements can only be finite.
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3.4. Gaussian distribution

3.4. Gaussian distribution

Systems with many uncorrelated degrees of freedom are approximated by a Gaussian
distribution. This approximation gets exact in the limit of infinite number of particles
N → ∞.

The continuous description is given by

p (x ) = c e−
(x−x̄ )2

2σ 2 , (3.73)

where x̄ = 〈x〉 is the mean value of the macroscopic variable x , σ = ∆x =
√
∆x2 is the variance

and c = c (σ ) is a normalization constant which is determined by demanding

1 =

∞∫
−∞

dx p (x ) (3.74)

= c (σ )
√
2πσ 2 . (3.75)

We find
c (σ ) =

1
√
2π

1
σ
. (3.76)

The generalization to several variables xi is given by:

p = c e−
1
2Ai j (xi−x̄i ) (x j−x̄ j ) , (3.77)

where Ai j are the components of a positive definite symmetric Matrix A, i. e. a matrix with only
positive eigenvalues. As an example we can think about fermions on a 1-dimensional chain.

We will show that it is the correct large N limit of the binomial distribution

p (N ) =
N !

N ! (N − N )!
qN rN−N , r = 1 − q . (3.78)

Using Stirling's formula

lim
N→∞

ln(N !) =
(
N + 1

2

)
lnN − N + 1

2 ln (2π) + O (N −1) , (3.79)

we get

α (N ) = lnp (N ) (3.80)

=
(
N + 1

2

)
lnN −N + 1

2 ln (2π)

−
(
N + 1

2

)
lnN +N − 1

2 ln (2π)

−
(
N − N + 1

2

)
ln (N − N ) +N − N − 1

2 ln (2π)

+N lnq + (N − N ) ln (1 − q)

(3.81)

=
(
N + 1

2

)
lnN −

(
N + 1

2

)
lnN −

(
N − N + 1

2

)
ln (N − N )

+N lnq + (N − N ) ln (1 − q) − 1
2 ln (2π) .

(3.82)
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3. Statistical description of many-particles systems

It can be shown that
α (N ) ≈ −

(N − N̄ 2)

2∆N 2 , (3.83)

where

N̄ = Nq , (3.84)
∆N 2 = Nq (1 − q) , (3.85)

for N close to the maximum N̄ .
The fact that the maximum is given by N̄ = Nq, can be proven by computing the first

derivative of α :

0 =
∂α

∂N

�����N=N̄
(3.86)

= − ln N̄ −
N̄ + 1

2

N̄
+ ln (N − N̄ ) +

N − N̄ + 1
2

N − N̄
+ lnq − ln (1 − q) (3.87)

= ln
N − N̄

N̄
− ln

1 − q

q
+ O (N̄ −1) . (3.88)

So, up to N̄ −1 corrections we find
N − N̄

N̄
=

1 − q

q
, (3.89)

and therefore
N̄ = Nq . (3.90)

Moreover, from the second derivative we can infer the variance:

−
1

∆N 2 =
∂2α

∂N 2

�����N=N̄
(3.91)

=
1

N − N̄
−

1

N̄
−
N

2

(
−

1

N̄ 2 (N − N̄ )
+

1

(N − N̄ )2 N̄

)
(3.92)

= −
N

(N − N̄ ) N̄
+ O (N̄ −2) . (3.93)

So, using N̄ = Nq, up to N̄ −2 corrections it is

−
1

∆N 2 = −
N

(N −Nq)Nq
, (3.94)

and therefore
∆N = Nq (1 − q) . (3.95)

Furthermore, the third derivative yields

∂3α

∂N 3

�����N=N̄
=

N 2

(N − N̄ )2 N̄ 2
(3.96)

All in all, this leads to the central limit theorem of statistics which states that any uncorrelated
ensemble can be described by a Gaussian probability distribution in the limit N → ∞.
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3.5. Thermodynamic limit

3.5. Thermodynamic limit

The thermodynamic limit is given byV → ∞ or N → ∞, respectively. In this limit the Gaussian
distribution becomes extremely narrow. For example

N̄ = 1020 → ∆N 2 = 2N = 2 · 1020 , (3.97)

when q = 1/2. If we then consider a small deviation

N = N̄ (1 + 10−5) , (3.98)

the relative probability is given by

p (N )

p (N̄ )
= e−

(N−N̄ )2

2 ∆N 2 (3.99)

= e−
10−10 ·1040

4 · 1020 (3.100)

= e−
1
4 10

10
(3.101)

∼ 10−10
9
. (3.102)

And for a deviation
N = N̄ (1 + 10−10) (3.103)

it is given by
p (N )

p (N̄ )
= e−

1
4 = O (1) . (3.104)

Therefore, only values
N̄ − 5∆N . N . N̄ + 5∆N (3.105)

play a role. And in this regime the deviations of the actual probability distribution from a
Gaussian distribution are extremely small!
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4. Equilibrium Ensembles

Equilibrium states are described by statistical ensembles with a static probability
distribution.

If the probability distribution {pτ } is time independent, then all expectation values of the ob-
servables are time independent, too. One example would be an isolated system after sufficiently
long time or, respectively, just parts of the isolated system. Another one would be an open
system being immersed in a heat bath.

Basic postulate for equilibrium states
An isolated system approaches an equilibrium state. After sufficiently long time an
isolated system can be described by an equilibrium ensemble.

This conjecture was made by Boltzmann, but was never proven. Actually, it most probably is not
true, as there are two problems with it. First, the necessary time scale could be extremely large.
For example think of systems like water, honey or glass. And second, the microscopic equations
are invariant under time reversal, but the time direction always points towards equilibrium.

But even though the basic postulate may not be strictly true, and despite the existence of
important practical systems which do not equilibrate, the basic postulate is useful for many
applications and it often provides very good approximations.

4.1. Microcanonical ensemble

In the following we will be examining an isolated system in a volume V with fixed energy E
and fixed number of particles N .

4.1.1. Fundamental statistical postulate

Microstates

These are the states τ of a statistical ensemble, given by all possible quantum states with specified
V , E, N . Note that in quantum mechanics one has to choose a complete basis of eigenstates to
E, N in a given volume V . Then one can identify

ψτ � τ . (4.1)

Or equivalently: An isolated system in equilibrium can be found with equal probability in each
of its allowed states.
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4. Equilibrium Ensembles

Microcanonical ensemble
The number of microstates with given E and N is denoted by Ω(E,N ). Then the
probability of the system being in one these is given by

pτ =
1

Ω(E,N )
. (4.2)

This raises several arguments in favour of the basic postulate for equilibrium states. To begin
with, no state τ is preferred to another state τ ′. In addition to that, this so-called equipartition
of states (i. e. equal pτ ) is constant in time. But one has to be careful. The existence of an
asymptotic state for t → ∞ is only valid for large enough N . Moreover there is an obstruction
due to conserved correlations, i. e. a system whose initial correlations differ from the ones of
the microcanonical ensemble cannot reach the latter asymptotically.

Note that for a microcanonical ensemble all expectation values and classical correlations for
classical observables are uniquely fixed.

4.1.2. Microcanonical partition function

The microcanonical partition function is denoted by Zmic, where

Zmic = Ω(E) , (4.3)
pτ = Z−1mic . (4.4)

Zmic (E,N ,V ) depends on the thermodynamical variables E,N ,V . Recall that Ω(E) ≡ δΩ(E) is
the number of states with energy in between E and E + δE.

4.1.3. Entropy S

For a microcanonical ensemble the entropy is given by:

S = kb lnΩ , (4.5)

where kb is the Boltzmann constant. Setting it to 1 simply means to measure the temperature in
energy units, e. g. eV. Then we have

S (E,N ,V ) = lnΩ(E,N ,V ) . (4.6)

This equation is valid for isolated systems in equilibrium. The entropy S is an extensive
thermodynamic potential, i. e. it is additive when uniting subsystems. One can conclude that,
in the limit of large N , the entropy is proportional to N :

S ∼ N for N → ∞ . (4.7)
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4.1. Microcanonical ensemble

Examples

1. Consider N uncorrelated particles where each of them can be in F different states. Fur-
thermore, say the energy is given by E = cN , independent of the particles states. Then
there are FN possible microstates.

Ω = FN (4.8)
lnΩ = N ln F (4.9)

S = kbN ln F (4.10)

2. Consider N uncorrelated particles on N lattice sites with E = cN and N = bV .

Ω =
N !

N ! (N − N )!
(4.11)

S = lnN ! − lnN ! − ln (N − N )! (4.12)

Applying Stirling's formula on lnN ! for large N :

lnN ! ≈ N lnN − N (4.13)

one finds

S = [N lnN −N ] − [N lnN − N ] − [(N − N ) ln (N − N ) − (N − N )] (4.14)

= N ln
N − N

N
+N ln

N

N − N
(4.15)

= N ln

(
N

N
− 1

)
− N ln

(
1 −

N

N

)
(4.16)

= N

[
ln

(
bV

N
− 1

)
−
bV

N
ln

(
1 −

N

bV

) ]
. (4.17)

Now it is obvious that S is extensive, since one can write it as N times a function of the
particle density n = N

V :
S = N · f (n) . (4.18)

For small n we can approximate

S = N

[
ln

(
b

n
− 1

)
+ 1

]
. (4.19)

4.1.4. Partition function for ideal classical gas

To calculate the partition function for an ideal classical gas, we have to count the number of
quantum states of N particles in a box with volume V (e. g. with periodic boundary conditions)
for a fixed total energy E. We will approach this step by step.
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4. Equilibrium Ensembles

1) Quantum states for one particle (N = 1)

τ � p = (px ,py ,pz ) (4.20)

Assigning an occupation number n(p) to each of these states, we find

1 =
∑
p

n(p) , (4.21)

E =
∑
p

n(p)E (p) , (4.22)

with E (p) =
p2

2M
. (4.23)

The partition sum can then be expressed as

Ω =
∑
p

����� p22M =E
=

∫
d3p
∂3Ω

∂p3
δ

(
p2

2M
− E

)
δE (4.24)

=
V

(2π~)3

∫
d3p δ

(
p2

2M
− E

)
δE (4.25)

=
V

(2π~)3
4π
√
2M 3/2 E

1/2 δE . (4.26)

2) Quantum states for two particles (N = 2)

Using the same definitions as in the one particle case, we now get

2 =
∑
p

n(p) , (4.27)

E =
∑
p

n(p)E (p) . (4.28)

We should discriminate between fermions, for which n(p) ∈ {0,1}, and bosons, for which n(p)
can take arbitrary values. In any case, we can split up the partition sum into two parts:

Ω = Ω1 + Ω2 . (4.29)

Here, Ω1 is the number of states with n(p1) = 1, n(p2) = 1 for some p1 , p2, and Ω2 is the
number of states with n(p) = 2 for some p. These two contributions are given by

Ω1 =
1
2

∑
p1

∑
p2,p1

�����E= p21+p222M

, (4.30)

Ω2 =




0 for fermions,

Ω(b)
2 =

∑
p

�����E= p2M
for bosons. (4.31)
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4.1. Microcanonical ensemble

The factor 1
2 in (4.30) is due to the fact that we are dealing with indistinguishable quantum

mechanical particles. So, swapping both particles does not count as a different state.
The full partition sum then takes the form

Ω =
1
2

∑
p1

∑
p2

�����E= p21+p222M

±
1
2
Ω(b)
2

(
bosons
fermions

)
. (4.32)

Note that in (4.32) the p2 sum runs over all possible momentum values, whereas in (4.30) it
excludes p2 = p1.

If we neglect the ± 1
2 Ω

(b)
2 term in (4.32) we arrive at the approximate description of a classical

gas. Then there is no distinction between fermions and bosons any more. Performing the two
momentum sums analogously to the one particle case leads to

Ω =
1
2

∫
d3p1d

3p2

(
V

(2π~)3

) 2
δ

(
p2
1 + p

2
2

2M
− E

)
δE . (4.33)

3) Quantum states for N particles

The extension to the general N particle case is straight-forward:

N =
∑
p

n(p) , (4.34)

E =
∑
p

n(p)E (p) , (4.35)

Ω =
1
N !

∫
d3p1 · · · d

3pn

(
V

(2π~)3

) N
δ

( N∑
j=1

p2
j

2M
− E

)
δE . (4.36)

As in the two particle case, equation (4.36) neglects the particular behaviour when two or more
momenta commute. Again, this is the classical approximation where no distinction between
fermions and bosons is made.

4) Partition function

We define
ω =

Ω

δE
=
∂Ω

∂E
. (4.37)

To find ω, we have to evaluate a 3N -dimensional integral. For this purpose, we will perform a
change of variables:

pj,k =
√
2ME x j,k ,

p2
j

2M
= x2

jE . (4.38)

where the x j are chosen such that ∑
j

x2
jE = E . (4.39)
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4. Equilibrium Ensembles

Then ∫ ∞

−∞

d3p1 · · · d
3pN = (2ME)

3N/2

∫ ∞

−∞

d3x1 · · · d
3xN , (4.40)

∑
j

p2
j

2M
=

∑
j

x2
jE . (4.41)

For our purposes, we also introduce the 3N -component vector y = (x1,1,x1,2,x1,3,x2,1, . . . ).
Now, finally, we can calculate ω:

ω =
1
N !

(
V

(2π~)3

) N
(2ME)

3N/2

∫ ∞

−∞

dy1 · · · dy3N δ
(∑

i

y2i E − E
)

(4.42)

=
1
N !

V N
(
ME

2π2~2

) 3N/2 1
E
· F . (4.43)

The factor 1
E comes from applying the relation δ (E · X ) = 1

E δ (X ) and

F =

∫ ∞

−∞

dy1 · · · dy3N δ

(
1 −

3N∑
i=1

y2i

)
(4.44)

is the volume of the (3N − 1)-dimensional unit sphere S3N , which is equal to the surface of a
3N -dimensional unit ball. It can be calculated from the general formula

F =
2

Γ
(
3N
2

) π
3N/2 (4.45)

=
2(

3N
2 − 1

)
!
π

3N/2 . (4.46)

As a consistency check we compute (4.46) in the case N = 1:

F =
2
1
2 !

π
3/2 (4.47)

=
4
√
π
π

3/2 (4.48)

= 4π q. e. d. (4.49)

Here we have used 1
2 ! = Γ

(
3
2

)
= 1

2

√
π in the second line. Using the definition (4.37), the

partition sum is given by

Ω =
2

N !
(
3N
2 − 1

)
!

(
M

2π~2

) 3N/2

E
3N/2V N δE

E
. (4.50)
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4.1. Microcanonical ensemble

Finally, using δE
E =

1
3N , we arrive at

Zmic = Ω =
1

N !
(
3N
2

)
!

(
M

2π~2

) 3N/2

E
3N/2V N . (4.51)

N is typically of the order 6 · 1026. Therefore, Zmic increases extremely rapidly with E and V !

4.1.5. Entropy of an ideal classical gas

With the help of our favorite approximated Stirling's formula (4.13) we can find the entropy of
an ideal classical gas S :

S =
3N
2

ln
M

2π~2
+
3N
2

lnE + N lnV − lnN ! − ln

(
3N
2

)
! (4.52)

= kb 3N

{
1
2
ln

M

2π~2
+
1
3
lnV +

1
2
lnE −

1
3
lnN +

1
3
−
1
2
ln

3N
2
+
1
2

}
. (4.53)

So,

S = kb 3N

{
1
3
ln

V

N
+
1
2
ln

2
3
E

N
+
1
2
ln

M

2π~2
+
5
6

}
. (4.54)

3N = f is the number of degrees of freedom. In a compact form we can write:

S = c kb f (4.55)

and therefore
Ω(E) ∼ Ecf , (4.56)

where c depends on the system. So, the partition sum increases rapidly with increasing energy.
This form of the entropy and the partition sum applies too many other systems, too.

It is important to note, that the factor 1
N ! in Ω(E) was necessary for the entropy to be an

extensive quantity. This factor is absent in the classical description! It was first introduced by
Max Planck in 1900 and was heavily discussed back then.

4.1.6. Thermodynamic limit

The thermodynamic limit is described by

V → ∞ , N → ∞ , E → ∞ . (4.57)

In this limit the useful quantities to describe the system are:

N

V
= n (particle density) , (4.58)

E

V
= ϵ (energy density) , (4.59)

61



4. Equilibrium Ensembles

Extensive Intensive

V p (pressure)
N n
E ϵ
S s = S

V (entropy density)

Table 4.1.: Examples for extensive and intensive quantities

as these stay constant in the limiting process. So, mathematically more rigorously we define
the limiting process via an auxiliary parameter a:

V → aV , N → aN , E → aE (4.60)

and consider the limit
a → ∞ . (4.61)

We make the distinction between extensive quantities (A), where

lim
V→∞

〈A〉

V
= finite , 0 , (4.62)

and the intensive quantities (B), where

lim
V→∞

〈A〉 = finite. (4.63)

Some extensive and intensive quantities are listed in table Table 4.1.
Again note, that the entropy is an extensive quantity:

S = 3kbnV c (n,ϵ ) , (4.64)

where
c (n,ϵ ) =

1
2
ln

( 2
3
ϵ

n

)
−
1
3
lnn +

1
2
ln

M

2π~2
+
5
6
. (4.65)

On the other hand, ratios of extensive quantities, such as n, ϵ and s , are intensive quantities.
By setting kb = 1 and ~ = 1 we find the entropy density to be given by

s =
S

V
(4.66)

= 3n
{
lnn−1/3 + ln

( ϵ
n

) 1/2

+ lnM 1/2 + const.
}
. (4.67)

So

s = 3n

(
ln

√
Mϵ

n5/3
+ const.

)
. (4.68)

In general we have to be careful with units, as we can only take logarithms of dimensionless
numbers. But a quick dimensional analysis confirms this here:

M ∼ M1 , (4.69)
ϵ ∼ M4 , (4.70)
n ∼ M3 . (4.71)
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4.1. Microcanonical ensemble

4.1.7. The limit E → E0

We now denote by E0 the quantum mechanical energy of the ground state and choose δE to be
an energy difference smaller than the difference between E0 and the lowest excited state E1:

δE < E1 − E0 . (4.72)

So, if the ground state is non-degenerate, then

lim
E→E0

Ω(E) = 1 (4.73)

and as a consequence
lim
E→E0

S (E) = 0 . (4.74)

On the other hand, if we have a q-fold degeneracy, then

lim
E→E0

S = kb lnq � kb f . (4.75)

So, often the assumption is made that S vanishes in this limit, as lnq is tiny compared to the
usually huge f . Then

S

V
→ 0 (4.76)

in the thermodynamic limit.

4.1.8. Derivatives of the entropy

Temperature

First recall that up to now, the partition sum and the entropy have been functions of the state
variables E, N , and V :

Zmic = Ω(E,N ,V ) , (4.77)
S (E,N ,V ) = kb lnΩ(E,N ,V ) . (4.78)

Now we take the derivative with respect to E at fixed particle number and volume:

1
T
=
∂S

∂E

�����N ,V
. (4.79)

This defines the temperature T = T (E,N ,V ). It can be used as a new thermodynamic state
variable. So, we can make a variable substitution in order to express the entropy not as a
function of E but of T: S = S (T ,N ,V ). Moreover, we see that the temperature is an intensive
quantity, as S and E are extensive and so their ratio must be intensive.
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4. Equilibrium Ensembles

Pressure

Now we take the derivative with respect to V at fixed particle number and energy:

p

T
=
∂S

∂V

�����E,N
. (4.80)

This defines the pressurep. And it can immediately be concluded that the pressure is an intensive
quantity.

Let us know compute this for our ideal gas of particles:

∂S

∂V
= kb

∂

∂V

(
N ln

V

N
+ f (E,N )

)
(4.81)

= kb
N

V
(4.82)

=
p

T
. (4.83)

From this we can infer the equation of state for an ideal classical gas:

pV = kbNT . (4.84)

In thermodynamics T and p are determined by the change of the number of available states
when changing E and V .

Chemical potential

Now we take the derivative with respect to N at fixed volume and energy:

µ = −T
∂S

∂N

�����E,V
(4.85)

This defines the chemical potential µ.
We see that we can compute all these variables, if we just have the entropy at hand. So,

basically the entropy already contains the whole thermodynamics! From here on, one can
develop the complete formal machinery of thermodynamics, resting upon the thermodynamic
potentials, such as S , E, F and G, and their derivatives (Legendre transformations).

Note that up to now T is only a definition, but it will be motivated in the following.

We conclude this section by giving a little summary about entropy in the case of a microcanonical
ensemble description of a system in equilibrium:

• S = kb lnΩ

• S is extensive, i. e. S ∼ V , S ∼ f ∼ N

• S
V → 0 for E → E0 (3rd law of thermodynamics)

• 1
T =

∂S (E,N ,V )
∂E

�����N ,V
(important part of the 2nd law of thermodynamics)
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4.2. Canonical ensemble

System

Reservoir

E

S R

Figure 4.1.: System connected to a reservoir with energy exchange

4.2. Canonical ensemble

4.2.1. System in a heat bath

A canonical ensemble describes a system in a heat bath, intuitively speaking. We consider a
closed system with a volume V . So, energy can be exchanged with the environment, but the
particle number N remains constant. Additionally, there is a heat bath characterized by the
temperature T . In the following we will derive all properties of this compound system.

The system S is connected to the reservoir (heat bath) R with which it can exchange energy,
but no particles. This is illustrated in Figure 4.1. But it is important that the total system is
isolated. Moreover we demand that

Vr � Vs , (4.86)
Nr � Ns � 1 , (4.87)

i. e. the reservoir R is much larger than the system S concerning volume as well as particle
number.

The total system can be described by a microcanonical ensemble with total energy

Eg = Es + Er = const. (4.88)

However, Er and Es are not fixed individually. More precisely, the total system is described by a
Hamiltonian

H = Hs + Hr + Hint , (4.89)

where Hint describes the interaction between S and R. We assume this coupling to be weak:

| 〈Hint〉 | � 〈Hs〉 ,〈Hr〉 . (4.90)

Now we denote by |ψn〉 the quantum states of S and by |φν 〉 the quantum states of R. They form
a complete basis, i. e. a quantum state (microstate) of the full system can always be expressed as

��χτ
〉
= ��ψn

〉 ��ϕν
〉
, (4.91)
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where τ = (n,ν ). Now the energies are given by

Esn =
〈
ψn ��Hs ��ψn

〉
, (4.92)

Erν =
〈
φν ��Hr ��φν

〉
, (4.93)

Egnν = Esn + Erν = Eg . (4.94)

And from the statistical postulate it follows that

pnν = Ω−1g (Eg) . (4.95)

We now consider operators which only depend on n, i. e. they are independent of the properties
of the reservoir:

〈A〉 =
∑
n

∑
ν

pnν An (4.96)

=
∑
n

pn An , (4.97)

where
pn =

∑
ν

pnν . (4.98)

In other words, we look at the reduced system S. This restriction to leads to the concept of a
canonical ensemble. Our task is now to compute the reduced probability distribution pn . These
considerations will lead us to the famous Boltzmann factor e−

En
kbT .

4.2.2. Canonical partition function and Boltzmann factor

From (4.94), (4.95) and (4.98) we conclude that

pn =
∑
ν

Ω−1g (Eg) δ (Esn + Erν − Eg) δEg . (4.99)

This means that the sum only runs over such ν which fulfil the constraint (4.94). So, the sum
is just the number of states in R. Therefore pn will depend on Esn and the properties of the
reservoir (Tr) and we conclude that

pn (Es) =
Ωr (Er)

Ωg (Eg)

�����Er=Eg−Es

. (4.100)

As we demanded Es � Er, Er is close to Eg and we can make a Taylor expansion of lnΩr (Er)
around Eg:

lnΩr (Er) ≈ lnΩr (Eg) + (Er − Eg)︸     ︷︷     ︸
−Es

∂

∂Eg
lnΩr (Eg)︸           ︷︷           ︸
β

. (4.101)

For Er
Es
→ ∞ this gets exact (lnΩr ∼ fr lnEr).
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We have defined

β =
∂

∂E
lnΩr (E)

�����E=Er

, (4.102)

where the evaluation at Er instead of Eg is fine, as this difference is a higher order effect in the
Taylor expansion. Note that β ≥ 0 for monotonously increasing Ωr (E).

So, β just depends on the density of states of the reservoir:

β =
1
kb

∂Sr
∂E

�����E=Er

(4.103)

and we infer that

β =
1

kbTr
, (4.104)

with Tr being the temperature of the reservoir. Ωr is now given by

Ωr (Er) = Ωr (Eg) e
β (Er−Eg) , (4.105)

and inserting this into (4.100) leads to

pn (Es) = Z−1can e
−βEs . (4.106)

Here,

Zcan =
Ωg (Eg)

Ωr (Eg)
(4.107)

is the canonical partition function. It only depends on properties of the reservoir. It can be
computed from the normalisation of pn : ∑

n

pn = 1 . (4.108)

So,
Zcan =

∑
n

e−βEn . (4.109)

Or, summing over energy states instead:

Zcan =
∑
E

Ω(E) e−βE (4.110)

=

∫
dE ω (E) e−βE . (4.111)

So all in all,
Zcan = Zcan (β ,N ,V ) , (4.112)

where N and V are the particle number and the volume of S. So, Zcan only depends on R via β .
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4.2.3. Relation between temperature and energy

Let us next compute the mean energy of our statistical ensemble. First, we recall the probability
to be given by

pn = Z−1can e
−βEn , (4.113)

where
Zcan =

∑
n

e−βEn (4.114)

and, using the convention kb = 1,

β =
1
T
=

1
Tr
. (4.115)

Then we find

Ē = 〈E〉 =
∑
n

pnEn (4.116)

=

∑
n e
−βEn En∑

n e−βEn
(4.117)

= −
∂

∂β
ln

∑
n

e−βEn . (4.118)

So, the mean energy is given by

Ē = −
∂

∂β
lnZcan . (4.119)

4.2.4. Energy distribution

The probability density to find an energy E is

w (E) = ω (E) e−βE (4.120)

∼ Ecsfs e−βE , (4.121)

where fs, the number of degrees of freedom, is usually a huge number. Then, this distribution
describes an extremely sharp peak, as sketched in Figure 4.2.

Say, thatw (E) is given by a Gaussian distribution:

w (E) = const. · e−
(E−Ē )2

2 ∆E2 . (4.122)

Then we can determine Ē from the maximum ofw or, respecitvely lnw :

lnw = −
(E − Ē)2

2∆E2
+ const. (4.123)

= cs fs lnE − βE , (4.124)
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w

E

Figure 4.2.: Energy distribution

where we inserted (4.121) in the second line. We get

0 =
∂ω

∂E

�����Ē
=
cs fs

Ē
− β . (4.125)

This means that

Ē =
cs fs
β
= cs fsT , (4.126)

and therefore

T =
Ē

cs fs
, (4.127)

so the temperature can be interpreted as something like the energy per degree of freedom.
The energy dispersion can be inferred from the second derivative:

1
∆E2
= −
∂2ω

∂E2

�����Ē
=
cs fs

Ē2
. (4.128)

So,

∆E =
Ē√
cs fs
, (4.129)

∆E

Ē
=

1√
cs fs
. (4.130)

In the thermodynamic limit the relative energy fluctuations are negligible. So, we can assume
E = Ē and associate statistical quantities with actual numbers, this way. This means that we
can actually speak of the “energy in a canonical ensemble”. Then, microcanonical and canonical
ensemble are equivalent!
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Microcanonical Canonical

Emic β
Zmic (E) = Ω(E) Zcan (β )

Table 4.2.: Related quantities in microcanonical and canonical ensemble

4.2.5. Equivalence of microcanonical and canonical ensemble

Different quantities, characterizing the microcanonical or canonical ensemble, can be related,
as shown in Table 4.2. Note that the energy E is fixed in this case.

They are related via

Ē = −
∂

∂β
lnZcan (β ) , (4.131)

βmic =
∂

∂E
lnZmic (E) . (4.132)

The question is, if we identify Emic = Ecan, can we also con conclude βmic = βcan, i. e. Ts = Tr?

4.2.6. Temperature

Microcanonical ensemble (T = Ts)

βmic =
∂ lnΩ
∂E

�����N ,V
=

1
kbT

(4.133)

Here, T is an absolute temperature. So, its units are Kelvin or eV, if we set kb = 1. For example
300K ≈ 1

40 eV. Recall that T is an intensive quantity and that it can be interpreted as an energy
per degree of freedom:

T = β−1 =
Es

cs fs
. (4.134)

In the case of an ideal gas we can compute T from the entropy

S =
3N
2

ln
2E
3N
+ f (V ,N ) (4.135)

via
1
T
=
∂S

∂E

�����N ,V
=

3N
2E
. (4.136)

This means that
E

3N
=

E

f
=

1
2
T , (4.137)

and therefore the average (kinetic) energy per particle is

E

N
=

3
2
T , (4.138)

as each particle has 3 degrees of freedom.
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4.2. Canonical ensemble

Canonical ensemble (T = Tr)

T is the characteristic quantity for the canonical ensemble, i. e. it is a property of the total
system. So to speak, we can “forget” the concept of the reservoir. T can be “measured” by
measuring the mean energy 〈E〉 in the system.

As a next step, we will show that Tr = Ts.

4.2.7. Temperature and energy distribution in subsystems

Consider a system that is divided into two arbitrary sized subsystems s1 and s2 with energies
E1 and E2, respectively. Using the notation E = E1 and Eg = E1 + E2, the probability to find the
system in a state with a certain energy E is

w (E) = Ω1 (E) Ω2 (Eg − E) Ω
−1
g (Eg) . (4.139)

As said before,w (E) is a sharply peaked distribution, dominated by Emax = Ē. It is

0 =
∂

∂E
lnw

�����E=Ē
(4.140)

=
∂

∂E
lnΩ1 (E)

�����E=Ē
+
∂

∂E
lnΩ2 (Eg − E)

�����E=Ē
(4.141)

= β1 − β2 (4.142)

=
1
T1
−

1
T2
, (4.143)

where we used the definition of β in the third equation. The minus sign in front of β2 arises
from the derivative of the argument Eg − E of Ω2 with respect to E. So, we find

T1 = T2 . (4.144)

We conclude, that we can define the temperature of any ensemble with small fluctuations of
E around Ē via

1
T
=
∂

∂E
lnΩ(E)

�����E=Ē
. (4.145)

But note, that in general the temperature is determined by the energy dependency of the
partition sum.

4.2.8. Thermal equilibrium

0th law of thermodynamics
If two systems are in thermal equilibrium with a third system, they are also in
mutual thermal equilibrium. There exists a variable characterising the equilibrium
state, the temperature, that has the same value for the two systems.

Of course this is also valid for several systems in thermal equilibrium (T1 = T2 = . . . = Tn).
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System

Reservoir

E,N

S R

Figure 4.3.: System connected to a reservoir with energy and particle exchange

4.3. Grand canonical ensemble

The three different types of statistical ensembles are, next to the volume V , characterized by
different quantities:

Microcanonical: N ,E

Canonical: N ,T

Grand canonical: µ,T

The grand canonical ensemble describes an open system S in equilibrium that is able to exchange
energy and particles with a reservoir R, as illustrated in Figure 4.3. For example one can consider
a part of a gas volume.

We will treat it in the same manner as we treated the canonical ensemble. The probability for
a certain state is now given by

pn (En ,Nn ) = Z−1gc e−(βEn+αNn ) , (4.146)

where

β =
∂

∂E
lnΩr (Eg,Ng) , (4.147)

α =
∂

∂N
lnΩr (Eg,Ng) . (4.148)

We define the chemical potential µ as

µ = −
α

β
. (4.149)

Then, the probability takes the form

pn (En ,Nn ) = Z−1gc e−β (En−µNn ) , (4.150)

the grand canonical partition function is given by

Zgc =
∑
E

∑
N

Ω(E,N ,V ) e−β (E−µN ) (4.151)

=

∫
dE

∫
dN ω (E,N ,V ) e−β (E−µN ) , (4.152)
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and the partition sum is
Ω(E,N ,V ) = ω (E,N ,V ) δE δN . (4.153)

The averaged quantities can again be extracted via derivatives of the logarithm of the partition
function:

Ē − µN̄ = −
∂

∂β
lnZgc (β ,µ,V ) , (4.154)

N̄ =
1
β

∂

∂µ
lnZgc (β ,µ,V ) . (4.155)

4.4. Relations for entropy

4.4.1. Entropy in canonical ensemble

We can approximate the probability density ω (E) in the partition function

Zcan =

∫
dE ω (E) e−βE (4.156)

by means of a saddle point expansion:

Zcan = ω (Ē) e
−β Ē

∫
dE e−

a
2 (E−Ē )

2

︸             ︷︷             ︸√
2π
a

+ . . . (4.157)

where
a =

c f

Ē2
. (4.158)

Then the partition function takes the form

Zcan = Ω(Ē) e−β Ē
Ē

δE

√
2π
c f︸     ︷︷     ︸

O (1)

(4.159)

and its logarithm is, using E = Ē,

lnZcan = lnΩ(E)︸  ︷︷  ︸
∼f

− βE︸︷︷︸
∼f

+ . . . (4.160)

Then, altogether, we find the entropy to be given by

S = lnZcan + βE =

(
1 − β

∂

∂β

)
lnZcan . (4.161)

Note that, as said before, the difference between the fixed energy E for the microcanonical
and E = 〈E〉 = Ē for the canonical ensemble is negligible. It vanishes in the thermodynamic
limit.
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4.4.2. Entropy in grand canonical ensemble

By the same reasoning as before we get

lnZgc = lnΩ(E) − β (E − µN ) (4.162)

and therefore the entropy is

S = lnZgc + β (E − µN ) =

(
1 − β

∂

∂β

)
lnZgc . (4.163)

4.4.3. General expression for entropy

In general, the entropy can be expressed in the following form:

S = −
∑
τ

pτ lnpτ , (4.164)

where we had τ � n in the previous cases. The validity of this expression can be checked easily:
In the microcanonical case it is

pτ =
1
Ω
, (4.165)

so we have

S = −
∑
τ

1
Ω

ln
1
Ω

(4.166)

= lnΩ

(
1
Ω

∑
τ

1︸︷︷︸
Ω

)
(4.167)

= lnΩ q. e. d. (4.168)

And in the canonical case it is

pτ =
1

Zcan
e−βEτ , (4.169)

lnpτ = − lnZcan − βEτ , (4.170)

so we have

S = −
∑
τ

pτ lnpτ (4.171)

=
∑
τ

pτ
(
lnZcan + βEτ

)
(4.172)

= lnZcan + βE q. e. d. (4.173)

Similarly, it can be checked in the grand canonical case.
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4.4.4. Entropy and density matrix

The entropy is related to the density matrix via

S = tr ρ ln ρ . (4.174)

This can also be considered as a general definition of the entropy, as it coincides with S = lnΩ(E)
for microcanonical, canonical and grand canonical ensembles.

Most importantly, this expression is valid in any basis. Therefore it also holds when diagonal-
izing ρ, which proves (4.164) more generally:

S = −
∑
τ

ρτ τ ln ρτ τ (4.175)

= −
∑
τ

pτ lnpτ q. e. d. (4.176)
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5. Thermodynamics

5.1. Thermodynamic potentials

5.1.1. State variables, equations of state

Classical thermodynamics describes equilibrium states and transitions from one equilibrium
state to another. Historically it was developed before statistical physics, but it can be derived as
an effective macroscopic theory from the microscopic statistical theory. Without any doubt it
has an immense importance regarding technical aspects. It is mostly axiomatic, based on the
laws of thermodynamics and their consequences. Classical thermodynamics only uses a few
macroscopic variables (both extensive and intensive) such as E, T , S , N , µ, V , p. We distinguish
state variables or independent thermodynamic variables, which characterise the ensemble, and
dependent thermodynamic variables. For the different types of ensembles (systems) this is
illustrated in Table 5.1

The thermodynamic limit provides a functional relationship between the state variables.
Usually, no average values are used, because 〈E〉 ≡ E, etc.

There are several practical question, which we will try to answer in this chapter:

• How much energy should be deposited in a system, so that its temperature rises by a
certain amount, provided the volume stays constant?

• How much will the pressure increase during this process?

• How is “heat” transformed into mechanical energy? What is the efficiency of machines?

• When is a process reversible and when not?

The dependence of the dependent variables on the state variables is called equation of state.

Examples

1. Equation of state for an ideal gas:

pV = RTnM = kbTN (5.1)

nM : number of moles

R: gas constant (R = 8.31 J
mol K )

This follows from
∂S

∂V

�����E,N
=

p

T
. (5.2)
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State variables Dependent variables

microcanonical ensemble (isolated system) lnZmic (E,N ,V ) S ,T ,µ,p
canonical ensemble (closed system) lnZcan (T ,N ,V ) S ,E,µ,p

grand canonical ensemble (open system) lnZgc (T ,µ,V ) S ,E,N ,p

Table 5.1.: Different kinds of ensembles (systems) and their corresponding state and dependent variables

It can be concluded that
p = Tn . (5.3)

2. Van der Waals equation of state for a real gas:

(p + an2) =
nT

1 − bn
(5.4)

a,b: constants specific to the gas

The task of the statistical physics is to explain the equations of state and to derive their
functional form. On the other hand, classical thermodynamics examines the consequences of
their existence. There are seven variables and only 4 equations, which automatically makes
three of the variables independent (state variables), but there also are additional thermodynamic
conditions. As already mentioned, variables split into two types: extensive (E,N ,V ,S) and
intensive (T ,µ,p). However, the choice of the state variables cannot be arbitrary – at least one
of them has to be extensive.

Example

• Grand canonical ensemble with state variables T ,µ,V :

S = V fS (T ,µ ) (5.5)
E = V fE (T ,µ ) (5.6)
N = V fN (T ,µ ) (5.7)
p = fp (T ,µ ) (5.8)

Therefore, (p,T ,µ ) cannot be used as three independent variables at the same time!

If the particle number is not conserved (e. g. photon), there are only two state variables, as
µ = 0. Then,

p = fp (T ) . (5.9)

So, there is a relation between pressure and temperature. Defining ϵ = E
V , we find

p = f̃p (ϵ ) , (5.10)

and in the special case of photons it is
p = 1

3ϵ . (5.11)
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5.1. Thermodynamic potentials

5.1.2. Thermodynamic potentials and partition functions

S = S (E,N ,V ) = kb lnZmic (E,N ,V ) (entropy) (5.12)
F = F (T ,N ,V ) =−kbT lnZcan (T ,N ,V ) (free energy) (5.13)
J = J (T ,µ,V ) =−kbT lnZgc (T ,µ,V ) (Gibbs potential) (5.14)

(
∂S

∂E

)
N ,V
=

1
T

(5.15)(
∂S

∂N

)
E,V
= −

µ

T
(5.16)(

∂S

∂V

)
E,N
=

p

T
(5.17)

At this point, these are just definitions. Their physical meaning will be explained later. Note that,
traditionally, in thermodynamics one denotes the fixed quantities explicitly. These 3 relations
together with S (E,N ,V ) lead to 4 relations for the 7 variables in total.

We now use

S = lnZcan + βE (5.18)

and β = 1
T to find

−
F

T
= lnZcan = S −

E

T
, (5.19)

and therefore

F = E −TS . (5.20)

On the other hand, using

S = lnZgc + β (E − µN ) , (5.21)

we have

−
J

T
= lnZgc = S −

E − µN

T
, (5.22)

and therefore

J = E − µN −TS (5.23)

or

J = F − µN . (5.24)
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5.1.3. Differential relations

Recall the following definitions:

1
T
=
∂S

∂E

�����N ,V
, (5.25)

−
µ

T
=
∂S

∂N

�����E,V
, (5.26)

p

T
=
∂S

∂V

�����E,N
. (5.27)

With these, one arrives at the following expressions for the differentials of S :

dS =
1
T
dE −

µ

T
dN +

p

T
dV , (5.28)

and of E:
dE = TdS︸︷︷︸

heat
δQ

+ µdN︸︷︷︸
added particles

δEN

− pdV︸︷︷︸
work
δA

. (5.29)

1st law of thermodynamics: “conservation of energy” (Helmholtz, Mayer)
A thermodynamic system can be characterized by its energy. The energy can be
changed by “adding” heat, work or matter. For an isolated system the energy is
conserved.

It is very important to note that heat, work and added particles are not properties of an
equilibrium system! Statements like “Heat is added / lost” make no sense! But these quantities
may describe differences between two equilibrium systems.

Heat

For example, the heat is defined as

δQ = E2 − E1 for fixed V ,N . (5.30)

Therefore it accounts for a change in temperature:

δQ = E (T2,V ,N ) − E (T1,V ,N ) . (5.31)

Again, note that this no property of a system. Neither is it a thermodynamic variable. But it
can be used as a thermodynamic definition of the entropy:

δQ = TdS . (5.32)
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5.1. Thermodynamic potentials

Fp

ds

Figure 5.1.: Mechanical work

Mechanical work

A definition of mechanical work can be given via a slow change of volume at fixed S , N (compare
Figure 5.1):

δA = −Fp · ds (5.33)
= −|Fp | ds (5.34)
= −p a ds (5.35)
= −p dV , (5.36)

where p is the pressure and a the area.
We can identify different signs of δA with different physical situations:

δA < 0 : system “does” work, (5.37)
δA > 0 : systems absorbs mechanical energy. (5.38)

In general, δA describes the change in energy by work at fixed S , N . For example, it also
describes the change of an external magnetic field instead of the change of volume.

We note that the statistical definition of pressure coincides with the mechanical definition
“force per area”, but the statistical one is more general!

5.1.4. Legendre transform

The change from S to F at fixed V , N is one example of a Legendre transform. In this case,
the conjugate variables are E and β = 1

T . To be formally more precise, its actually a transform
between the following quantities:

S (E) ↔ β F (β ) = F̃ (β ) . (5.39)

Let us look at this in more detail. The new variable is β :

∂S

∂E
= β . (5.40)

Then, the Legendre transform of S is given as

F̃ = βE − S , (5.41)
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and therefore
F = E −TS . (5.42)

The derivative of F̃ with respect to β is

∂F̃

∂β
= E + β

∂E

∂β
−
∂S

∂β
(5.43)

= E + β
∂E

∂β
−
∂S

∂E︸︷︷︸
β

∂E

∂β
(5.44)

= E , (5.45)

the original variable, as it should be.
On the other hand, we find

∂F

∂T

�����N ,V
= −S , (5.46)

using (5.20). And therefore
dF = −SdT + µdN − pdV . (5.47)

Similarly, it is
dJ = −SdT − Ndµ − pdV , (5.48)

which can be concluded, using

∂

∂µ
lnZgc = βN , (5.49)

−β J = lnZgc , (5.50)

so,
∂J

∂µ
= −N , (5.51)

as well as

S =

(
1 − β

∂

∂β

)
lnZgc (5.52)

=

(
1 − β

∂

∂β

)
(−β J ) (5.53)

= −β J + β J + β2
∂J

∂β
(5.54)

= −
∂J

∂T
. (5.55)

Now we have everything at hand to construct thermodynamics:
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5.1. Thermodynamic potentials

1. As the basis: S = lnΩ, the central probabilistic quantity
(equivalent to S = −

∑
τ pτ lnpτ = − tr (ρ ln ρ))

2. Definitions of T ,µ,p as derivatives of S :

dS =
1
T
dE −

µ

T
dN +

p

T
dV (5.56)

3. Computation of the partition function for the given system S (E,N ,V ), or equivalently
F (T ,N ,V ) or J (T ,µ,V )
(aim of statistical physics, “learn counting”)

Note that no other than these 3 axioms are needed for thermodynamics! And all fundamental
laws of thermodynamics can be derived from these! We already have shown the latter for the
0th and the 1st law.

5.1.5. Properties of entropy

1) Additivity

Consider two systems with energies E1 and E2 (neglect again Hint), then

Ωg = Ω1 · Ω2 , (5.57)
lnΩg = lnΩ1 + lnΩ2 , (5.58)

Sg = S1 + S2 . (5.59)

2) Maximum principle for entropy

We permit energy exchange between these two systems, with the constraint

E1 + E2 = Eg . (5.60)

We define E1 = E and want to find the condition for the maximum of the probability distribution
W (E), which describes the equilibrium state:

w (E) =
Ω1 (E1) Ω2 (E2)

Ωg (Eg)

�����E1+E2=Eg

. (5.61)

From the considerations in 1) we can conclude that a maximum of w (E) corresponds to a
maximum of lnΩ1 + lnΩ2, which corresponds to a maximum of S1 + S2 and therefore to a
maximum of Sg. This means that in equilibrium the system chooses E1 such that the total
entropy is maximal, with the constraint E1 + E2 = Eg.

In equilibrium entropy is maximal, subject to constraints.

Of course, the individual energies E1, E2 can be computed from the maximum of S1 + S2 with
the condition E1 + E2 = Eg.
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5. Thermodynamics

Another property of the entropy can be inferred from this. Let us start with two isolated
systems in equilibrium, with arbitrary energies E (0)

1 , E (0)
2 and Eg = E (0)

1 + E (0)
2 . They have

entropies S (0)1 , S (0)2 . Then we bring them into thermal contact (i. e. we allow energy exchange).
This leads to an energy flow E (0)

1 → E1, E
(0)
2 → E2 until S1 + S2 is maximal for a given Eg. This

means that
S1 + S2 ≥ S (0)1 + S

(0)
2 . (5.62)

Entropy can only increase!

This is a key ingredient of the 2nd law of thermodynamics!

5.1.6. Zero of absolute temperature

Approaching its ground state, the partition sum of a system will approach a value of the order
of 1:

Ω
E→E0
−−−−−→ Ω(E0) = Ω0 = O (1) , (5.63)

and therefore the entropy will approach 0:

S
E→E0
−−−−−→ 0 (5.64)

(or S → S0, S0V → 0).
Using

∂ lnΩ
∂E

�����E0
=

1
Ω0

∆Ω

∆E
, (5.65)

and therefore, by the definition of the absolute temperature,

T =

(
∂ lnΩ
∂E

) −1
≈ Ω0

∆E

∆Ω
, (5.66)

we find
∆Ω

∆E

E→E0
−−−−−→ ∞ , (5.67)

as, choosing E0 ≈ 0,

∆E ≈ E ∼ f , (5.68)

∆Ω ≈ ef � f . (5.69)

This means that in the thermodynamic limit the ground state temperature approaches 0:

T ∼ f e−f
f→∞
−−−−−→ 0 , (5.70)

or, in other words,
T (E = E0) = 0 . (5.71)

The properties (5.63) and (5.67) of Ω(E) are illustrated in Figure 5.2.
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lnΩ

E
E0

Figure 5.2.: Behaviour of the partition sum at zero temperature

S

T
0 0+

S0

Figure 5.3.: Entropy for T → 0+

5.1.7. 3rd law of thermodynamics

3rd law of thermodynamics (empirical by Planck (Nernst))
ForT → 0+ the entropy obeys S → S0, where S0 is independent of the thermodynamic
variables of the system.

So, the entropy for T → 0+ will behave as sketched in Figure 5.3. An example for this would be
the hyper-fine splitting in atoms.

5.2. Reversible and irreversible processes

5.2.1. Subsystems and constraints

We consider an isolated system in equilibrium with fixed energy E (or interval [E,E + δE],
respectively). Furthermore we recall that Ω = Zmic is the number of (micro-)states with energy
E, which the system can occupy, and that the entropy is defined as S = kb lnΩ.

In general, the system is determined by some constraints. These correspond to particular
parameters:

Ω = Ω(E,y1, . . . ,yk ) (5.72)

(or intervals [y1,y1 + δy1], . . . , [yk ,yk + δyk ]).
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Wall

Gas
(V1)

Vacuum

(a) Example 1 (fixed volume V1)

Thermally isolating wall

Gas 1
(E1,V1,N1)

Gas 2

(b) Example 2 (fixed energy E1)

Figure 5.4.: Examples of constraints

Examples

1. Fixed volume V1 (Figure 5.4a):

V1: volume occupied by the gas

2. Fixed energy of a subsystem E1 (Figure 5.4b):

E1: energy of gas 1

V1: volume of gas 1

N1: particle number of gas 1

This example can be considered as two isolated subsystems:

Ωg (E,E1,V ,V1,N ,N1) = Ω(E1,V1,N1) · Ω(E − E1,V −V1,N − N1) . (5.73)

5.2.2. Removing the constraint

After sufficient time the system will reach a new equilibrium state:

Ωi → Ωf . (5.74)

Thereby, one always has
Ωf ≥ Ωi . (5.75)

All the states compatible with the constraint are still possible. But additionally, new states with
fixed energy E become possible, which previously have been excluded by the constraint.

In general, removing the constraint in an isolated system leads to a final state whose entropy
is larger than or equal to the entropy of the initial state:

Sf ≥ Si . (5.76)

(The final and initial states are equilibrium states. It is not important what happens in between.)
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Examples

1. Removing the wall:

Ωi ∼ V N
1 (5.77)

Ωf ∼ V N (5.78)
Ωf � Ωi for V > V1 (5.79)

2. Wall becomes thermally conductive (subsystem is a canonical ensemble):

Ωi = Ωi1 Ωi2 (5.80)

Ωi1 ≈
1

N1!
(
3N1
2

)
!

( m

2π~2

) 3N1/2

V
3N1/2
1 E

3N1/2
1

δE1
E1

(diluted gas at high energy) (5.81)

Ωf ≈ Ωi
���Ei→Ēi

(Ωi ∼ w (E1), Ωf ∼ w (Ē1)) (5.82)

Ωf � Ωi for E1 , E1max = Ē1 (recall Figure 4.2) (5.83)
Ωf ≈ Ωi for T1 = T2 (5.84)

5.2.3. Increase of entropy by removing the constrains

The probability that the system without constraints, after sufficiently long time, still stays in its
initial state is

wi =
Ωi

Ωf
. (5.85)

That is because 1
Ωf

is the probability that the system is in one particular macrostate (of the
system without constraints) and Ωi is the number of microstates satisfying the initial conditions.

Of course,
wi � 1 if Ωi � Ωf . (5.86)

Examples

1. Probability that the gas still occupies a volume V1 after removing the wall for V = 2V1:

wi =

( 1
2

) N
(5.87)

(factor 1
2 for each molecule)

2. Probability that the energy of gas 1 remains E1 after the wall becomes thermally conduc-
tive:

wi = w (E1) δE (5.88)

For the interval [Emax −
1
2δE,Emax +

1
2δE] with δE

E ≥
1√
N

it is

w (Emax) δE = w (Ē) δE ≈ 1 . (5.89)

For E1 , Ē we findw (E1) to be exponentially suppressed.
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Let us look at the effect of removing the constraint on a general variable y (e. g. y = E1, the
energy in the subvolume V1). Beforehand, it has a fixed initial value yi. Afterwards, it satisfies a
probability distribution characterized by

w (y)δy ∼ Ω(y) , (5.90)

where, in general, ȳ , yi, with ȳ being the position of the maximum of w (y), ∂w∂y ȳ = 0. (The
generalization to multiple variables y1, . . . ,yk is straightforward.)

Now we consider the limit
N → ∞ . (5.91)

This will lead to a sharp value yf = ȳ = ymax (again, generally yf , yi). yf is determined by the
entropy becoming maximal (Ω(ymax)):

S (yf )maximal. (5.92)

Without constraints the parameters will take such values that the entropy becomes maximal (at
given boundary conditions like V , N , E of the system).

Example

• y is the energy in a subvolume:

Beforehand, S (E,N ,V ;y) is calculated with given constraints. Afterwards, we have to
satisfy ∂S∂y

���E,N ,V
= 0 to find ymax.

The entropy of a system grows when approaching the equilibrium state.

Note that this is a direct consequence of our two postulates! (It is not necessarily valid if one of
the basic postulates is not obeyed!)

Initial states with the probability distribution not being a uniform distribution over all possible
microstates (equilibrium distribution) are very unlikely for large N :

wi =
Ωi

Ωf
� 1 , (5.93)

Si < Sf . (5.94)

So, from the equilibrium state point of view approaching the equilibrium state corresponds to
the transition from an unlikely to a likely state (content of the first postulate).

5.2.4. 2nd law of thermodynamics

The entropy of an isolated system cannot decrease.

Historical formulations:

Clausius:
Heat cannot flow from lower to higher temperature.
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Kelvin:
It is impossible to produce work continuously by lowering the temperature of a
system, without other changes in the environment.

In other words, the latter formulation states the impossibility of perpetuum motion machines.

Short summary of the laws of thermodynamics

0th law: T , T1 = T2

1st law: E, conservation of E

2nd law: S , S cannot decrease

3rd law: Smin = 0

5.2.5. Reversible processes for isolated systems

A process (i) → (f ) in an isolated system is reversible, if the process (f ) → (i) is
possible, too. Otherwise, the process is irreversible.

In an isolated system an increase of entropy indicates an irreversible process. On the other
hand, a reversible process is, concerning the isolated total system, adiabatic (the entropy of the
total system stays constant).

5.2.6. Reversible processes for open systems

It must be possible, after performing some process, to perform its reversed process, so that the
system gets back into its initial state, without changing the environment. The Carnot cycle is an
example of such a reversible process (if it is quasi-static). The temperature difference between
the reservoirs is lowered and work is performed. Its reversed process describes a fridge: work
is performed in order to enlarge the temperature difference between the reservoirs. The p −V
diagram of the Carnot cycle is shown in Figure 5.5.

Irreversible processes, on the other hand, are dissipative processes. Typically, in such a process
the energy is being distributed over several degrees of freedom (conversion of “mechanical
energy” into heat). Examples are mechanical friction, eddy currents, viscose friction and
balancing the temperature of two heat reservoirs.
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p

V

(a)

(b)

(c)

(d)

Figure 5.5.: Carnot cycle

5.2.7. Thermodynamics and non-equilibrium states

The course of an irreversible process cannot be described by thermodynamic potentials. But its
final and initial states can be described, if they are equilibrium states.
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6. Ideal quantum gas

In an ideal gas the interactions between its particles can be neglected. This can be used as an
approximation for several kinds of physical systems like:

• molecules

• photons (radiation)

• electrons

• quasi-particles in solids (phonons, magnetons …)

It provides a good approximation especially at small densities, but also for many other problems,
e. g. electrons in solids.

6.1. Occupation numbers and functional integral

We consider some one-particle states ν . In the case of momentum states, we have ν = p =
(p1,p2,p3). To each of these states we can assign an energy Eν = E (p) and an occupation number
nν = n(p). A given sequence of occupation numbers {nν } = {n(p)} corresponds to a given
function n(p). Depending on the type of particles we consider, the occupation numbers can
attain different value ranges:

fermions: nν = 0,1 (6.1)
bosons: nν = 0,1,2, . . . ,∞ (6.2)

A microstate τ of the full system is given by the sequence of occupation numbers:

τ � {nν } . (6.3)

This can be used to express the sum over all microstates via the one-particle states:∑
τ

�
∑
{nν }

(6.4)

=
∑
n1

∑
n2

· · ·
∑
nk

· · · (6.5)

=
∏
ν

∑
nν

. (6.6)
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This way, every possible sequence appears exactly once! For the different types of particles this
yields:

fermions:
∑
{nν }

=
∏
ν

( 1∑
nν=0

)
(6.7)

bosons:
∑
{nν }

=
∏
ν

( ∞∑
nν=0

)
(6.8)

As said before, we can relate a sequence of occupation numbers {nν } to a function n(p). This
means that we also can identify the sum over all possible sequences with a sum over all possible
functions n(p): ∑

{nν }

�

∫
D n(p) . (6.9)

This is a functional integral!

6.2. Partition function for the grand canonical ensemble

Using the results from the previous section, we can express the grand canonical partition
function as

Zgc =
∑
τ

e−β (Eτ −µNτ ) (6.10)

=
∑
{nν }

e−β (
∑
ν Eνnν−µ

∑
ν nν ) (6.11)

=
∑
{nν }

e−β
∑
ν nν (Eν−µ ) (6.12)

=
∑
{nν }

∏
ν

e−βnν (Eν−µ ) (6.13)

=

(∏
ν ′

∑
n′ν

) (∏
ν

e−βnν (Eν−µ )
)

(6.14)

=
∏
ν

(∑
nν

e−βnν (Eν−µ )
)
. (6.15)

The last step may seem confusing, but by explicitly writing it out, it is easy to see that every
summand in (6.14) appears exactly once and with the same weight in (6.15), too.

The logarithm of the partition function is given by

lnZgc =
∑
ν

ln
(∑
nν

e−βnν (Eν−µ )
)
. (6.16)

For fermions this yields

lnZ (f)
gc =

∑
ν

ln
(
1 + e−β (Eν−µ )

)
, (6.17)
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whereas for bosons we find (j = nν )

lnZ (b)
gc =

∑
ν

ln

[ ∞∑
j=0

(
e−β (Eν−µ )

) j ]
. (6.18)

Applying the formula for the geometric series:

1 + x + x2 + x3 + · · · =
1

1 − x
, (6.19)

we arrive at

lnZ (b)
gc =

∑
ν

ln
1

1 − e−β (Eν−µ )
. (6.20)

Now we only have to carry out sums over one-particle states! This is an enormous simplifica-
tion as it is much easier to perform

∑
ν rather than

∑
τ =

∑
{nν }! But note that this just works

for free particles without any interactions.

6.3. Mean occupation numbers

6.3.1. Bosons

In general it is

N̄ =
∑
τ

Nτpτ (6.21)

=
∑
τ

Nτ e−β (Eτ −µNτ )

Zgc
(6.22)

=
1
β

∂

∂µ
lnZgc . (6.23)

So, using (6.20), for bosons we find

N̄ =
∑
ν

[
−
1
β

∂

∂µ
ln

(
1 − e−β (Eν−µ )

) ]
(6.24)

=
∑
ν

1
β

∂
∂µ e
−β (Eν−µ )

1 − e−β (Eν−µ )
(6.25)

=
∑
ν

e−β (Eν−µ )

1 − e−β (Eν−µ )︸           ︷︷           ︸
n̄ (b)
ν

, (6.26)

and therefore
N̄ =

∑
ν

n̄(b)ν , (6.27)
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6. Ideal quantum gas

with n̄(b)ν being the mean occupation number of the state ν:

n̄(b)ν =
1

eβ (Eν−µ ) − 1
. (Bose-Einstein statistics) (6.28)

If we also allow for state dependent µν , this generalizes to

Z (β ; µ1, . . . ,µν ) =
∑
n1

· · ·
∑
nν

e−β
∑
ν (Eνnν−µνnν ) (6.29)

and

n̄ν =
1
β

∂

∂µν
lnZ

�����µν=µ
. (6.30)

For bosons this yields

lnZ (β ; µν ) =
∑
ν

ln
1

1 − e−β (Eν−µν )
(6.31)

and n̄(b)ν as before.

6.3.2. Fermions

As for bosons, the mean occupation number of fermions is given by the sum of the mean
one-particle occupation numbers:

N̄ =
∑
ν

n̄(f)ν , (6.32)

where in this case

n̄(f)ν =
1
β

∂

∂µ
ln

(
1 + e−β (Eν−µ )

)
(6.33)

=
e−β (Eν−µ )

1 + e−β (Eν−µ )
. (6.34)

And therefore

n̄(f)ν =
1

eβ (Eν−µ ) + 1
. (Femi-Dirac-statistics) (6.35)

From this it is easy to see that n̄(f)ν only can take values in the following range:

0 ≤ n̄(f)ν ≤ 1 . (6.36)

Moreover, we can look at some special cases:

n̄(f)ν → 0 for Eν − µ � T , (6.37)

n̄(f)ν → 1 for Eν − µ < 0 and |Eν − µ | � T . (6.38)
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6.3.3. Mean energy

In general, the mean energy is computed as

Ē =

(
−
∂

∂β
+
µ

β

∂

∂µ

)
lnZgc (6.39)

= −
∂

∂β
lnZgc + µN̄ . (6.40)

For bosons it is

Ē =
∑
ν

(Eν − µ )e−β (Eν−µ )

1 − e−β (Eν−µ )
+ µN̄ (6.41)

=
∑
ν

(Eν − µ )n̄
(b)
ν + µ

∑
ν

n̄(b)ν (6.42)

=
∑
ν

Eν n̄
(b)
ν . (6.43)

Performing the same calculation for fermions, we find that both are given by

Ē =
∑
ν

Eν n̄ν . (6.44)

Similar formulas can be found for other macroscopic quantities, too! Note that n̄ν itself already
is a macroscopic quantity!

6.3.4. Chemical potential

One question we have not discussed yet is: Which value should we choose for µ?

1) Conserved number of particles

Examples for conserved numbers of particles are:

Ne: electric charge and lepton number

Ni : number of molecules of a certain type, if chemical transitions are negligible

Nb: baryon number (in the early universe)

In general,

N̄ =
1
β

∂

∂µ
lnZgc (β ,µ = N̄ (β ,µ ) , (6.45)

so we conclude
µ = µ (N̄ ,T ) . (6.46)

In the thermodynamic limit the grand canonical and the canonical ensemble are equivalent,
which leads to

µ = µ (N ,T ) . (6.47)
Note that, if there are several conserved quantum numbersNi , there also are several independent
µi .
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6. Ideal quantum gas

2) No conserved number of particles

Examples for cases where the number of particles is not conserved are photons and protons. In
these cases the canonical ensemble does not depend on N , i. e.

µ ≡ 0 . (6.48)

But there is no restriction of the summands in
∑
{nν }, anyway, as N is no conserved quantum

number. Here, the mean occupation numbers characterize the canonical ensemble.

3) Approximatively conserved quantum numbers

If one considers time scales, which are much shorter than the decay time of the particles, then
one can consider the corresponding particle number as approximatively conserved and assume

µ , 0 . (6.49)

6.3.5. Boltzmann statistics

In the regime of large energies (compared to T ):

Eν − µ � T (6.50)

the mean occupation number of a state ν is approximately

n̄ν ≈ e−β (Eν−µ ) , (Maxwell-Boltzmann statistics for “classical particles”) (6.51)

which holds for bosons and fermions, equally. This recovery of the “classical” description in
the large energy limit is an example of the correspondence principle between QM and classical
mechanics.

We also can write this as

n̄ν = C e−
Eν −µ
T (6.52)

= C̃ e−
Eν
T (6.53)

to emphasize the famous Boltzmann factor e−
Eν
T .

Note that Eν is the energy of the one-particle state ν – it is not to be mistaken for the energy
Eτ of a microstate τ like, for example, in pτ = Z−1cane

−βEτ .
As a comparison recall the computation of Ω(E,N ) earlier in this lecture, with the approx-

imation that Ω is dominated by microstates where each ν is occupied at most once, which
corresponds to

n̄ν � 1 . (6.54)
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Hole

Figure 6.1.: Hole in a box

6.4. Photon gas

Think of a box with a small hole in it, like in Figure 6.1. The electromagnetic radiation within
the box will be in equilibrium, with the temperature T given by the temperature of the walls.
The hole is needed for observation. If there is no radiation from the outside entering through
the hole, this system is an example of a “black body”.

The concept of a black body was crucial in the development of modern physics, as classical
field theory yields wrong results (large deviations from the measured frequency distribution of
the radiation). Historically, two of the most important milestones in understanding this as a
photon gas in thermal equilibrium have been the quantisation of electromagnetic energy by
Planck in 1900 (~) and Einstein's idea of quantising the the electromagnetic radiation itself as
photons in 1905 (explanation of the photoelectric effect).

From a modern statistical physics point of view, a photon gas is a gas of non-interacting
particles whose particle number is not conserved (µ = 0). So it is described by a canonical
ensemble. Note that in the case of free photons n(p) = nν is conserved for every p (ν ). Such
an ensemble with µν , 0 can be very different from black body radiation (µν = 0), e. g. radio
waves.

6.4.1. Black body radiation

Consider a gas of photons in thermal equilibrium with a temperature T . As µ = 0, we immedi-
ately can conclude

n̄ν =
1

eβEν − 1
. (6.55)

So, to proceed, one-photon states ν and their energies Eν are necessary.
To get them, we start with the Maxwell equation (wave equation for the electric field):

1
c2
∂2E

∂t2
= ∇2E . (6.56)

Assuming
E = E (r ) e−iωt , (6.57)

it takes the form
∇2E (r ) +

ω2

c2
E = 0 , (6.58)
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which is solved by
E (r ) = A eikr . (6.59)

The exact form of boundary conditions is not important, so we choose periodic ones:

k =
2π
L

n with nx,y,z ∈ Z . (6.60)

From this we can conclude the dispersion law

k2
=
ω2

c2
, ω = c |k | . (6.61)

Now, using the fact that the diversion of the electric field vanishes (no sources):

∇E (r ) = 0 , (6.62)

we can directly infer the transversality of electromagnetic waves:

k ·A = 0 . (6.63)

This means that there are 2 degrees of freedom for every k (massless particle with spin 1 and
helicity H = ±1).

Quantisation

For an electromagnetic wave, energy and momentum are given by

E = ~ω , (6.64)
p = ~k . (6.65)

Therefore, the one-photon state energy is, using (6.60),

Eν = ~c |k | =
2π~c
L
, (6.66)

where the states ν are given by

ν = (nx ,ny ,nz ,H ) with nx,y,z ∈ Z , H = ±1 . (6.67)

We also can split up the states as
ν = (νt,νi) , (6.68)

into

νt ≡ (nx ,ny ,nz ) translational degrees of freedom, (6.69)
νi ≡ H inner degrees of freedom. (6.70)

Note that the translational degrees of freedom are the same for all kinds of particles, e. g. atoms,
molecules.
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Density of the translational states

For large volumes all translational states lie very densely, as Eν ∼ 1
L . Therefore, we can replace

the sums over the states by integrals:∑
νt

→ V

∫
d3p

(2π~)3
, (6.71)

∑
ν

→ 2V
∫

d3k
(2π~)3

, (6.72)

where we defined the volume V = L3. To arrive at (6.72), we used p = ~k and the fact that Eν
is independent of H . So, the factor of 2 arises due to the two possible values of the helicity
H = ±1.

6.4.2. Spectrum of black body radiation

Themean number of photons per volume (photon density ñ) in themomentum interval [k ,k+dk]
is, using (6.55), (6.72) and E = ~ω,

ñ(k ) d3k =
2

eβ~ω − 1

d3k
(2π)3

. (6.73)

With the dispersion law ω = c |k | we can deduce

d3k = 4π |k |2 d|k | (6.74)

=
4π
c3
ω2 dω , (6.75)

so the mean number of photons per volume in the frequency interval [ω,ω + dω] is

ñ(ω) dω =
8π

(2πc )3
ω2

eβ~ω − 1
dω . (6.76)

Note that there is no divergence for ω → 0!
Using E = ~ω, we can easily infer the mean photon energy per volume in the frequency

interval [ω,ω + dω] as

ū (ω,T ) dω =
~

π2c3
ω3

eβ~ω − 1
dω . (6.77)

This is the frequency spectrum of black body radiation. It is plotted in Figure 6.2. Defining
η = β~ω = ~ω

kbT
, we recover the original form

ū (η,T ) dη =
(kbT )

4

π2 (~c )3
η3

eη − 1
dη , (6.78)

postulated by Planck in 1900. Its maximum is roughly at ~ω ≈ 3kbT or η ≈ 3, respectively.
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ū

~ω
kbT0 2 4 6 8 10

Figure 6.2.: Frequency spectrum of black body radiation

Of course, we also can deduce the wavelength spectrum, using ω = 2πc
λ :

ū (λ,T ) dλ = 16π2~c
1

e
2π~c
kbT λ − 1

dλ
λ5
. (6.79)

Let us look at an example: the spectrum of sunlight. Its maximum is at λmax ≈ 500 nm
which is just what one would expect from a black body radiation spectrum at the sun's surface
temperature T ≈ 5800K. This maximum lies in the regime of green visible light which, as an
interesting side note, is also the maximum of the sensitivity of the human eye!

Furthermore, we can consider the low frequency limit ~ω � kbT , where the frequency
spectrum can be approximated by

ū (ω,T ) dω =
~

π2c3
ω3

β~ω
dω (6.80)

=
kbT

π2c3
ω2 dω , (6.81)

which recovers classical electrodynamics (Einstein 1905). In this limit ~ does not appear, any
more.

The extrapolation to large frequencies ~ω � kbT , on the other hand, leads to a divergence:
∫ ∞

0
dω ū (ω,T ) → ∞ . (6.82)

This demonstrates the incompleteness of the theory! So, classical electrodynamics has to
be modified. A solution is given by quantum statistics of photons, which accounts for the
particle-wave duality (for large occupation number we are in the regime of classical fields,
whereas for small occupation numbers we are in the regime of classical particles).
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6.4.3. Energy density

The energy density is given by

ρ =
E

V
=

∫ ∞

0
dω ū (ω,T ) (6.83)

=

∫ ∞

0
dη ū (η,T ) (6.84)

=
(kbT )

4

π2c3~3

∫ ∞

0
dη

η3

eη − 1︸           ︷︷           ︸
π4
15

. (6.85)

So, we conclude that

ρ =
π2

15
(kbT )

4

(c~)3
. (Stefan-Boltzmann law) (6.86)

This law contains several fundamental constants:

c: unification of space and time: special relativity

~: quantum physics

kb: associates T to energy, microphysical understanding of thermodynamics

Natural units

A frequently used system of units are the natural units. They are defined via

~ = c = kb = 1 . (6.87)

This has some consequences:

kb = 1: Temperature is measured in units of energy, e. g.

1K = 8.617 · 10−5 eV . (6.88)

c =: Mass is measured in units of energy, e. g.

me = 511 keV , (6.89)
1 eV = 1.783 · 10−33 g , (6.90)

and distances are measured in units of time, e. g, light seconds.

~ = 1: Time and distances are measured in inverse units of energy, e. g.

1 fm = 10−15 m =
1

197MeV
, (6.91)

1m = 5.068 · 106 (eV)−1 . (6.92)

In Table 6.1 some physical quantities and constants and their respective mass (energy) dimen-
sions in natural units are listed.
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Quantity Mass dimension

E M
T M
L,t M−1

V M−3

N M0

µ M
p M4

Zmic,can,gc M0

F M
S M0

e M0

Q M0

α M0

Table 6.1.: Mass dimension of some physical quantities

6.4.4. Canonical partition function

The logarithm of the canonical partition function for a photon gas is computed as

lnZcan (β ,V ) =
∑
ν

ln
1

1 − e−βEν
. (6.93)

Together with (6.72) and Eν =
η
β this yields

lnZcan =
V

π2

(
kbT

~c

) 3 ∫ ∞

0
dη η2 ln

1
1 − e−η︸                    ︷︷                    ︸

π4
45

(6.94)

=
π2

45
V β−3 , (6.95)

where we used natural units in the last step again. Let us check, if this gives the correct result
for the energy density:

E = −
∂

∂β
lnZcan (6.96)

=
π2

15
V β−4 (6.97)

and therefore
ρ =

E

V
=

π2

15
T 4 (6.98)

which agrees with (6.86), using natural units.
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Remarks

1. Not only E itself is a macroscopic observable, but the energy distribution as a function of
the frequency is one, too.

2. From Zcan other quantities, e. g. the pressure of the photon gas, easily can be attained.
→ thermodynamic potentials → classical thermodynamics

6.4.5. Free energy and equation of state

Using (6.95), the free energy is found to take the form

F = −kbT lnZcan (6.99)

= −
τ

3
VT 4 , (6.100)

where we defined

τ =
k4bπ

2

15c3~3
(6.101)

or, using natural units,

τ =
π2

15
, (6.102)

respectively. Then, the entropy, energy and pressure are given by

S = −

(
∂F

∂T

)
V
=

4
3
τVT 3 , (6.103)

E = F +TS = τVT 4 , (6.104)

p = −

(
∂F

∂T

)
V
=
τ

3
T 4 . (6.105)

Combining the expressions for E and p and using ρ = E
V , we arrive at the equation of state for a

photon gas:

p =
1
3
ρ , (6.106)

where, as a reminder, the energy density ρ is given by

ρ =
π2

15
T 4 . (6.107)

6.5. Degenerate Fermi gas

6.5.1. Quasiparticles

At low temperature and high pressure quantum statistics become important! A typical example
of this are electrons in metals. They can be considered as quasi free and are, due to their spin of
s = 1

2 , fermions. Recall that the mean fermionic occupation number is given by

n̄(f)ν =
1

eβ (Eν−µ ) + 1
. (6.108)
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n̄

Eν

1

µ

Figure 6.3.: Mean occupation number in zero temperature limit

6.5.2. The limitT → 0

We consider the low temperature regime:

kbT � |Eν − µ | . (6.109)

Thereby, the zero temperature limit of the mean occupation number depends on the relative
size of Eν and µ:

n̄
kbT→0
−−−−−−→ 0 for Eν > µ , (6.110)

n̄
kbT→0
−−−−−−→ 1 for Eν < µ . (6.111)

This describes a step function as plotted in Figure 6.3.
We define the Fermi energy εf via

εf = lim
T→0

µ (N ,T ) , (6.112)

and the Fermi momentum pf or kf, respectively, via the usual energy momentum relation:

εf =
p2f
2M
=
~2k2f
2M
, (6.113)

with M being the effective mass of the quasiparticle.

6.5.3. Computation of the Fermi energy

We consider electrons or atoms with 2 internal degrees of freedom (дi = 2). Then, the number
of particles is computed as

N = 2
V

(2π)3

∫
k 2<k2

f

d3k (6.114)

=
V

π2

∫ kf

0
d|k | |k |2 (6.115)

=
V

3π2 k
3
f . (6.116)
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So, using n = N
V , the Fermi momentum and energy are given by

kf = (3π2n)
1/3 , (6.117)

εf =
1
2M

(3π2n)
2/3 . (6.118)

This way, we also know µ (n) at T = 0.
For free non-relativistic particles one also can define the Fermi temperature:

kbTf = εf . (6.119)

For example the Fermi temperature of electrons in copper is approximately 80 000K. So, we see
that in this case (and also in general) kbT � εf is a very good approximation.

6.5.4. Thermodynamics

for our purposes the energy E (T ,V ,N ) is the most suitable thermodynamic potential. To
calculate it, we perform an expansion in T

Tf
. In the lowest order approximation the energy is

given by the ground state energy:
E = E0 . (6.120)

6.5.5. Ground state energy

The ground state energy is computed as

E0 = lim
T→0

E (6.121)

= 2
V

(2π)3

∫
k 2<k2

f

d3k
k2

2M
(6.122)

=
V

π2

1
2M

∫ kf

0
d|k | |k |4 (6.123)

=
V

10π2M
k5f (6.124)

=
3
10

k2fN

M
, (6.125)

where we used (6.116) in the last step. Also using (6.113), leads us to

E0 =
3
5
N εf . (6.126)

So, in the low temperature regime we have

E

N
=

3
5
µ + . . . (6.127)
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One might wonder if E
N is constant? The answer is no! It depends on the density due to

µ = εf =
~2

2M
(3π2n)

2/3 . (6.128)

An additional particle always has the energy εf! (not the mean energy of the already present
particles)

So far, we have found the zero temperature equation of state for our Fermi gas:

E (T = 0,N ,V ) =
3

10M
(3π2n)

2/3N . (6.129)

6.5.6. One-particle density of states

We would like to find a more general type of dispersion relation

Eν ≡ ε (k ) ≡ ~ω (k ) , (6.130)

which also considers the interaction with the lattice. Note that ε denotes the one-particle energy
here, not the energy density E

V . It is given by

ε =
~2

2M
|k |2 (6.131)

for a single atomic non-relativistic gas and by

ε = ~c |k | (6.132)

for a relativistic Fermi gas. In principle, this does not change anything regarding the computation
of kf, now we just allow for a general function εf (kf). But nevertheless,

N = дi
V

6π2 k
3
f (6.133)

still holds, as it is a general result.
So, the energy is now computed as

E = дi
V

(2π)3

∫
k2<k2

f

d3k ε (k ) n̄(k ) (6.134)

= дi
V

(2π)3

∫ ∞

−∞

dε
∫

d3k δ [ε − ε (k )] n̄(ε ) ε , (6.135)

and therefore

E = N

∫ ∞

−∞

dε Ω1 (ε ) n̄(ε ) ε , (6.136)

where we have defined

Ω1 (ε ) = дi
V

N

∫
d3k
(2π)3

δ [ε − ε (k )] , (6.137)
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ε

δε

Figure 6.4.: Energy states

the number of states per particle for given ε or rather δε , as sketched in Figure 6.4. (It corresponds
to the quantity ω (E) for statistics of one particle in the first part of this lecture, as it has mass
dimensionM−1.) It is an important microscopic property of a specific Fermi gas, as it influences
the conductivity of metals, for example.

6.5.7. Ω1(ε ) for free non-relativistic fermions

Inserting the non-relativistic dispersion relation (6.131) into the expression (6.137) for Ω1 leads
to

Ω1 (ε ) =
дiV

2π2N

∫ ∞

0
d|k | |k |2 δ

(
ε −
~2 |k |2

2M︸ ︷︷ ︸
ε (k )

)
. (6.138)

The result is

Ω1 (ε ) =
3
2
ε−

3/2
f ε

1/2 Θ(ε ) , (6.139)

which is only non-vanishing if ε > 0.
Let us check if this reproduces the correct ground state energy:

E0
N
=

∫ εf

0
dε ε Ω1 (ε ) (6.140)

=
3
2
ε−

3/2
f ·

2
5
ε
5/2
f (6.141)

=
3
5
εf q. e. d. (6.142)

Can we determine Ω1 (ε ) from thermodynamics, too? Often it is difficult to calculate it from
first principles! But while the whole function Ω1 (ε ) may be difficult to compute, one can infer
some important properties. For example, one would like to know how thermodynamic variables,
as specific heat, depend on Ω1 (ε ), i. e. how they depend on the microphysics.

One uses thermodynamic observables for the measurement of microphysical proper-
ties.
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The method, used for this, is to compute how observables depend on Ω1 (ε ) by leaving Ω1 (ε ) a
free function.

6.5.8. E (T ,N ) for arbitrary temperature

We already know that

E (T ,µ ) = N

∫ ∞

−∞

dε Ω1 (ε )
ε

eβ (ε−µ ) + 1
, (6.143)

which we obtain by inserting (6.108) into (6.136). It holds for arbitrary T . So, in principle, this
yields a general equation of state for E

N , but only if we know the form of µ (T ). To compute it,
we start with the general expression for the number of particles:

N =
∑
ν

n̄ν (6.144)

=

∫ ∞

−∞

dε n̄(ε ) дiV
∫

d3k
(2π)3

δ [ε − ε (k )] (6.145)

= N

∫ ∞

−∞

dε Ω1 (ε ) n̄(ε ) . (6.146)

From this we can read off the normalisation condition∫ ∞

−∞

dε Ω1 (ε )
1

eβ (ε−µ ) + 1
= 1 , (6.147)

which, for known Ω1 (ε ), determines µ (T ).
As a cross check, we look at the T = 0 case again. In this case it is

n̄(ε ) = Θ(εf − ε ) , (6.148)

leading to

E0 = N

∫ εf

0
dε Ω1 (ε ) ε (6.149)

which agrees with (6.140).

6.5.9. Smoothing of Fermi surface

If we look at temperatures T > 0, the Fermi surface is not a sharp step function, any more.
But as long as we are still considering low temperatures, it just deviates slightly from this, as
illustrated in Figure 6.5, i. e. it becomes a smooth step function, as only electrons close to the
Fermi edge play a role at these small temperatures. This can be seen by looking at the deviation
of the energy at T , 0 from the ground state energy (T = 0) for fixed N , V :

E − E0 = N

∫ ∞

−∞

dε ε Ω1 (ε )

[
1

eβ (ε−µ ) + 1
− Θ(εf − ε )

]
. (6.150)

For T � Tf the main contribution to this deviation comes from ε values close to εf. Note that
εf = εf (n), which follows from the calculation at T = 0, whereas µ = µ (T ), as µ , εf for T , 0.

A remark towards nomenclature: If electrons have an energy larger than εf, we call them
(excited) particles. If they have an energy less than εf, we can call them holes.
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6.5. Degenerate Fermi gas

n̄

ε

1

εf

Figure 6.5.: Smooth Fermi surface

6.5.10. Computation of µ(T ) from the normalisation condition

We know that ∫ ∞

−∞

dε Ω1 (ε )

[
1

eβ (ε−µ ) + 1
− Θ(εf − ε )

]
= 0 . (6.151)

To calculate it, we will perform the so-called Sommerfeld approximation: We perform a Taylor
expansion of Ω1 (ε ) around εf:

Ω1 (ε ) = Ω1 (εf) + Ω′1 (εf) (ε − εf) + . . . (6.152)

and define
µ = εf + ∆µ , (6.153)

as well as as the new variable
x = β (ε − εf) , (6.154)

such that

β (ε − µ ) = β (ε − εf) − β ∆µ (6.155)
= x − β ∆µ . (6.156)

This leads to

0 =
∫ ∞

−∞

dx

[
Ω1 (εf) +

Ω′1 (εf) x

β

] [
1

ex e−β ∆µ + 1
− Θ(−x )

]
+ . . . (6.157)

Expanding it for small β ∆µ:

1

ex e−β ∆µ + 1
≈

1
ex (1 − β ∆µ ) + 1

(6.158)

≈
1

(ex + 1)
(
1 − β ∆µ ex

ex+1

) (6.159)

≈
1

(ex + 1)
+ β ∆µ

ex

(ex + 1)2
, (6.160)
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f

x

Figure 6.6.: The difference in between the occupation numbers at T , 0 and T = 0

yields

0 =
∫ ∞

−∞

dx

[
Ω1 (εf) +

Ω′1 (εf) x

β

] [
f (x ) + β ∆µ

ex

(ex + 1)2

]
, (6.161)

where we defined

f (x ) =
1

ex + 1
− Θ(−x ) , (6.162)

Now, (6.161) is just a linear expression in ∆µ, but the x-integrations still have to be performed.

6.5.11. Occupation numbers for particles and holes

Note that the function f (x ), which characterizes the difference in between the occupation
numbers at T , 0 and T = 0, is odd:

f (−x ) =
1

e−x + 1
− Θ(x ) (6.163)

=
ex

ex + 1
+ Θ(−x ) − 1 (6.164)

=
ex − (1 + ex )

ex + 1
+ Θ(−x ) (6.165)

= −
1

ex + 1
+ Θ(−x ) (6.166)

= −f (x ) . (6.167)

This means that atT , 0 the occupation number for the particles is enhanced in the same extent
as it is lowered for the holes, when compared to the occupation number at T = 0. It is easy to
this by looking at the plot of f (x ) in Figure 6.6.

We also can immediately conclude that

∫ ∞

−∞

dx f (x ) = 0 . (6.168)
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6.5. Degenerate Fermi gas

Moreover, some straightforward calculations yield∫ ∞

−∞

dx x f (x ) =
π2

6
, (6.169)∫ ∞

−∞

dx
ex

(ex + 1)2
= 1 , (6.170)∫ ∞

−∞

dx x
ex

(ex + 1)2
= 0 , (6.171)

where the last one follows directly from ex

(ex+1)2 being even.

6.5.12. Solve for µ(T )

Inserting (6.168) to (6.171) into (6.161) yields

β ∆µ Ω1 (εf) = −
Ω′1 (εf)

β

π2

6
. (6.172)

By reinserting µ = εf + ∆µ, we arrive at an expression for µ:

µ = εf −
π2

6

Ω′1 (εf)

Ω1 (εf)
(kbT )

2 . (6.173)

Let us compute this explicitly for the example of free non-relativistic particles:

Ω1 =
3
2
ε−

3/2
f ε

1/2 → Ω1 (εf) =
3
2
ε−1f , (6.174)

Ω′1 =
3
4
ε−

3/2
f ε−

1/2 → Ω′1 (εf) =
3
4
ε−2f . (6.175)

Therefore it is
Ω′1 (εf)

Ω1 (εf)
=

1
2
ε−1f , (6.176)

and we end up with

µ = εf

(
1 −

π2

12

(
kbT

εf

) 2
+ . . .

)
. (6.177)

A similar calculation can be performed for the energy:

E − E0
N

=

∫ ∞

−∞

dε Ω1 (ε )

[
1

eβ (ε−εf−∆µ ) + 1
− Θ(εf − ε )

]
(6.178)

≈ ∆µ εf Ω1 (εf) +
π2

6
(kbT )

2 [Ω1 (εf) + εf Ω
′
1 (εf)] . (6.179)

Using ∆µ = µ − εf and inserting (6.173) leads to

E = E0 +
π2

6
(kbT )

2 Ω1 (εf) N . (6.180)
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6. Ideal quantum gas

Tf [K] T [K]
3He gas (single atomic) 0.006 300
3He liquid 12 3
electrons in Na 37 000 300
white dwarfs (electrons) 1011 104

neutron stars 4 · 1012 –

Table 6.2.: Fermi temperature Tf vs. characteristic temperature T of different materials

By defining the Fermi temperature in a more general context via

kbTf =
3

2Ω1 (εf)
, (6.181)

which also reproduces the result kbTf = εf for free non-relativistic particles, we can bring this
into the form

E = E0 +
π2

4
(kbT )

2

kbTf
N . (6.182)

This way, one also can consider Tf as a measure for Ω1 (εf).
With an expression for the energy at hand we now can calculate the specific heat

cv =
∂E

∂T

�����V ,N
. (6.183)

It is given by

cv =
π2

2
kb N

T

Tf
, (6.184)

which is linear in T ! Indeed, this is in good agreement with experimental results for metals at
low temperatures! (the lattice contribution is cv ∼ T 3) Moreover, the measurement of Tf allows
us to determine the density of states at the Fermi edge Ω1 (εf). This as an example of getting
microphysical information out of the macroscopic thermodynamic behaviour of a system! In
Table 6.2 we have listed the Fermi temperature in comparison to the characteristic temperature
of some materials.

6.6. Non-relativistic bosons

6.6.1. Chemical potential

We are considering single atomic bosonic gases without any internal degrees of freedom excited
(дi = 1), e. g. hydrogen. So, the mean occupation number is

n̄ν =
1

eβ (Eν−µ ) − 1
. (6.185)
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6.6. Non-relativistic bosons

We demand n̄ν ≥ 0. It immediately follows that µ < E0, if E0 is the lowest energy. Without loss
of generality we set E0 = 0, i. e. µ < 0 (otherwise rescale Eν and µ by some additive shift, as
only their difference Eν − µ matters, which is shift invariant), for example Eν =

p2

2M .

6.6.2. Number of bosons in the ground state

The mean occupation of the ground state is given by

n̄0 =
1

e−β µ − 1
. (6.186)

For small |βµ | this becomes

n̄0 =
1

1 − βµ − 1
(6.187)

= −
1
βµ
, (6.188)

which can become very large for µ → 0−. Macroscopically, n̄0 corresponds to Bose-Einstein
condensation, i. e. n̄0

N denotes the fraction of condensed bosons (for superfluids n̄0
N is the

superfluid density). In the thermodynamic limit V → ∞ we distinguish the following cases:

n̄0
N
→ 0 no condensate, (6.189)

n̄0
N
→ ns > 0 Bose-Einstein condensate, (6.190)

6.6.3. Qualitative behaviour of n̄(Eν ) forT → 0

For smallerT at fixed N there are fewer particles at high Eν due to stronger Boltzmann suppres-
sion. On the other hand, of course, this has to be compensated by more particles at small Eν .
We have plotted this in Figure 6.7. It follows that the low temperature limit of µ is

µ (T ,N )
T→0
−−−−→ 0 . (6.191)

6.6.4. Gibbs potential

The Gibbs potential was defined as

J = −T lnZgc = −pV . (6.192)

In this case, it is given by

J = −T
∑
ν

ln
1

1 − e−β (Eν−µ )
(6.193)

= T дiV

∫
d3k
(2π)3

ln
[
1 − e

− 1
T

(
~2k 2
2M −µ

) ]
. (6.194)
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6. Ideal quantum gas

n̄

Eν
E0

T1
T2

T2 > T1

Figure 6.7.: Occupation number for different temperatures at fixed N

6.7. Classical ideal gas

6.7.1. Classical approximation

The classical approximation is given by

Eν − µ � T , (6.195)

or, inserting Eν ,
~2k2

2M
− µ � T . (6.196)

Regarding the occupation number, this leads to

n̄ν =
1

eβ (Eν−µ ) ∓ 1
→ e−β (Eν−µ ) (6.197)

for bosons and fermions, equally. So, the classical approximation is only valid for n̄ν � 1.

6.7.2. Gibbs potential

Using this approximation, the Gibbs potential is given by

J = −T дiV

∫
d3k
(2π)3

e
− 1
T

(
~2k 2
2M −µ

)
(6.198)

=
−T дiV

2π2

∫ ∞

0
d|k | |k |2e

− 1
T

(
~2 |k |2

2M −µ
)
, (6.199)

which, of course, is again the same for bosons and fermions. So,

J = −T дi
V

2π2 e
µ
T I3 , (6.200)
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6.7. Classical ideal gas

where

I3 =

∫ ∞

0
dx x2 e−bx

2
(6.201)

=
∂

∂b

∫ ∞

0
dx e−bx

2
(6.202)

=
∂

∂b

(
1
2

√
π

b

)
(6.203)

=
1
4
π

1/2b−
3/2 , (6.204)

with

b =
~2

2MkbT
. (6.205)

6.7.3. Thermal de Broglie wavelength

We define the thermal de Broglie wavelength as

λ(T ) =

(
2π~2

MkbT

) 1/2

, (6.206)

or, using natural units, as

λ(T ) =

(
2π
MT

) 1/2

. (6.207)

Due to the relation between temperature and kinetic energy:

p2

2M
∼ T (6.208)

we also can associate it to the momentum via

MT ∼ p2 . (6.209)

Recalling the definition (6.205) of b, we find

λ2 = 4πb , (6.210)

and therefore
b−

3/2 = λ−3 (4π)3/2 . (6.211)

This way, we can express the factor I3 in the Gibbs potential (6.200) in terms of the thermal de
Broglie wavelength:

I3 = 2π2λ−3 . (6.212)
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6. Ideal quantum gas

6.7.4. Thermodynamics

The Gibbs potential is now given by

J = −T дiV λ−3 e
µ
T , (6.213)

as well as
J = −pV . (6.214)

So, the number of particles is computed as

N = −

(
∂J

∂µ

)
T ,V

(6.215)

= −
1
T
J (6.216)

=
pV

T
, (6.217)

leading to the equation of state:
pv = NT . (6.218)

6.7.5. Validity of the approximation for a diluted gas (classical gas)

We want to check the validity of the classical approximation

p2

2M
− µ � T . (6.219)

For µ < 0 it is sufficient to check if
−
µ

T
� 1 . (6.220)

We know that

N =
pv

T
(6.221)

= −
J

T
(6.222)

= дiV λ−3 e
µ
T , (6.223)

leading to

e
µ
T =

Nλ3

дiV
, (6.224)

and therefore
−
µ

T
= lnдi + ln

V

Nλ3
. (6.225)

From this we can read off that the approximation is valid if

V

N
� λ3 (T ) . (6.226)
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6.8. Bose-Einstein condensation

Therefore, recalling that λ ∼ T −1/2, the classical approximation is valid for a diluted gas at
sufficiently high temperature:

n � λ−3 (T ) , (6.227)

i. e. with far fewer than 1 particle per volume λ3 (T ).

6.8. Bose-Einstein condensation

We want to examine what happens, if we keep n fixed, while lowering T .

6.8.1. n(µ)

The density is given by

n =
N

V
=

∫
d3k
(2π)3

1

e
β
(
k 2
2M −µ

)
− 1

. (6.228)

Using ∫
d3k
(2π)3

=
1
2π2

∫
d|k | |k |2 (6.229)

=
1
4π2

∫
d|k |2

√
|k |2 (6.230)

and defining

z =
|k |2

2MT
(6.231)

=
λ(T )2 |k |2

4π
, (6.232)

this becomes

n =
1
4π2

(
4π
λ2

) 3/2 ∫ ∞

0
dz
√
z

1

ez−β µ − 1
, (6.233)

and therefore

nλ3 =
2
√
π

∫
dz
√
z

1

ez−β µ − 1
. (6.234)

As µ is restricted to µ ≤ 0, we are interested in the limit µ → 0−, i. e. −βµ → 0+. One can read
off that nλ3 increases in this limit.

6.8.2. Critical temperature

Let us compute nλ3 for µ = 0 (its maximal value):

(nλ3)c =
2
√
π

∫
dz
√
z

1
ez − 1︸              ︷︷              ︸

Γ

(
3
2

)
ζ
(
3
2

) . (6.235)
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6. Ideal quantum gas

Using Γ
(
3
2

)
= 1

2

√
π, we arrive at

(nλ3)c = ζ
(
3
2

)
. (6.236)

So, the critical wavelength is given by

λc = ζ
(
3
2

)1/3
n−

1/3
c , (6.237)

which, using

λ2c =
2π
MTc
, (6.238)

leads us to an expression for the critical temperature:

Tc =
2π
M

ζ
(
3
2

)−2/3
n
2/3
c . (6.239)

Using ζ
(
3
2

)
≈ 2.61, gives us the approximate result

Tc ≈ 3.31
1
M

n
2/3
c . (6.240)

So, if we lower T until it reaches Tc for a given n, µ reaches 0. But what happens for T < Tc? Is
there no solution?

6.8.3. Ground state of bosonic gas

At T = 0 the gas is in its ground state and has minimal energy. Therefore, all bosons have to be
in the state with the lowest energy E0. In a box with periodic boundary conditions E0 is given
by

E0 =
~2k0

2

2M
, (6.241)

with ~k0 being the lowest possible discrete momentum. And in a cavity it is given by

E0 = ~ω0 , (6.242)

with ω0 being the lowest resonance frequency.
But if we now demand

n̄ν=0 (T = 0) = N , (6.243)

we have a problem, as this diverges in the thermodynamic limit. The macroscopic number of
particles in the ground state is

n̄ν=0
V
=

N

V
= n0 . (6.244)

So, the atoms in the ground state are not properly counted in the transition from the discrete
sum

∑
ν to the integral

∫
d3k
(2π)3 . The total number number of atoms is given by

n = n0 (T ) + ñ(T ) (6.245)

where ñ(T ) is the number of non-condensed thermal atoms. If n0 , 0 we speak of Bose-Einstein
condensation (BEC).
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6.8. Bose-Einstein condensation

n0

T
Tc

Figure 6.8.: Number of condensed atoms

Figure 6.9.: Bose-Einstein condensation

6.8.4. Bose-Einstein condensation

At T < Tc it is µ = 0 and the number of non-condensed thermal atoms is given by

ñ(T ) = ζ
(
3
2

)
λ(T )−3 < n , (6.246)

and therefore the remaining atoms have to form a Bose-Einstein condensate:

n0 (T ) = n − ñ(T ) > 0 . (6.247)

The qualitative behaviour of this function is plotted in Figure 6.8. At the critical temperature it
is

n0 (Tc) = 0 (6.248)

and it occurs a second order phase transition! For n0 , 0 we also observe superfluidity!
Experimental images of a BEC are shown in Figure 6.9.

We can express the number of condensed atoms in terms of the critical temperature. To do
so, we use

ñ(T )

ñ(Tc)
=
λ3 (Tc)

λ3 (T )
=

(
T

Tc

)3/2
, (6.249)
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as λ(T ) ∼ T −1/2. So, as ñ(Tc) = n, it follows

ñ(T ) =

(
T

Tc

)3/2
n , (6.250)

and therefore

n0 (T ) =

[
1 −

(
T

Tc

)3/2]
n . (6.251)

This has consequences for the total energy, too, as only particles with Eν , E0 = 0 contribute
if T < Tc:

E =
дiM

3/2T 5/2V
√
2 π2 ~3

∫ ∞

0
dz

z3/2

ez − 1︸           ︷︷           ︸
Γ

(
5
2

)
ζ
(
5
2

) . (6.252)

So, using
Γ
(
5
2

)
ζ
(
5
2

)
= 3

4

√
π ζ

(
5
2

)
≈ 1.341 , (6.253)

we arrive at
E

NT
≈ 0.77

(
T

Tc

)3/2
. (6.254)

For comparison, for a classical gas we had E
NT =

3
2 .
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7. Gas of interacting particles

7.1. Interactions and complexity

So far we only considered free particles. Adding interactions between these particles is a major
change that will lead to a considerable increase in complexity! For example we will encounter
new concepts like phase transitions and long range correlations.

Interactions are dealt with differently, depending on the considered temperature regime. At
low temperatures only few states are excited. Collective modes of these states can be described
as interactions between quasi-particles. Examples are acoustic waves and phonons in solids or
magnons and spin waves in magnetic systems. At high temperatures, on the other hand, one
introduces interactions as perturbations of the free theory.

We will find that many systems show some kind of microscopical order at low temperatures,
whereas they are widely disordered at high temperatures. We are going to examine transitions
between these two phases.

The aim of statistical physics is to describe all of these phenomena. Starting from known
microphysics (atomic physics), it serves as a bridge to macrophysics. The key elements to
achieve this, are statistical fluctuations and correlations.

7.2. Real gases

Contrary to ideal gases, one has to consider the interactions between atoms or molecules,
respectively, to describe real gases. A typical form of the potentialV (R) between these particles
is the Lenard-Jones potential:

V (R) = V0

[ (
R0

R

)12
− 2

(
R0

R

)6]
, (7.1)

with R being the distance between two particles. This potential is used to describe Van-der-Waals
forces at long distances, as well as the effect of Pauli exclusion at short distances. We have
plotted it in Figure 7.1a. A simpler approximation would be

V (R) =



∞ for R < R0,
−V0

(
R0
R

)6
for R < R0.

(7.2)

This describes hard spheres with an attractive interaction. It is sketched in Figure 7.1b.
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V

R
R0

(a) Lenard-Jones potential

V

R
R0

(b) Hard spheres with attractive interaction

Figure 7.1.: Typical interaction potentials

Virial expansion

An important technique, used to describe real gases, is the virial expansion. It is an expansion
of the equation of states in terms of the density n = N

V :

pV

NkbT
= 1 + B2 (T ) n + B3 (T ) n

2 + . . . , (7.3)

where the Bi are the so-called virial coefficients. Using the grand canonical partition function,
we find

1
V

lnZgc =
p

kbT
(7.4)

= f (n,T ) (7.5)
= n (1 + B2 (T ) n + B3 (T ) n

2 + . . . ) . (7.6)

7.3. Mean field approximation

Another important approach is the mean field approximation. In this approximation one
considers a molecule to “see” an effective potential, generated by all the other molecules. This
way, the complicated interacting system is reduced to an one-particle description with an
effective Hamiltonian. Note that this is a self-consistent description and that it does not depend
on a small density as expansion parameter! Moreover, we will work in classical statistics.

7.3.1. Classical statistics in phase space

The general Hamiltonian of a system of interacting particles is given by

H =
∑
i

p12

2M
+

∑
i j

V (ri − rj , (7.7)
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7.3. Mean field approximation

where
∑

i j means the sum over pairs of particles. The problem here is that in quantummechanics
pi and ri do not commute. So, it is not easy to diagonalize H ! Therefore, we will consider the
classical limit for fixed N . In this limit, the sum over microstates becomes

∑
τ

→
1
N !

N∏
i=1

∫
d3ri

d3pi
(2π~)3

. (7.8)

The factor 1
N ! takes care of the fact that we are dealing with identical particles. It can be shown

that this is the correct limit by using the Wigner representation of the quantum density matrix.
If we had free particles, then the spatial integration would just lead to a volume factor for

each particle: ∑
τ

=
1
N !

V N
N∏
i=1

∫
d3pi
(2π~)3

. (7.9)

This is an exact result!

7.3.2. Average potential � mean field

With the interaction potential in theHamiltonian (7.7) one can not perform the spatial integration
that easy, any more. At this point, the mean field approximation comes into play by replacing∑

i j

V (ri − rj ) →
∑
i

Ueff (ri ) . (7.10)

Here,Ueff is an average potential “seen” by one particle, generated by the interaction with all
other particles.

With this replacement the canonical partition function factorizes:

Zcan =
1
N !

∏
i

∫
d3pi d3ri
(2π~)3

e
−β

[∑
j
pj

2

2M +
∑
jk V (rj−rk )

]
(7.11)

=
1
N !

∏
i

∫
d3pi d3ri
(2π~)3

e
−β

[
pi

2

2M +Ueff (ri )
]
. (7.12)

7.3.3. Expansion of canonical partition function

The canonical partition function can now be expressed as

Zcan ≈
1
N !

[∫
d3p d3r

(2π~)3
e
−β

[
p2

2M +Ueff (r )
] ] N

(7.13)

= ZidealV
−N

[∫
d3r e−β Ueff (r )]

] N

(7.14)

= Zideal

(
Z (1)
ww

) N
, (7.15)
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with Zideal being the canonical partition function for an ideal gas. Using this, the free energy
becomes

F = −kbT lnZcan (7.16)

= −kbT lnZideal − NkbT lnZ (1)
ww (7.17)

= Fideal − NkbT lnZ (1)
ww , (7.18)

where Fideal is the free energy of an ideal gas:

Fideal = −NkbT

(
1 − ln

[
N

V

(
2π~2

mkbT

)3/2] )
, (7.19)

or, splitting up the logarithm,

Fideal = −NkbT + NkbT ln
N

V
−
3
2
NkbT ln

mkbT

2π~2
. (7.20)

7.3.4. Computation of Z (1)
ww

To compute this deviation Z (1)
ww from the ideal gas partition function, we have to consider two

effects:

1. excluded volume,

2. attractive interaction.

It is

Z (1)
ww =

1
V

∫
d3r e−β Ueff (r ) . (7.21)

This expression will be modified due to the two mentioned effects:

1. Vex is the region, whereUeff → ∞.

2. In the remaining space we exchangeUeff by a mean potential W̄ :

e−βW̄ =
1

V −Vex

∫
V−Vex

d3r e−β Ueff (r ) . (7.22)

Together, this leads to

Z (1)
ww =

V −Vex
V

e−βW̄ . (7.23)
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7.3. Mean field approximation

7.3.5. Excluded volume

We have to determine Vex, the mean excluded volume for an atom. To begin with, the total
excluded volume is N Vex, which can be expressed as

N Vex =
1
2
N (N − 1)︸         ︷︷         ︸

number of pairs
≈ 1

2N

4π
3

a3︸︷︷︸
excl. volume

per pair

, (7.24)

with a being the minimal distance between two particles, i. e. a = R0 in Figure 7.1b. So, we find

Vex ≈
1
2
N

4π
3

a3 (7.25)

=
2π
3

a3 N (7.26)

= b0N , (7.27)

where we defined the virial coefficient

b0 =
2π
3

a3 . (7.28)

7.3.6. Mean potential

Moreover, we have to compute the W̄ , the mean potential “seen” by a given atom. We will do
this in a similar fashion. The potential energy of all atoms is given by

N W̄ =
1
2
N (N − 1) ū , (7.29)

with ū being the mean potential energy per pair. It is

ū = 4π
∫ ∞

a
dR R2W (R) (V −Vex)

−1 , (7.30)

and therefore

W̄ =
1
2
N ū (7.31)

=
2πN

V −Vex

∫ ∞

a
dR R2W (R) . (7.32)

Introducing another virial coefficient b1, we can write this as

W̄ = −
N

V
b1 . (7.33)

Note that W̄ ∼ n!

127



7. Gas of interacting particles

Altogether, we arrive at

Z (1)
ww =

V − b0N

V
e−

W̄
kbT , (7.34)

lnZ (1)
ww = ln

V − b0N

V
−

W̄

kbT
(7.35)

= ln
V − b0N

V
+

N

VkbT
b1 . (7.36)

7.3.7. Free energy

Using the result (7.36), the free energy becomes

F = Fideal − NkbT lnZ (1)
ww (7.37)

= −NkbT + NkbT ln
N

V
−
3
2
NkbT ln

mkbT

2π~2
− NkbT ln

V − b0N

V
− NkbT

Nb1
kbTV

. (7.38)

So, we arrive at

F = −NkbT + NkbT ln
N

V − b0N
−
3
2
NkbT ln

mkbT

2π~2
− b1

N 2

V
. (7.39)

7.4. Equation of state

Using the general relation

p = −
∂F

∂N

�����N ,T
, (7.40)

we arrive at the equation of state:

p =
NkbT

V − b0N
− b1

(
N

V

)2
. (7.41)

Note that here only the structural form is important. The computation of b0 and b1 can be
improved by a self-consistent computation ofUeff (r .

Often, it is more useful to express these equations just in terms of the density n = N
V and T .

So, instead of F we look at F
V :

F

V
= −n kbT + n kbT ln

n

1 − b0n
−
3
2
n kbT ln

mkbT

2π~2
− b1n

2 , (7.42)

and the equation of state becomes

p =
nkbT

1 − b0n
− b1n

2 . (7.43)

This is the van der Waals equation. One finds it to describe the phase transition from gas to
liquid qualitatively correct!
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7.5. Specific heat of real gases

The specific heat was defined as

cV = T
∂S

∂T

�����T ,N
(7.44)

= −T
∂2F

∂T 2

�����V ,N
(7.45)

= V
∂

∂ lnT

(
S

V

) �����n
, (7.46)

with S
V the entropy density:

S

V
= −
∂

∂T

(
F

V

) �����n
(7.47)

= kbn − kbn ln
n

1 − b0n
+
3
2
kbn ln

mkbT

2π~2
+
3
2
kbn . (7.48)

So,
S

V
= kbn

(
5
2
− ln

n

1 − b0n
+
3
2
ln

mkbT

2π~2

)
, (7.49)

which is independent of b1.
This leads to

cV
V
=
∂

∂ lnT

(
s

V

) �����n
=

3
2
kbn , (7.50)

and we finally arrive at

cV =
3
2
kbN . (7.51)

So, regarding the specific heat there is no difference between a van der Waals gas and an ideal
gas!

7.6. Equipartition theorem

At high temperatures one finds the specific heat to be proportional toN with a system dependent
prefactor, for example:

Monatomic (real) gas: cV =
3
2
kbN , (7.52)

Phonons: cV = 3kbN . (7.53)

In general, it is

cV =
1
2
kbN f1 , (7.54)
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7. Gas of interacting particles

with f1 being the number of excited degrees of freedom per particle. The total number f excited
degrees of freedom is f = N f1. So, for example one finds:

Monatomic gas: f1 = 3 (translations), (7.55)
Phonons: f1 = 6 (position and velocity), (7.56)
Diatomic molecule: f1 = 3 + 2 + (2) (translations, rotations and vibrations). (7.57)

Regarding the diatomic molecule: note that one (longitudinal) vibration corresponds to f1 = 2.
Alternatively, one can split up its total f1 = 7 into 6 velocity components and the distance
between the atoms.

The relation (7.54) is always true, if the quadratic approximation for the energy holds:

E = E0 +
∑
ρ

bρ q
2
ρ . (7.58)

Here, the qρ are the excited degrees of freedom of the system and the bρ are suitable prefactors.
ρ labels the excited degrees of freedom and therefore

∑
ρ = N f1. We denote the non-excited

degrees of freedom by q̃. So, for a general degree of freedom qr one finds qr ∈ {qρ ,q̃}.
The average energy of such a system is computed as

〈E〉 =

∫
Dqr (E0 +

∑
ρ′ bρ′q

2
ρ′ ) e

−βE0−β
∑
ρ bρq2ρ∫

Dqr e−βE0−β
∑
ρ bρq2ρ

, (7.59)

where

∫
Dqr =

∫
dq1 · · · dqr · · · dqN (7.60)

=

∫
Dqρ Dq̃ . (7.61)

It is easy to see that the Dq̃ integration and the factor e−βE0 in enumerator and denominator
cancel. Moreover, we can pull the E0 out of the remaining Dqρ integration. We end up with

〈E〉 =

∏
ρ

(∫
dqρ e

−βbρq2ρ

) ∑
ρ′ bρ′q

2
ρ′∏

ρ

(∫
dqρ e−βbρq

2
ρ

) . (7.62)
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7.6. Equipartition theorem

For each summand only one integration is non-trivial:

〈E〉 − E0 =
∑
ρ′

∫
dqρ′ bρ′q2ρ′ e

−βbρ′q2ρ′∫
dqρ′ e

−βbρ′q2ρ′
(7.63)

=
∑
ρ′

(
−
∂

∂β

)
ln
∫

dqρ′ e
−βbρ′q2ρ′ (7.64)

=
∑
ρ′

(
−
∂

∂β

)
ln

√
π

βbρ′︸      ︷︷      ︸
− 1

2 ln β + const.

(7.65)

=
∑
ρ′

1
2β
. (7.66)

And therefore,
〈E〉 = E0 +

1
2
kbT · N f1 . (7.67)

Note that we implicitly assumed a classical treatment, i. e. we neglected the discreteness
of energy levels. This is only valid if the difference between the ground state energy and the
energy levels in the ρ-channel is small compared to kbT :

kbT � E1,ρ − E0 . (7.68)
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8. Magnetic systems

8.1. Magnetization

8.1.1. Degrees of freedom

We consider a lattice with points x . In this case it is a cubic lattice:

x = na , (8.1)
n = (n1,n2,n3) with nk ∈ Z , (8.2)

where a is the lattice spacing. There are classical spins χa (x ) at each lattice site x which satisfy

3∑
a=1

χa (x ) χa (x ) = 1 . (8.3)

The microstates of this system are given by the possible spin configurations τ � χa (x ), the
so-called “lattice fields”. Moreover, we have a Hamiltonian

H = H [χa (x )] , (8.4)

where we identify H ≡ Eτ . Of course, this can be generalized to N -component fields:

χa (x ) with a = 1, . . . ,N , (8.5)
N∑
a=1

χa (x ) χa (x ) = 1 . (8.6)

One example of such a system is the Ising model, which is characterized by N = 1 and
χ (x ) = ±1 (discrete number of microstates). So, its microstates are given by

τ : {χ (x )} � {sj } with sj = ±1 (8.7)

and the corresponding probabilities take the form

pτ =
e−βEτ

Z
=

e−βH

Z
, (8.8)

as we are describing it as a canonical ensemble. Note that we are not dealing with uncorrelated
probabilities as in chapter 3, any more!
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e1

e2

Figure 8.1.: Unit lattice vectors

8.1.2. Hamiltonian

We are considering the following Hamiltonian:

H = −
∑
x

∑
µ

∑
a

χa (x ) χa (x + eµ )︸                                  ︷︷                                  ︸
Hint

−cB
∑
x

∑
a

χa (x ) Ba . (8.9)

Here, cB is the magnetic moment, for which we assume

cB > 0 . (8.10)

eµ is the unit lattice vector in µ-direction, as shown in Figure 8.1. Of course, the sum over µ
runs from 1 to the dimension d of the lattice (d = 3 for a cubic lattice):

∑
µ

=

d∑
µ=1

. (8.11)

So, the properties of Hint are that it only considers next-neighbour interactions and that it tries
to align the spins. On the other hand, B is a magnetic field which tries to align the spins in the
same direction as B.

The ground state of the system is characterized by the limit β → ∞. In this limit the spin
expectation values will be proportional to the magnetic field:

〈χa (x )〉 ∼ Ba . (8.12)

Note that the coupling multiplying Hint can be absorbed into β → β ′.

8.1.3. Magnetization

The magnetization is defined as
Ma =

∑
x

〈χa (x )〉 . (8.13)

Since Ba is an intensive quantity, Ma is an extensive one. Now, the question is: How does the
magnetization depend on the magnetic field?

M (B) = ? (8.14)
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8.1.4. Thermodynamic potential

As always, the canonical partition function is given by

Z =
∑
τ

e−βH =
∑
τ

e−βEτ . (8.15)

From (8.9) we can read off that it includes a source term, which is linear in the field χ (x ).
Compenentwise, the corresponding source field is given by

ja = β cB Ba . (8.16)

So, instead of considering the partition function as B-dependent, we also can consider it as
j-dependent:

Z (T ,B) = Z (T , j ) , (8.17)

which is a mere change of notation. But we will stick to the notation using j, as it is the same
notation as in QFT. Note that the volume V and the particle number N do not play a role here –
they are no thermodynamic variables!

Again, we can perform the transition from a sum over states to a “functional integral”:∑
τ

≡
∏
x

[ (∏
a

∫ ∞

−∞

dχa (x )

)
δ
(∑

a

χa (x ) χa (x ) − 1
) ]
. (8.18)

On the other hand, for the discrete Ising model (N = 1) we just have∑
τ

=
∏
x

∑
χ (x )=±1

. (8.19)

We define
W (T , j ) = lnZ (T , j ) , (8.20)

which is related to the free energy in the following way:

F (T ,B) = −TW (T , j ) . (8.21)

This way, the basic relation for the magnetization takes the form

∂W

∂ja
= Ma (8.22)

which can be seen by

∂W

∂ja
=

1
Z

∂Z

∂ja
(8.23)

=
1
Z

∂

∂ja

∑
τ

e−βHint+
∑
x χa (x ) ja (x ) (8.24)

=

〈∑
x

χa (x )

〉
(8.25)

= Ma . (8.26)
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Therefore, one also can compute the magnetization from the free energy:

M ∼
∂F

∂B
, (8.27)

i. e. we can identify some analogies to our description of gases:

B � µ , (8.28)
M � N , (8.29)
F � J (Gibbs potential). (8.30)

So, in the following we will use

W (T , j ) as thermodynamic potential, (8.31)
T , j as thermodynamic variables. (8.32)

8.1.5. Effective potential

We denote the number of lattice sites byN . Then Ma ∼ N . So, we introduce the magnetization
per lattice site ϕa via

ϕa =
Ma

N
. (8.33)

Moreover, we define the effective potentialU (ϕa ,T ):

U =
1
N

[
−W (j,T ) +Ma ja

]
, (8.34)

where the sum over repeated indices is implied. Obviously,

U = −
W (j,T )

N
+ ϕa ja , (8.35)

which is a Legendre transformation.
Note that the sources ja depend on the ϕb . The exact dependence can be inferred by inverting

the relation
ϕa (jb ) =

1
N

∂W

∂jb
, (8.36)

leading to
∂U

∂ϕa
= ja . (8.37)

This is the basic relation between magnetization and magnetic field, which can be proven by
direct computation:

∂U

∂ϕa
= ja +

∂jb
∂ϕa

(
ϕb −

∂

∂jb

W (j,T )

N︸        ︷︷        ︸
ϕb

)
. (8.38)

In the following we want to computeU (ϕ)!
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8.1.6. Minimal principle

We define
Ū (ϕ, j ) = U (ϕ) − jϕ . (8.39)

The magnetization is determined by the minimum of Ū (ϕ, j ) with respect to ϕ at fixed j:

∂Ū

∂ϕ

�����j
= 0 . (8.40)

We denote this minimum by ϕ0. Then it is

Ma = Nϕ0,a . (8.41)

We can relate Ū and F via

NŪ = U − jM (8.42)
= −W (8.43)

=
F

T
, (8.44)

where F (T , j;M ) is the free energy with the “constraint” that M takes the given value (by
inverting M (j ), one gets the free energy F (T , j ) in standard form). This is similar to the entropy
of a system with constraint y (S (y) maximal →F (y) minimal).

What is the probability to find a givenM? To answer that, we need the probability distribution
w (M ):

w (M ) =
∑
τ

�����∑x χa (x )=Ma

e−βH [χa (x )] (8.45)

≈ Ω(M ) e−βE (M ) (8.46)

= eS (M )− 1
T E (M ) (8.47)

= e−
F (M )
T , (8.48)

where we used F = E −TS in the last step. From this we conclude that the maximum ofw (M )
corresponds to the minimum of F (M ) and therefore to the minimum of Ū (ϕ). For j = 0 this
then corresponds to a minimum ofU :

∂U

∂ϕa
= 0 . (8.49)

8.2. Spontaneous symmetry breaking

8.2.1. Symmetries

Obviously, H is invariant under lattice translations. Moreover, Hint is invariant under lattice
rotations and reflections. But these symmetries are (at least partially) broken by B , 0 (j , 0).
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O (N )-symmetry

χa (x ) and ja (x ) are N -component vectors. So, Hint is

• invariant under N -dimensional rotations, i. e. “SO (N )-invariant”,

• invariant under χa (x ) → −χa (x ) (internal reflection).

From a group theoretical point of view the symmetry group SO (N ) together with reflections
yields the symmetry groupO (N ), which describes all linear transformations that leave

∑
a (χa χa )

invariant. Therefore, Hint is O (N )-invariant.

But the source term breaks thisO (N )-symmetry for fixed j , 0. So, only simultaneous rotations
of χa (x ) and ja (x ) leave H invariant. From this we can conclude thatW (j,T ) is invariant under
O (N ) rotations of ja and that, as ϕa also is a vector under rotations,U (ϕa ) is invariant under
O (N ) rotations of ϕa .

This symmetry of U (N ) leads to a simplification of the computations. As already said, U is
invariant with respect to O (N )-symmetry and the explicit breaking by a magnetic field appears
only in the source term. Therefore, the solution of

∂U

∂ϕa
= ja (8.50)

is not O (N )-symmetric for a given ja , 0. This means, that the magnetic field singles out a
particular direction.

8.2.2. Vanishing magnetic field

What happens for B = 0 ? Or more precisely, what happens in the limit ja → 0 ? There
are two possibilities. Either there is a non-vanishing magnetization ϕa , 0 in an arbitrary
direction, as no direction is preferred (“ground-state degeneracy''). If this happens, we speak of
“spontaneous symmetry breaking” (SSB). Or there is no magnetization (ϕa = 0). In this case the
O (N )-symmetry is preserved.

Example

• In the Ising model, ϕ = 1 and ϕ = −1 are equivalent. So the magnetisation has to choose
one of the two possible values. In the ground state, the minimum of H , all spins are
aligned, so

either χ (x ) = 1 for all x , ϕ = 1 , (8.51)
or χ (x ) = −1 for all x , ϕ = 1 . (8.52)

8.2.3. Domains

A domain is a continuous region of spins pointing in the same direction. In Figure 8.2 we
sketched three neighbouring domains. At the boundary between two domains there is a positive
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↑ ↑ ↑ ↑ ↑ ↑

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

− domain



+ domain



Figure 8.2.: Spin domains

interaction energy. Therefore, the probability pτ of a “domain-microstate” is smaller than the
probability pτ of the ground state. But on the other hand, there are more domain-states than
ground states (only two in the Ising model).

The magnetization is given by
M =

∑
τ

pτMτ . (8.53)

But what wins? pτ or the number of contributions? We expect, that for low T the system will
have near ground state order with ϕ , 0 (SSB), and that for highT the system will be completely
disordered with ϕ = 0 (SYM). There will be a phase transition between these two cases at the
critical temperature Tc.

Note that in practice domains are visible as “Weiss domains” in ferromagnets.

8.2.4. General form ofU

As we have already pointed out, the effective potentialU (ϕa ) must be invariant under rotations.
Let us define

ρ = 1
2ϕaϕa . (8.54)

This ρ is the simplest expression, which is invariant under rotations (O (N ) includes all transfor-
mations that leave ϕaϕa invariant). Therefore,U has to be a function of ρ. This simplifies the
problem, as nowU only depends on the one variable ρ and not explicitly on N variables ϕa .

8.3. Landau theory and phase transition

8.3.1. Quartic expansion ofU

We expandU up to order ϕ4 (ρ2):

U = U0 + µ
2ρ + 1

2λρ
2 , (8.55)

whereU0 is irrelevant for the magnetization, as it drops out when performing the ϕ derivative:

∂U

∂ϕa
= ja . (8.56)

We assume λ > 0, as otherwiseU has no absolute minimum.
Derivatives with respect to ϕa can be expressed in terms of derivatives with respect to ρ:

∂U

∂ϕa
=
∂U

∂ρ

∂ρ

∂ϕa
=
∂U

∂ρ
ϕa . (8.57)
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8.3.2. Phase transition for j = 0

We look for the minimum ofU (asU = Ū for j = 0):

0 =
∂U

∂ϕa
= µ2ϕa + λρϕa (8.58)

= (µ2 + 1
2λ ϕbϕb ) ϕa . (8.59)

There are two cases:

µ2 > 0: Only solution is ϕa = 0 (no magnetisation, SYM, Figure 8.3).

µ2 < 0: Minimum ofU for ρ = ρ0 (SSB, Figure 8.4), where

ρ0 = −
µ2

λ
, ϕ0ϕ0 = −

2µ2

λ
. (8.60)

This is the so-called “mexican hat potential”.

In between, at µ2 = 0 there is a phase transition (Figure 8.5) At this point there is no quadratic
term and the potential is just given by

U =
λ

8
(ϕaϕa )

2 . (8.61)

Because |ϕ0 |(µ2) is a continuous function, as one can see in Figure 8.6, we speak of a second
order phase transition.

Critical temperature

µ2 = µ2 (T ) , (8.62)
λ = λ(T ) (8.63)

are continuous functions of the temperature. Thereby, µ2 (T ) is monotonically increasing and
we know that

µ2 (T = 0) < 0 , (8.64)
µ2 (T large) > 0 . (8.65)

The critical temperature is defined via

µ2 (T = Tc) = 0 , (8.66)

i. e. it is the temperature where the phase transition occurs. The resulting phase diagram is
sketched in Figure 8.7.
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U

ϕ

µ2 > 0

Figure 8.3.: Effective potential in the symmetric phase (SYM)

U

ϕ
ϕ0

µ2 < 0

Figure 8.4.: Effective potential in the spontaneously broken phase (SSB)

U

ϕ

µ2 = 0

Figure 8.5.: Effective potential at the phase transition
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0

|ϕ0 |

µ2

SSB SYM

Figure 8.6.: |ϕ0 | as a function of µ2

ϕ

T
Tc

Figure 8.7.: Phase diagram of Landau theory

8.3.3. Discontinuity in magnetization for non-zero B

Now, we are considering the general case j , 0. So, up to quartic order in ϕ, Ū is given by

Ū = 1
2µ

2ϕ2 + 1
8ϕ

4 − jϕ , (8.67)

which we have plotted in Figure 8.8 for different cases of j So, we are looking for the solutions
of

0 =
∂Ū

∂ϕ
= µ2ϕ + 1

2ϕ
3 − j . (8.68)

This is a cubic equation, i. e. there are either one or three extrema.
The position ϕ of the absolute minimum is called the order parameter. In this case, when

varying B (i. e. j), there is a jump in this order parameter, a discontinuity, as you can see from
Figure 8.9. What is the origin of this? The physical phenomenon behind this is hysteresis.
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Ū = U − jϕ

ϕ

j > 0
j = 0
j < 0

Figure 8.8.: Modified effective potential Ū for different cases of j

ϕ

j

ϕ0

Figure 8.9.: Jump of the order parameter

8.4. Magnetic susceptibility

The magnetic susceptibility is the isothermal change of magnetization with magnetic field.

N = 1

It is given by

χT =
∂ϕ

∂B

�����T
, (8.69)

or equivalently,

χ̃ =
∂ϕ

∂j
. (8.70)

By inverting it:

χ̃−1 =
∂j

∂ϕ
(8.71)
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χ̃

µ2

Figure 8.10.: Magnetic susceptibility for j = 0

and using j = ∂U∂ϕ , we find (j = 0)

χ̃−1 =
∂2U

∂ϕ2

�����ϕ=ϕ0

. (8.72)

In the two different phases this is computed as

SYM-phase (µ2 > 0): χ̃−1 = µ2 → χ̃ =
1
µ2
, (8.73)

SSB-phase (µ2 < 0): χ̃−1 = µ2 + 3
2λϕ

2����ϕ=ϕ0

(8.74)

= µ2 + 3λρ0 . (8.75)

For j = 0 the latter can be evaluated, using ρ0 = −
µ2

λ (for µ2 < 0):

χ̃−1 = 2λρ0 = −2µ
2 → χ̃ =

1
2λρ0

= −
1
2µ2
. (8.76)

So, by combining (8.73) and (8.76), we can plot the magnetic susceptibility for j = 0 over the
complete µ2 range in Figure 8.10. We see that it diverges at the phase transition (µ2 → 0,T → Tc).
For j , 0 we would find a finite susceptibility at Tc.

N > 1

In this case, we have a “susceptibility tensor”:

χ̃ab =
∂ϕa
∂jb
. (8.77)

Defining the “mass matrix”

m2
ab =

∂2U

∂ϕa∂ϕb
, (8.78)
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we find the matrix identity
χ̃ = (m2)−1 . (8.79)

This is easily proven by

χ̃abm
2
bc =

∂ϕa
∂jb

∂

∂ϕc

(
∂U

∂ϕb

)
(8.80)

=
∂ϕa
∂jb

∂jb
∂ϕc

(8.81)

=
∂ϕa
∂ϕc

(8.82)

= δac . (8.83)

For j = 0 the mass matrix is given by

m2
ab =

∂2U

∂ϕa∂ϕb

�����ϕ0

, (8.84)

with
U = µ2ρ + 1

2ρ
2 . (8.85)

In the SYM-phase this leads to
m2

ab = µ
2 δab , (8.86)

which has N equal eigenvalues µ2. So, the susceptibility tensor then has N equal eigenvalues
µ−2. In the SSB-phase on the other hand, it is

m2
ab = (µ2 + λρ0) δab + λ ϕ0,aϕ0,b . (8.87)

Take
ϕ0,1 = ϕ0 , ϕ0,a,1 = 0 → ρ0 =

1
2ϕ

2
0 , (8.88)

which leads to
m2

11 = 2λρ0 , m1
ab = 0 for a , 1, b , 1, (8.89)

and therefore

m2 =

*.....
,

2λρ0 0 · · · 0
0 0 0
...

. . .
...

0 0 · · · 0

+/////
-

. (8.90)

So, there are

N − 1 “massless modes” (Goldstone modes) and (8.91)
1 “massive mode” (radial mode). (8.92)

This means that in the SSB- phase the susceptibility tensor has N − 1 diverging eigenvalues for
j → 0, ρ0 → const. , 0 (N diverging eigenvalues for j → 0, ρ0 → 0).
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8. Magnetic systems

In the special case of N = 2 this corresponds to a complex field

ϕ = 1√
2
(ϕ1 + iϕ2) , (8.93)

with
ρ = ϕ∗ϕ = ϕ = 1

2 (ϕ
2
1 + ϕ

2
2) . (8.94)

In this case the system experiences superfluidity in the SSB-phase, which is related to the
Goldstone mode.

The case of N = 4 corresponds to two complex fields. Its relativistic version is the Higgs
mechanism (Goldstone bosons become longitudinal components of massive vector bosons in
presence of local gauge symmetry).
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9. Phase transitions

9.1. Order of phase transition

We speak of phase transitions when we observe non-analytic behaviour of thermodynamic
potentials or their derivatives, while varying thermodynamic variables.

9.1.1. First order phase transition

A first order phase transition is characterized by a discontinuous jump of the expectation value of
a thermodynamic potential or its derivative. In chapter 9 we already encountered an example of
this: the discontinuity of the magnetization if the magnetic field changes direction, as sketched
in Figure 8.9 (recall that M ∼ ϕ and B ∼ j). In this example, the thermodynamic potential Ū ,
that needs to be minimized, has two separated local extrema. The absolute minimum changes
from one to the other at B = 0, as illustrated in Figure 8.8. At B = 0 both minima have equal Ū .

Of course, this is only the special case of a magnetic system. In general, first order phase
transitions may occur when varying some other quantity of a system, like temperature or
pressure. For example, this is the case for the liquid-gas phase transition. There, the absolute
minimum of the corresponding thermodynamic potential changes from liquid to gas phase at
T = Tc, as we will work out later in this chapter. It is illustrated in Figure 9.2.

9.1.2. Second order phase transition

Contrary to a first order phase transition, a second order phase transition is characterized by a
continuous behaviour of the expectation value. But susceptibilities or other derivatives diverge.
Again, we already encountered an example of this: the magnetization for j = 0 (B = 0). In that
case, the effective potential was given by

U = µ2 (T )ρ + 1
2λρ

2 . (9.1)

Thereby, µ2 (T ) increases monotonically and µ2 (Tc) = 0. For temperatures T near the critical
temperature Tc it behaves like

µ2 = a (T −Tc) + . . . , (9.2)

with some constant a. From this the behaviours of ρ0 and ϕ0 follow directly:

ρ0 (T ) = −
µ2 (T )

λ
=
a (Tc −T )

λ
, (9.3)

ϕ0 (T ) =
√
2ρ0 (T ) = c

√
Tc −T , (9.4)
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where c =
√

2a
λ . We already had sketched this behaviour in Figure 8.7.

In general, one finds ϕ0 to behave like a power law near the critical temperature:

ϕ0 ∼ (Tc −T )
β , (9.5)

with β being a so-called critical exponent. In this case β = 1
2 (mean field value).

For our example the derivative of ϕ0 with respect to T is given by

∂ϕ0
∂T
∼

1
√
Tc −T

. (9.6)

Indeed, this diverges for T → Tc.
Assuming j , 0 again, the effective potential at Tc is computed as

U = 1
2λρ

2 , (9.7)

and therefore
Ū = 1

8λ (ϕaϕa )
2 − jaϕa . (9.8)

What is the form of ϕ0 (j ) in this case? To compute it, we take ja = j δa1, leading to ϕ0,a = ϕ0 δa1.
Then, we find

j =
∂U

∂ϕ1
=
λ

2
ϕ30 , (9.9)

and therefore
ϕ0 ∼ j

1/3 , M ∼ B
1/3 . (9.10)

In general, one finds M to behave like

M ∼ B
1/δ , (9.11)

with δ being another critical exponent. In this case δ = 3 (mean field value).
The derivative of M with respect to B is given by

∂M

∂β
∼ B−

2/3 , (9.12)

which diverges for B → 0.
The origin of all of this is that the minimum of the thermodynamic potential U splits up

into two minima at T = Tc, as shown in Figures 8.3 to 8.5 (recall that µ2 < 0, µ2 = 0 and
µ2 > 0 correspond to T < Tc, T = Tc and T > Tc, respectively). This is typical for spontaneous
symmetry breaking and can occur in other situations, too.
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w

ϕ

T < Tc

w

ϕ

T = Tc

w

ϕ

T > Tc

Figure 9.1.: Probability distribution for different temperatures

9.1.3. Probabilistic interpretation

The probability to find some value ϕ is given by

w (ϕ) ∼ e−cŪ (ϕ ) , (9.13)

where c → ∞ in the thermodynamic limit, as c ∼ V or c ∼ N for lattice sites. The two
non-degenerate local minima of Ū correspond to two local maxima of the probability distribution,
as sketched in Figure 9.1. Thereby, the relative probability of these two maxima depends on the
temperature.

“A different state becomes most probable at a first order phase transition.”

There is a striking phenomenon: The microscopic properties of water molecules are the same
for T < Tc and T > Tc, but a very small change in the average kinetic energy (temperature)
produces qualitatively different properties of water and vapor!
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9. Phase transitions

Magnetic systems Real gas

ϕ v
j −p

U f̃
Ū д̃

Table 9.1.: Magnetic systems vs. real gas

9.2. Liquid-gas phase transition

9.2.1. Effective potential

The Van der Waals equation of state for real gases is given by

p =
kbNT

V − b0N
− b1

(
N

V

) 2
, (9.14)

with b0, b1 being the so-called virial coefficients. The free energy F is related to the pressure via

∂F

∂V
= −p , (9.15)

and has the explicit form

F = kbTN

[
ln

N

V − b0N
− 1 −

3
2
ln

mkbT

2π~2

]
− b1

N 2

V
. (9.16)

In the following we will use the intensive variable v = V
N =

1
n (volume per particle). Corre-

spondingly, we define

f̃ =
F

N
, (9.17)

such that
∂ f̃

∂v
= −p , (9.18)

and
д̃(v,T ,p) = f̃ (v,T ) + pv . (9.19)

д̃ plays the role of Ū for magnetic systems, i. e. the maximal probabilityw (v ) corresponds to
the minimum of д̃(v ):

∂д̃

∂v

�����T ,p
= 0. (9.20)

In Table 9.1 we have listed the corresponding quantities of magnetic systems and real gases.
But note that there is one important difference: there is no O (N )-symmetry for the real gas.
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д̃1

v

Liquid
Gas

(a) T < Tc

д̃1

v

Liquid

Gas

(b) T > Tc

Figure 9.2.: Effective potential д̃1 above and below the critical temperature

n

T
Tc

Liquid

Gas

Figure 9.3.: Jump in density during liquid-gas transition

9.2.2. First order transition

We look for local minima of д̃(v ) for fixed T , p. Therefore, we split up д̃(v ) into a v-dependent
and a non-v-dependent part:

д̃(v ) = д̃0 (T ) + д̃1 (v,T ,p) , (9.21)

with (kb = ~ = 1)

д̃1 = −T ln (v − b0) −
b1
v
+ pv , (9.22)

leading to

0 =
∂д̃1
∂v
= −

T

v − b0
+
b1
v2 + p . (9.23)

We find that the equation of state has three solutions for given T , p (2 minima, 1 maximum),
as sketched in Figure 9.2. ForT = Tc both local minima have equal д̃1. Moreover, there is a jump
in density at T = Tc, as shown in Figure 9.3.
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9.2.3. Compressibility

The isothermal compressibility κT is defined as

1
κT
= −V

∂p

∂V

�����T ,N
. (9.24)

Note that ∂p∂V < 0, as larger pressure corresponds to smaller volume. Therefore κT > 0 (if κT < 0,
this would be an unstable situation).

So, in terms of intensive variables,

1
κT
= −v

∂p

∂v
, (9.25)

and therefore

−
∂p

∂v

�����T
=
∂

∂v

(
−

T

v − b0
+
b1
v2

) �����T
. (9.26)

By comparing this to
∂2д̃

∂v2

�����T ,p
=
∂

∂v

(
−

T

v − b0
+
b1
v2

) �����T
, (9.27)

we find
1
κT
= v
∂2д̃

∂v2

�����v0

. (9.28)

As κT > 0, this corresponds to a minimum of д̃. Moreover, we conclude that κTv corresponds
to the susceptibility in magnetic systems.

9.2.4. Chemical potential

The chemical potential is given by
µ = д̃(v0) , (9.29)

as one can see as follows:

д̃ = f̃ + pv0 (9.30)

=
1
N
(F + pV ) (9.31)

=
1
N
(F − JGibbs) (9.32)

=
1
N
(µN ) (9.33)

= µ . (9.34)

Recall that
JGibbs = F − µN = −pV (9.35)

152



9.3. Phase diagram

and note that N д̃ is the free enthalpy

G (N ,T ,p) = F + pV . (9.36)

We are considering chemical reactions where N atoms of a given species can be bound either
in molecule A or molecule B. The corresponding variable is the concentration, e. g.

cb =
#molecules B

#molecules A + #molecules B
. (9.37)

It replaces v . Then, the probability to find some value cb is proportional to e−
N д̃ (cb )

T .

9.3. Phase diagram

9.3.1. Vapor pressure curve

The vapor pressure curve describes the coexistence of fluid and gas at the critical value of (p,T ).
There are two conditions:

1. ∂д̃∂v = 0, from which we get the equation of state and the solution for the two minima v1,
v2 as a function of p,

2. д̃(v1) = д̃(v2), which is equivalent to µl = µg (liquid-gas coexistence condition) and from
which we get the vapor pressure curve pc (T ).

So, there is only one free parameter (for fixed N , V ), e. g. T or p:

given p → Tc , (9.38)
given T → pc . (9.39)

9.3.2. p − T diagram

The free enthalpies of the two phases are

Gl = Nlµl (p,T ) , Gg = Ngµg (p,T ) . (9.40)

We distinguish the following cases:

µl < µg : all particles in liquid phase (Nl = N , Ng = 0), (9.41)
µl > µg : all particles in gas phase (Nl = 0, Ng = N ), (9.42)
µl = µg : transition line (Nl,Ng , 0, Nl + Ng = N ). (9.43)

The transition line is described by p = pc (T ), which we have sketched in Figure 9.4. So,
coexistence in equilibrium is possible. Note that this is a universal curve, as it is independent of
Nl, Ng.
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p

T

µl = µg

Liquid
µl < µg

Gas
µl > µg

Figure 9.4.: p −T transition line between liquid and gas phase

9.3.3. Clausius-Clapeyron relation

We can set up a differential equation for the transition line by combining the coexistence
conditions of two infinitesimally distant points on the transition line (changing the index
notation from l,g to 1,2):

µ1 (T ,p) = µ2 (T ,p) , (9.44)
µ1 (T + dT ,p + dp) = µ2 (T + dT ,p + dp) , (9.45)

to arrive at
dµ1 = dµ2 , (9.46)

with
dµi =

∂µi
∂T︸︷︷︸
−
S
N

dT +
∂µi
∂p︸︷︷︸
V
N

dp . (9.47)

The latter is the so-called Duhem-Gibbs relation:

dµ =
V

N
dp −

S

N︸︷︷︸
s̃

dT . (9.48)

When expressing it in terms of intensive quantities and combining it with (9.46) we arrive at

v1dp − s̃1dT = v2dp − s̃2dT , (9.49)

which we can rewrite as
(s̃2 − s̃1)︸   ︷︷   ︸

∆s̃

dT = (v2 −v1)︸    ︷︷    ︸
∆v

dpc , (9.50)

to find the Clausius-Clapeyron equation:

dpc
dT
=

∆s̃

∆v
. (9.51)

It tells us that the slope of pc (T ) is given by the ratio of entropy difference and volume difference.
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9.3.4. Latent heat

There is a jump in entropy at the phase transition. So, heat has to be absorbed or released (the
phase transition can also be adiabatic if the change in T is slow). It is called “latent heat” and is
given by

L12 = T∆S = T (S2 − S1) . (9.52)
Combining it with the Clausius-Clapeyron equation gives us

L12 =
dT
dpc

T ∆V . (9.53)

The latent heat is necessary to separate the water molecules during the transition from the
liquid to the gas phase or to break up the crystal structure during the transition from the ice
(solid) to the liquid phase, respectively.

9.3.5. Superheating, supercooling

Let us introduce the following time scales:

ta: typical time scale of establishing the equilibrium in the liquid (relaxation time),

tb: typical time scale of establishing the equilibrium in the gas,

tt: time scale of the liquid-gas transition (forming of droplets / bubbles).

For T < Tc the probability to be in the gas phase is much smaller than the probability to be in
the liquid phase:

wb � wa , (9.54)
as sketched in Figure 9.5. But for the states in between these two phases it is even smaller:

w (v ) � wb for va < v < vb . (9.55)

Therefore, small fluctuations near B, e. g. at x , tend to return to B (stability of B regarding small
fluctuations). An equivalent explanation would be to say that B is a local minimum of G, even
if T < Tc, as illustrated in Figure 9.6.

The typical time scale of a fluctuation returning to B is given by tb, which is usually much
shorter than tt (overcoming a barrier; similar to tunneling in QM: exponentially suppressed
probabilities). Let us now consider an experimental time scale te in between these:

tb � te � tt . (9.56)

In this case, the system has not enough time for the transition B→ A, but instead stays in the
“local” equilibrium B even beyond the critical point. This phenomenon is called supercooling
(one speaks of superheating if during the transition A→ B the systems stays in A beyond the
critical point). Eventually, the local instability will become extremal when B becomes a saddle
point and finally a maximum. In practice one can observe the coexistence of water and vapor
not only at Tc.

For magnets the same effect appears in the form of hysteresis. Indeed, this is a characteristic
effect for first order transitions in general.
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Figure 9.5.: Probability distributions for liquid and gas phase

G
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T < Tc
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Figure 9.6.: Free enthalpy in liquid phase
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10. Critical Phenomena

10.1. Critical exponents

For second order phase transitions the effective potential describes correctly the qualitative
behaviour of the system in the regimeT → Tc. But a closer examination of the singularities yields
values for the critical exponents, which deviate from the simple “mean field” approximation we
used in subsection 9.1.2.

In the following we assume B = 0 for magnetic systems or p = p∗, the pressure at the endpoint
of the critical line, for liquid-gas transitions. These are just the conditions to observe second
order phase transitions. Moreover, we parametrize the behaviour for T → Tc by power laws,
with “critical exponents”.

10.1.1. Specific heat

The power law for the specific heat reads

c (T ) = creg +A |T −Tc |
−α , (10.1)

with creg being the simplest approximation expression for the specific heat, α being a critical
exponent, and A being some constant. We have plotted (10.1) in Figure 10.1 for different cases
of α .

10.1.2. Order parameter as function of temperature

The order parameter of magnetic systems is the magnetization per lattice site ϕ = M
N . Its

temperature dependence was illustrated in Figure 8.7. Close to the critical temperature one has
�����
M

N

�����
∼ (Tc −T )

β (10.2)

for T < Tc (compare (9.5)) and M = 0 for T > Tc. Here, β is another critical exponent.

10.1.3. Susceptibility

The susceptibility χ in magnetic systems corresponds to the compressibility κT in fluids. At
B = 0 / p = p∗ both behave the same close to the critical temperature:

χ ∼ |T −Tc |
−γ , (10.3)

κT ∼ |T −Tc |
−γ . (10.4)

This hold for T > Tc as well as for T < Tc. They both share the same critical exponent γ .
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c
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(a) α < 0

c

T

(b) α > 0

Figure 10.1.: Specific heat for different values of α

10.1.4. Order parameter at critical temperature as function of the “source”

We can take a look at the “source”-dependence of the order parameters, too. For magnetic
systems this source is the external magnetic field B, for fluids it is the pressure p (or rather its
deviation from the critical value p∗). Again, both types of systems show the same behaviour:

|∆n(p) | ∼ |p − p∗ |
1/δ , (10.5)

�����
M

N
(B)

�����
∼ |B |

1/δ , (10.6)

with some critical exponent δ . For magnetic systems we already found this relation in (9.11).

10.1.5. Mean field exponents

Let us first calculate / collect the mean field values of the critical exponents. In general, they are
extracted from an effective potential of the form

U =
1
2
A (T −Tc) ϕ

2 +
λ

8
ϕ4 +U0 , (10.7)

as already used in (9.1). We will need its first two derivatives:

∂U

∂ϕ
= A (T −Tc) ϕ +

λ

2
ϕ3 , (10.8)

∂2U

∂ϕ2
= A (T −Tc) +

3
2
ϕ2 . (10.9)

The first derivative also directly gives us the position of the minimum for SSB:

1
2
ϕ20 =

A (Tc −T )

λ
, (10.10)

as we already had found in (9.4). For SYM it is ϕ0 = 0.
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1) α

The specific heat is defined as

c = −T
∂2F

∂T 2 , (10.11)

where
F = TNŪ (ϕ0) , (10.12)

as we had found in (8.44). So, by inserting ϕ0 intoU , we find

F ∼ T U (ϕ0) =



T U0 for SYM,
T U0 −

1
2
A2T
λ (Tc −T )

2 for SSB.
(10.13)

And by applying the definition of c , we arrive at

c ∼



creg for SYM,
creg −

A2T
λ (3T − 2Tc) for SSB,

(10.14)

with

creg ∼ T
2 ∂

2U0

∂T 2 +T
∂U0

∂T
. (10.15)

There appears no T −Tc in the expression for c , so α = 0. Or, in other words, c has no pole at
T = Tc. But there is a jump in specific heat at the phase transition:

csym − cssb
����Tc
=
A2Tc
λ
. (10.16)

2) β

From
ϕ0 ∼ (Tc −T )

1/2 (10.17)

we can read off β = 1
2 .

3) γ

By combining (8.72) and (10.9) we find

χ ∼

(
∂2U

∂ϕ2

)−1�����phi0
∼ (T −Tc)

−1 . (10.18)

So, it follows γ = 1.
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4) δ

At T = Tc the effective potential is given by

U =
λ

8
ϕ4 . (10.19)

Moreover, we know that
∂U

∂ϕ
(ϕ0) = j . (10.20)

So, we can immediately conclude that ϕ0 ∼ j1/3 and therefore δ = 3.

We see that these mean field exponents are independent of the dimension d or the number of
components N (in case of O (N )-symmetry). Experimental results show that the actual values
of the critical exponents differ from the mean field values and that they depend on d and N . But
otherwise they are universal! For example, one finds, even experimentally, the same exponents
for liquid-gas transitions and uniaxial magnets. Note that both are described by an Ising model
with N = 1.

So, we conclude that the critical exponents are independent of the precise details of a system
(e. g. the exact form of the equation of state for fluids, i. e. b0, b1 and so on). Furthermore, they
are the same for different types of systems, if these share the same dimension and symmetries
(d , N ). We say, they are in the same “Ising universality class”. So, for example, liquid-gas
transitions, uniaxial magnets and many other systems belong to the same class.

As these universality classes only depend on d and N , there are only few of them. But why?
Why are 2 parameters sufficient to fix four critical exponents? And why do they only depend on
d and N ? The understanding of this needs the profound concept of “renormalization”. Part of the
answer arises from the existence of additional “scaling laws” that relate the critical exponents,
e. g.

β =
γ

δ − 1
,

2 = α + 2β + γ .

(10.21)

(10.22)

The concepts which are necessary to understand where the scaling relations come from and to
understand this universal behaviour of systems with equal symmetries, in general, have been
developed by Kadanoff, Wilson and Wegner. We will introduce these concepts in the following
sections.

10.1.6. Universal critical exponents

In Table 10.1 we have summarized the mean field results of the previous subsection and compare
them to more sophisticated theoretical calculations as well as to experimental values. Note that
the results of the two-dimensional Ising model are exact. It is the only interacting model that
has been solved exactly, so far. This solution was found by Onsager in 1944.
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α β γ δ

Theoretical results:

Mean field 0 0.5 1 3

Ising model in d = 2 0 0.125 ≈1.75 ≈15

Renormalization group in d = 3
n = 1 0.11 0.3249 1.2371(4) 4.817
n = 3 −0.1159 0.3647 1.3866 4.802

Experimental results:

Liquid-gas / uniaxial magnet (n = 1) 0.1 0.34 1.2 4.4

Isotropic magnet (n = 3) −0.15 0.36 1.25 4.3

Table 10.1.: Universal critical exponents

10.2. Correlation functions

10.2.1. Correlation length

The question we would now like to answer is: What does the density at one point r1 know
about the density at another point r2, as the local density fluctuates even in equilibrium? And
from which distance on are n(r1) and n(r2) uncorrelated, i. e. what is the correlation length of
the system? For magnetic systems we would ask the same questions for the magnetisation, but
we will stick to the fluid notation in the following.

To answer these questions, let us look at the correlation function (2-point function):

G (r1,r2) =
〈[
n(r1) − n̄

] [
n(r2) − n̄

] 〉
(10.23)

=
〈
n(r1) n(r2)

〉
− n̄2 . (10.24)

Note that, due to the translational and rotational symmetry of our system, G can only depend
on the distance between two points:

G (r1,r2) = G ( |r1 − r2 |) = G ( |r |) = G (r ) , (10.25)

with r = r1 − r2. Often, the correlation function shows a very typical behaviour for large r :

G (r ) ∼ e−
r
ξ , (10.26)

where ξ is the correlation length.
G (r ) is the central quantity to describe the local distribution of fluctuations – regardless of

whether one deals with the amorphous structure of polymers or the galaxy distribution in the
universe, for example. Moreover, it has to play an important role in phase transitions. As we
have already seen, second order phase transitions correspond to a order-disorder transition, e. g.

T > Tc : M = 0 , (10.27)
T < Tc : |M | > 0 (10.28)
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in magnetic systems at B = 0. To make this transition possible, the spins have to “know” of
each other, i. e. they have to be correlated. But not only that, the correlation length has to be a
function of temperature, too, to explain these different behaviours above and below the critical
temperature.

10.2.2. Correlation function and generating functional

Let us assume a very general form of a partition function for a magnetic system:

Z [j (r )] =
∑
τ

e−β H [ϕ (r )]+
∑
r ϕ (r ) j (r ) , (10.29)

where j (r ) are artificial local sources. They resemble an arbitrary inhomogeneous magnetic
field. Moreover, H [ϕ (r )] and Z [j (r )] are functionals, i. e. functions of functions. Note that they
are not just functions of some constant ϕ or j.

Now, the so-called generating functional is defined as

W = lnZ . (10.30)

Its first derivative with respect to j (r ) is the expectation value of ϕ:

∂W

∂j (r )
=

1
Z

∑
τ

ϕ (r ) e−βH+
∑
ϕ j (10.31)

=
〈
ϕ (r )

〉
, (10.32)

and its second derivative is exactly the 2-point correlation function:

∂2W

∂j (r ) ∂j (r ′)
= −

1
Z 2

[∑
τ

ϕ (r ) e−βH+
∑
ϕ j

] [∑
τ

ϕ (r ′) e−βH+
∑
ϕ j

]

+
1
Z

∑
τ

ϕ (r ) ϕ (r ′) e−βH+
∑
ϕ j

(10.33)

=
〈
ϕ (r ) ϕ (r ′)

〉
−

〈
ϕ (r )

〉 〈
ϕ (‘r )

〉
(10.34)

=
〈[
ϕ (r ) −

〈
ϕ (r )

〉] [
ϕ (r ′) −

〈
ϕ (r ′)

〉] 〉
(10.35)

=G (r ,r ′) . (10.36)

If we now demand translational symmetry, it is〈
ϕ (r

〉
= ϕ̄ , (10.37)

G (r ,r ′) = G (r − r ′) . (10.38)

And if we further demand symmetry under spatial rotations, it is again

G (r ,r ′) = G ( |r − r ′ |) . (10.39)
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10.2.3. Correlation function and susceptibility

Now, let us look at what happens, if we replace j (r ) by j:

j (r ) → j , (10.40)

with j being independent of r . Then, the first two derivatives ofW with respect to j yield

∂W

∂j
=

∑
r

〈
ϕ (r )

〉
(10.41)

= N ϕ̄ , (10.42)

∂2W

∂j2
=

∑
r ,r ′

〈[
ϕ (r ) − ϕ̄

] [
ϕ (r ′) − ϕ̄

] 〉
(10.43)

=
∑
r ,r ′

G (r ,r ′) (10.44)

= N
∑
r

G (r ,0) (10.45)

= N
∑
r

G (r ) , (10.46)

where we used translational and rotational symmetry in the last two steps.
On the other hand, the susceptibility is defined as

χ =
∂ϕ̄

∂j
(10.47)

=
∂

∂j

1
N

∂W

∂j
(10.48)

=
1
N

∂2W

∂j2
. (10.49)

So, the susceptibility and the correlation function are related via

χ =
∑
r

G (r ) . (10.50)

While we have considered a magnetic system, so far, these calculations can be performed
completely analogously for fluids. In that case, one ends up with a relation between the
compressibility and the correlation function:

κT =
1

n2T

∫
d3r G (r ) . (10.51)
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10.2.4. Critical exponent of correlation length and anomalous dimension

As we have already mentioned, at large r the correlation function behaves like a exponential
cutoff:

lim
r→∞

G (r ) ∼ e−
r
ξ . (10.52)

So, using the relations between susceptibility / compressibility and the correlation function,
we can conclude that χ and κT are finite as long as ξ remains finite. But as we have seen in
section 8.4, the susceptibility diverges at the critical temperature (e. g. recall Figure 8.10). The
same holds for the compressibility. We can immediately infer that the correlation length has to
diverge at T = Tc, too:

χ ,κT
T→Tc
−−−−−→ ∞ , (10.53)

ξ
T→Tc
−−−−−→ ∞ . (10.54)

To describe this behaviour, we introduce another critical exponent ν :

ξ ∼ |T −Tc |
−ν . (10.55)

In the mean field approximation one finds ν = 1
2 . Moreover, the large r limit of G at T = Tc can,

in general, be expressed in the following way:

lim
r→∞

G (r ) ∼ r−(d−2+η) , (10.56)

with the so-called “anomalous dimension” η being yet another critical exponent. Its mean field
value is η = 0.

10.2.5. Critical opalescence

Considering a fluid, density fluctuations will lead to fluctuations in the refractive index. It
follows that light with a wavelength close to the correlation length will experience stronger
scattering. As we have seen that the correlation length becomes large in the vicinity of a second
order phase transition, it will eventually reach the wavelength of visible light, causing the
usually transparent fluid to appear cloudy. This phenomenon is known as critical opalescence.

10.3. Universality

10.3.1. Macroscopic laws for second order phase transition

At second order phase transitions the correlation length diverges, leading to long-range phenom-
ena. This is the reason for universality: the long-range behaviour does not depend on details of
the microscopic interactions, any more, except for very few properties, like the dimension, the
symmetries and the number of relevant degrees of freedom. These properties determine the
universality class of the system.
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We have seen that the mean filed theory is not capable of describing this long-range behaviour
properly. But nevertheless, exact statements are possible! One finds laws which are only loosely
connected to the microphysics and mainly arise from the statistics of many body systems. These
effective laws strongly depend on the relevant distance scale. For example, particle and atomic
physics are suitable to describe systems at very small scales, whereas these systems are better
described by the laws of chemistry and biology at way larger, macroscopic scales.

So, what we are looking for, is a framework to explain this qualitatively different behaviour on
different scales – to describe the transition frommicroscopic laws on small scales to macroscopic
laws on large scales. This framework is the so-called renormalization group. It describes the
distance scale dependence of the effective laws and makes it possible to cast the qualitative
description of these central ideas into a mathematically rigorous form.

In the following subsections, we will introduce this concept via the block spin description,
developed by Kadanoff.

10.3.2. Ising model in one dimension

Let us first look at the Ising model in one dimension. Using the abbreviation

β J = K , (10.57)

its partition function takes the form

Z =
∑
{si }

eK
∑N
i=1 si si+1 (10.58)

=
∑
{si }

N∏
i=1

eKsi si+1 . (10.59)

Now, we introduce the concept of a block lattice. Therefore, we relabel the spins in the following
way:

s̄j : j =
i + 1
2

for i odd (spins on the block lattice, “block-spins”), (10.60)

s ′j : j =
i

2
for i even (intermediate spins). (10.61)

It is illustrated in Figure 10.2.
The idea now is to “integrate out” the intermediate spins, to obtain a new Ising model for the

block spins s̄j . We achieve this by always grouping two subsequent factors of the product in
(10.59) into one block factor. This way, we arrive at a product of blocks:

Z =
∑
{si }

N/2∏
j=1

(
eKs̄j s

′
j eKs̄j+1s

′
j

)
(10.62)

=
∑
{si }

∏
j

eK (s̄j s ′j+s̄j+1s
′
j ) (10.63)

=
∑
{si }

∏
j

eKs
′
j (s̄j+s̄j+1) . (10.64)
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i

j for s̄

j for s ′

1 2 3 4 5 6 7

1 2 3 4

1 2 3

Figure 10.2.: One-dimensional block lattice

Now, we can split the configuration sum, as s ′j only appears in block j:

Z =
∑
{s̄j }

∏
j

( ∑
s ′j=±1

eKs
′
j (s̄j+s̄j+1)

)
. (10.65)

Next, we perform the inner sum (“integrate out the intermediate spins”):

Z =
∑
{s̄j }

∏
j

(
eK (s̄j+s̄j+1) + e−K (s̄j+s̄j+1)

)
. (10.66)

This way, we arrive at a new Ising model for the block spins:

Z =
∑
{s̄j }

∏
j

eK
′s̄j s̄j+1+C , (10.67)

with a suitably defined K ′ and some constant C .
To determine K ′, we use the condition that for all possible spin configurations the two

expressions (10.66) and (10.67) for Z have to be identical:

(s̄j , s̄j+1) : eK (s̄j+s̄j+1)+ e−K (s̄j+s̄j+1) = eK
′s̄j s̄j+1+C , (10.68)

++ : e2K+ e−2K = eK
′+C , (10.69)

+− : 2 = e−K
′+C , (10.70)

−+ : 2 = e−K
′+C , (10.71)

−− : e−2K+ e2K = eK
′+C . (10.72)

Inverting (10.70) leads to
1
2 = eK

′−C , (10.73)

and multiplying this with (10.69) gives us

1
2

(
e2K + e−2K

)
= e2K

′

. (10.74)

So, our new coupling K ′ is given by

K ′ = 1
2 ln

[
1
2

(
e2K + e−2K

) ]
= 1

2 ln cosh 2K . (10.75)
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The additive constant C is irrelevant and can be neglected. With that, (10.67) has exactly the
same form as (10.59). So, if the original lattice had lattice spacing a, the new partition function
is describing a lattice with lattice spacing 2a and a coupling K ′. But, of course, both expressions
of the partition function are the same – we are still describing the same model! In other words,
(10.67) is describing the original model, just on a larger length scale. And on this length scale it
behaves like a model on a lattice with doubled lattice spacing and effective coupling K ′:

Renormalization: K → K ′ ,

Lattice spacing: a → 2a .
(10.76)

Repeating the renormalization step (10.76) leads to a length scale dependent K (l ):

K → K ′ → K ′′ → K ′′′ → · · · (10.77)
K (a) → K (2a) → K (4a) → K (8a) → · · · (10.78)

This procedure describes the renormalization group. It is a group, whose elements are all
possible sequences of renormalization steps. Actually, if you want to be mathematically more
rigorous, it is just a semigroup, as it does not contain the inverses of its elements.

Now, let us look at the different cases for K . If K > 0, then

e−2K < e2K , (10.79)

so,
e2K

′

= 1
2

(
e2K + e−2K

)
< e2K , (10.80)

and therefore,
0 < K ′ < K , (10.81)

i. e. the coupling decreases as the length scale increases. So, the interaction goes to zero, if one
is going to larger and larger length scales:

K (l )
l→∞
−−−−→ 0 . (10.82)

This means that it is possible to treat this system perturbatively, as an expansion in K .
In the other case, K < 0, we speak of an antiferromagnet. But then (10.75) tells us that K ′ > 0,

nevertheless. So, from there on it just behaves the same as the K > 0 case.

10.3.3. Ising model in d > 1 dimensions

New interactions

If we now consider a lattice in d > 1 dimensions, integrating out the microscopic modes
(the “intermediate spins”) leads to way more complicated interactions, as we have sketched in
Figure 10.3 for d = 2. And performing further renormalization steps will lead to even more and
more complicated interactions. So, in the following we will have to find a systematic way to do
so.
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Figure 10.3.: Complicated interactions in two-dimensional block lattice. The symbol denotes block
spins in the first renormalization step. Links denote effective interactions. In addition to
next-neighbour interactions one now also finds “diagonal interactions”. A second renormal-
ization step leads to the block spins . This induces even more complicated interactions, as
demonstrated by the dashed link.

2a a

Figure 10.4.: Block spins in two-dimensional lattice

Block spins

Let us generalize the concept of block spins, that we have introduced in the one-dimensional
case. A block will now consist out of 2d spins, as illustrated in Figure 10.4 for d = 2. We define
the spin of the k-th block as

ŝk =
∑

i ∈ block(k )

si
√
2d
, (10.83)

where we have chosen an arbitrary normalisation. Now, these block spins represent our new
degrees of freedom, i. e. we have reduced the number of degrees of freedom.

The partition function is given by

Z =
∑
{si=±1}

eβ J
∑

<i j> si sj (10.84)

=
∑
{si=±1}

e−βH0[si ] . (10.85)
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Due to (10.83) we can write

∫ ∞

−∞

dŝk δ
(
ŝk − 2

−d/2
∑
block

si
)
= 1 . (10.86)

For each block we can now insert such a 1 into the partition function:

Z =
∏

k ∈ block lattice

∫
dŝk

∑
{si=±1}

original lattice

δ
(
ŝk − 2

−d/2
∑
block

si
)
e−βH0[si ]

︸                                           ︷︷                                           ︸
e−βH1[ŝk ]

(10.87)

=
∏
k

∫
dŝk e

−βH1[ŝk ] . (10.88)

As in the one-dimensional case, we end up with an equivalent partition function, formulated on
a block lattice.

Renormalization flow of the coupling

In the same way, as we have done it in the one-dimensional Ising model, we can repeat this
blocking procedure, i. e. this renormalization step:

H0 → H1 → H2 → H3 → · · · . (10.89)

This way, we end up with a so-called renormalization flow J (L) of the coupling, where L = 2na.
Moreover, new couplings are generated by this procedure.

New variables

The sum of the spins in a block k ,
∑

i ∈block(k ) si , can take values from −2d to 2d . For our
normalisation (10.83) the spacing between the values ŝk amounts to 2−d/2, instead of 1 for the
original spins. The range of ŝk is given by

ŝk ∈ [−2
d/2,2d/2] , (10.90)

instead of si ∈ [−1,1] for the original spins. Thus, both range and spacing of the block variable
is different from the original variable.

After many renormalization steps we can replace our block spin by a continuous function ϕ:

ŝk → ϕ (x ) , (10.91)

where −∞ < ϕ (x ) < ∞.
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Potential

The interactions between the spins of one given block spin are described by the potentialU (ŝk ).
They are called “ultra local” or “on-site” interactions. Due to the symmetry under ŝk → −ŝk it
can only depend on the square of the spin:

U (ŝk ) = U (ŝ2k ) . (10.92)

For the microscopic Ising spins there is only one possible value s2i = 1, so there are no on-site
interactions; i. e. microscopic spins si do not interact with themselves. For block spins, on the
other hand, U (ŝ2k ) is not trivial any more, as ŝ2k can take values between 0 and 2d . And in the
continuum limit,U [ϕ (x )] is a function of a continuous variable ϕ.

Let us denote the potential at step n of the blocking procedure, i. e. at effective lattice spacing
l = 2na, byU [ϕ; l]. So, the potential changes as a function of length scale. Now, the Hamiltonian
at length scale l can be expressed as a potential for the on-site interactions plus additional terms
∆H :

β H [ϕ (x ); l] =
∑
x

U [ϕ (x ); l] + β ∆H . (10.93)

Here, ∆H vanishes if all ϕ (x ) are equal, i. e. if we are considering a homogeneous field ϕ (x ) = ϕ.
Let us assume

∆H ≥ 0 . (10.94)

Then,H [ϕ (x ); l] is minimal for a homogeneous fieldϕ0, withϕ0 being the minimum ofU [ϕ (x ); l].
In general, this minimum changes due to fluctuations. So it is length-scale dependent: ϕ0 (l ).

10.3.4. Renormalization flow

Principle of the renormalization flow

H [ϕ (x ); l] describes a family of lattice models with different l . But they all correspond to the
same microscopic model. So, we can conclude that the physical laws take different forms on
different length scales l . For example, the form of the on-site interaction potential U might
depend on l in the way sketched in Figure 10.5. Its interpretation would be that small domains
favour magnetisation (non-zero position of the minimum ofU ), whereas they get averaged out
for large domains.

The general principle behind this is, that for H [ϕ; l] the fluctuations with wavelength smaller
than l are averaged / integrated out. On the other hand, fluctuations with wavelength larger
than l remain to be done.

Momentum space

All of this can be formulated more elegantly in momentum space. The momentum scale,
belonging to the length scale l , is

k ≈
π

l
. (10.95)

So, fluctuations with momenta q2 > k2 are integrated out.
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U

ϕ

(a) l = 100a

U

ϕ

(b) l = 109 a

Figure 10.5.: Example of an potential on different length scales

In momentum space, Hamiltonian and potential are denoted by H [ϕ;k] and U [ϕ;k]. The
microscopic limit of the Hamiltonian is given by

H [ϕ;k = π/a] = H0[ϕ] , (10.96)

and its k → 0 limit can be written as

β H [ϕ;k = 0] = NU [ϕ] + β ∆H . (10.97)

In the latter limit, all fluctuations are integrated out. The potential in this limit is called the
effective potential:

U [ϕ] = U [ϕ;k → 0] . (10.98)

Flow equation

The central equation of the renormalization group is the flow equation:

∂U [ϕ;k]

∂ lnk
= . . . , (10.99)

where the r. h. s. still remains to be computed. This equation describes the change of the potential
U when varying the momentum scale. To extract the free energy for constant ϕ (magnetisation),
it is sufficient to solve this equation in the k → 0 limit. Equivalently, we can consider this
equation in real space:

∂U [ϕ; l]

∂l
= . . . , (10.100)

and solve it in the l → ∞ limit.
As a simplification, we restrict the potential to a quartic polynomial at every scale l :

U [ϕ; l] = 1
2λl (ρ − ρ0,l )

2 , (10.101)

with
ρ = 1

2ϕ
2 . (10.102)
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U

ϕ

U

ϕ

Figure 10.6.: Flow of the potential towards larger l

Here, λl and ρ0,l depend on l and ρ0,l is the minimum ofU [ϕ; l].
Now we want to set up flow equations for ρ0,l and λl . Assuming a2 � l2 � (λlρ0,l )

−1 as an
approximation, one finds in three dimensions

∂

∂l
ρ0 = −

3c1
2π2

1
l2
, (10.103)

∂

∂l
λ = −

9c2
4π2 λ

2 , (10.104)

with some constants c1, c2 of order O (1). (This result requires a computation not covered by this
lecture.) We can directly infer that ρ0 and λ decrease for increasing l . The qualitative change of
U due to that has been sketched in Figure 10.6.

Solution of flow equation

Let us first consider the running minimum. The equation we have to solve, is

dρ0 = −
3c1
2π2

dl
l2

(10.105)

=
3c1
2π2 d(l

−1) . (10.106)

The solution to this differential equation is given by

ρ0 = ρ̂0 +
3c1
2π2

(
1
l
−

1
l0

)
, (10.107)

with initial value ρ̂0 = ρ0 (l0), which depends on T and J .
Let us examine its large length scale behaviour:

ρ0 (l )
l→∞
−−−−→ ρ̂0 −

3c1
2π2l0

= ρ̂0 − ρ0,c . (10.108)

So, we can distinguish three different cases:

ρ̂0 > ρ0,c: In this case, ρ0 (l → ∞) > 0. So, it describes the ordered phase with SSB.
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ρ̂0 < ρ0,c: In this case, ρ0 (l ) reaches 0 before l → ∞. So, it describes the disordered phase,
where the ϕ → −ϕ symmetry is unbroken (SYM).

ρ̂0 = ρ0,c: At this point, the phase transition occurs! The corresponding critical temperature
can be deduced from ρ0 (Tc) = ρ0,c.

Now, let us consider the running coupling. Its differential equation is given by

dλ
λ2
= −d(λ−1) = −

9c2
4π2 dl . (10.109)

Integrating this, yields
1
λ
−

1
λ0
=

9c2
4π2 (l − l0) , (10.110)

where λ0 = λ(l0). Solving this for λ gives us

λ =

(
1
λ0
+

9c2
4π2 (l − l0)

)−1
(10.111)

= λ0

(
1 +

9c2λ0
4π2 (l − l0)

)−1
. (10.112)

In the l → ∞ limit, this becomes

λ =
4π2

9c2

1
l
. (10.113)

Note that this is independent of the initial value! This is an example of how the memory of the
microscopic physics is lost at macroscopic scales!

10.3.5. Fixed points

Now, we want to look for fixed points of the system, i. e. points, where the flow of λ and ρ0
vanishes. Actually, we want to look for fixed points of the dimensionless quantities

λ̃ = λl , (10.114)
κ = ρ0l , (10.115)

with respect to the dimensionless scale

t = − ln
l

l0
. (10.116)

This is necessary to find truly scale-independent fixed points of the system!
For κ we find

d
dt
κ = −l

d
dl

(ρ0l ) (10.117)

= −κ − l2
dρ0
dl
. (10.118)
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βλ̃

λ̃
λ̃∗

(a) Flow of λ̃

βκ

κ
κ∗

(b) Flow of κ

Figure 10.7.: Flow of the dimensionless quantities towards larger l

So, using (10.107), we arrive at

βκ = ∂tκ = −κ +
3c1
2π2 . (10.119)

Similarly, we compute the t-derivative of λ̃:

d
dt
λ̃ = −λ̃ − l2

dλ
dl
, (10.120)

and, using (10.112), find

βλ̃ = ∂t λ̃ = −λ̃ +
9c2
4π2 λ̃

2 . (10.121)

Here, we adopted the usual QFT notation of β-functions. Note that no mass or length scale
appears in these flow equations!

We have sketched the flow of λ̃ in Figure 10.7a. Thereby, the arrows indicate the flow towards
larger l , i. e. smaller t . We see that, independent of the starting point, λ̃ flows to the fixed point
λ̃∗ for l → ∞. From

βλ̃ (λ̃∗) = 0 (10.122)

it follows
λ̃∗ =

4π
9c2
. (10.123)

So, we can confirm the large length scale behaviour found in (10.113):

λ
l→∞
−−−−→

λ̃∗
l
=

4π
9c2l
. (10.124)

This flow of the effective couplings towards an “infrared” fixed point is related to the observed
loss of memory of themicroscopic physics. The details of themicrophysics determine the starting
point of the flow of the coupling. But as we have seen, for larger (macroscopic) lenght scales the
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coupling flows towards this fixed point independent of the specific starting point! This is also
the deep origin of the universality of the critical exponents. They are related to the behaviour
of the β-functions around the fixed point. This behaviour is determined by the form of the
potentialU . And this, in turn, is determined by the dimension and the symmetries of our system.

Universality follows from the flow!

Contrary to the coupling, the flow of κ, as sketched in Figure 10.7b, shows the existence of an
“ultraviolet” fixed point κ∗. Every other starting point than κ = κ∗ leads to a divergent flow for
l → ∞. So, the critical point is described by κ = κ∗:

κ = κ∗ � T = Tc . (10.125)

That is because the critical point is characterized by ρ0 = κ
l → 0 for l → ∞. And this is only

possible for κ = κ∗.
So, we see that at the critical point all quantities are on a fixed point. Therefore, our system

is scale-invariant at the critical point! This behaviour is characteristic for second order phase
transitions. But note that this needs some tuning for κ, in contrast to the infrared fixed point
for λ̃.
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