The Unruh Effect
Nasim Rahaman and Ingolf Bischer
Supervision: Fabrizio Rompineve
June 17, 2015

Consider an observer with constant proper acceleration (relativistic uniform acceleration) in Minkowski space. The Unruh effect is the phenomenon that this observer will measure a density of particles following a Bose-Einstein distribution, where the temperature is identified with the acceleration. In the following, we will first set up suitable coordinates and then demonstrate the effect for a 1+1-dimensional massless scalar quantum field.

The sign convention is $\eta = \text{diag}(1, -1, -1, -1)$.

I. Trajectory of a Uniformly Accelerated Observer

We refer to the Minkowski coordinates t, x, y, z as the lab frame. It is chosen such that the observer is accelerated only in positive x-direction. Her proper coordinate system (the one in which she is at always at rest) is given by τ, ξ, y, z. The world line is parametrized by the proper time τ and the observer has a 4-velocity vector $u^\mu = \frac{dx^\mu}{d\tau}$, with $u^2 = 1$.

Hence, in the proper frame the 4-acceleration

$$a^\mu = \frac{d^2x^\mu}{d\tau^2} = \frac{du^\mu}{d\tau}$$

assumes the simple form

$$a = (0, a, 0, 0).$$

Conveniently, this implies that

$$d^\mu a_\mu = -a^2$$

in all frames. From now on we abandon the constant coordinates y and z and work in 1+1-dimensional Minkowski space.

The differential equation in (1) is hyperbolic and has the solutions

$$u^0(\tau) = \cosh(F(\tau)), \quad u^1(\tau) = \sinh(F(\tau)),$$

where $F(\tau)$ is a differentiable function of τ and we assume that proper time runs into the same direction as coordinate time, $u^0 > 0$. Deriving and comparing with (2) yields

$$a(\tau) = \dot{F}(\tau) \sinh(F(\tau)) + \cosh(F(\tau)),$$

$$a^2 = \ddot{F}^2 = \text{const.},$$

$$F(\tau) = a \tau,$$

where we choose the initial condition $u^1(0) = 0$. By integration we obtain the world line (setting $x(0) = a^{-1}$)

$$x(\tau) = (a^{-1} \sinh(a\tau), a^{-1} \cosh(a\tau)).$$

II. Proper Coordinates and Rindler Space

To compare a quantum field in lab frame and proper frame we need a coordinate transformation $t(\tau, \xi), x(\tau, \xi)$. Since the accelerated frame is not inertial it cannot be a Lorentz transformation. However, we can define at each τ_0 a momentarily comoving inertial frame with 4-velocity $u(\tau_0)$ whose coordinates match the proper coordinates (only at $\tau = \tau_0$).

We express the vector of each proper coordinate (τ, ξ) as a sum $(\tau, 0) + (0, \xi)$. The former is in all frames given by the trajectory $x(\tau)$, while the latter now can be obtained by a Lorentz boost between the lab frame and the comoving frame

$$\gamma \cdot \begin{pmatrix} 1 & v \\ v & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ \xi \end{pmatrix} = \begin{pmatrix} u^0 & u^1 \\ u^1 & u^0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ \xi \end{pmatrix} = \begin{pmatrix} u^0 \xi \\ u^1 \xi \end{pmatrix}.$$

Summing up both vectors in the lab frame, we obtain the coordinate transformations

$$t(\tau, \xi) = \frac{1 + a\xi}{a} \sinh(a\tau),$$

$$x(\tau, \xi) = \frac{1 + a\xi}{a} \cosh(a\tau).$$

The inverse transformations are then:

$$\tau(t, x) = \frac{1}{2a} \ln \frac{x + t}{x - t},$$

$$\xi(t, x) = -a^{-1} + \sqrt{x^2 - t^2}.$$

Note that τ takes values in the interval $(-\infty, \infty)$, while ξ is restricted to $(-a^{-1}, \infty)$. In particular, only the right Rindler wedge (c.f. Figure 1) given by $0 < x \leq |t|$ is covered by the proper coordinates. The boundary $x = |t|$ marks the asymptotes of $\tau = \pm \infty$. Therefore every signal reaching the accelerated observer from outside will be interpreted as originating from $\tau = -\infty$.

Insertion of the proper coordinates into the metric yields the 1+1 dimensional Rindler metric:

$$ds^2 = dt^2 - dx^2 = (1 + a\xi)^2 dr^2 - d\xi^2.$$

It can be written in a conformally flat form by introducing $\tilde{\xi} = \frac{1}{a} \ln(1 + a\xi) \in (-\infty, \infty)$:

$$ds^2 = e^{2\tilde{\xi}}(d\tau^2 - d\tilde{\xi}^2).$$

The transformation equations become:

$$t(\tau, \tilde{\xi}) = a^{-1} e^{a\tilde{\xi}} \sinh(a \tau),$$

$$x(\tau, \tilde{\xi}) = a^{-1} e^{a\tilde{\xi}} \cosh(a \tau).$$

Observe how (8) resembles the FRW metric with conformal time η and scale factor $a(\eta)$:

$$ds^2 = a^2(\eta)(d\eta^2 - dx^2).$$
III. MASSLESS SCALAR FIELD IN RINDLER SPACE

The action of a massless scalar field $\phi(t, x)$ is

$$S[\phi] = \frac{1}{2} \int g^{\alpha\beta} \phi_{,\alpha} \phi_{,\beta} \sqrt{-g} \, dt \, dx,$$

where $\sqrt{-g} \, dt \, dx$ is the invariant measure. Note that the action (12) is conformally invariant, i.e. on replacing

$$g_{\alpha\beta} \rightarrow \tilde{g}_{\alpha\beta} = \Omega^2 (t, x) g_{\alpha\beta}$$

the determinant $\sqrt{-g}$ picks up a factor $\Omega^2 (t, x)$ which cancels the factor of Ω^{-2} from the inverse metric $g^{\alpha\beta}$. Apart from the prefactor $\Omega^2 = e^{2\alpha \xi}$, the conformal Rindler metric (8) is indeed Minkowskian, i.e. $\sqrt{-g} = \Omega^2$. The actions in lab and conformal Rindler coordinates then read

$$S[\phi] = \frac{1}{2} \int [(\partial_t \phi)^2 + (\partial_x \phi)^2] \, dt \, dx,$$

$$S[\phi] = \frac{1}{2} \int [(\partial_{\tilde{t}} \phi)^2 + (\partial_{\tilde{x}} \phi)^2] \, d\tilde{t} \, d\tilde{x}$$

respectively.

The corresponding equations of motion can be derived by forming the Euler-Lagrange equation of (13) and (14). One obtains:

$$\partial_{\tilde{t}}^2 \phi - \partial_{\tilde{x}}^2 \phi = 0, \quad \partial_t^2 \phi - \partial_x^2 \phi = 0.$$

The general solutions are given by

$$\phi(t, x) = A(t - x) + B(t + x),$$

$$\phi(\tau, \xi) = P(\tau - \xi) + Q(\tau + \xi),$$

where A, B, P, and Q are arbitrary smooth functions.

Since (16) and (17) solve the Klein-Gordon equations (15), one can formulate the mode expansions in both sets of coordinates. Using the dispersion relation $\omega_k = |k|$ (for the 1-D spatial momentum $k^1 = k$), one obtains

$$\hat{\phi}(t, x) = \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} \frac{1}{\sqrt{2|k|}} [e^{-ik[t + ikx]} \hat{a}_k^- + e^{ik[t - ikx]} \hat{a}_k^+]$$

$$\hat{\phi}(\tilde{\tau}, \tilde{\xi}) = \int_{-\infty}^{\infty} \frac{dk}{\sqrt{2\pi}} \frac{1}{\sqrt{2|k|}} [e^{-ik[\tau + ik\xi]} \hat{b}_k^- + e^{ik[\tau - ik\xi]} \hat{b}_k^+]$$

where the mode operators \hat{a}_k^\pm and \hat{b}_k^\pm do not agree in general. This result is similar to that derived in the first talk [1] (cf. pp. 67-70 of [2]), which is not surprising given how (8) resembles (11)². Consequently, the vacua of Rindler and Minkowski observers differ:

$$|0_M \neq |0_R\rangle,$$

An accelerating observer will measure that the corresponding vacuum state $|0_R\rangle$ has the lowest possible energy—lower than that of the Minkowski vacuum state $|0_M\rangle$. Particularly, a particle detector at rest in the accelerated frame will detect particles when the scalar field is in $|0_M\rangle$. Conversely, the Rindler vacuum $|0_R\rangle$ will appear excited to an observer in the lab frame. This is the Unruh effect.

In the following sections, the mode operators \hat{a}_k^\pm and \hat{b}_k^\pm will be shown to be related by a generalized Bogolyubov transformation after introducing a convenient set of coordinates, which would enable us to express $|0_M\rangle$ as a superposition of excited states (with respect to $|0_R\rangle$) and compute the particle occupation number distribution as observed in the accelerated frame. The particle occupation density will resemble a Bose-Einstein distribution with Unruh temperature T.

IV. BOGOLYUBOV TRANSFORMATIONS

For further computations, it is convenient to introduce the lightcone coordinates:

$$\bar{u} = t - x, \quad \bar{v} = t + x, \quad (20)$$

$$u = \tau - \xi, \quad v = \tau + \xi. \quad (21)$$

The transformation equations (4) and (3) assume the form:

$$\bar{u} = -a^{-1} e^{-av}, \quad \bar{v} = a^{-1} e^{-av},$$

as can be found by using that $\sinh x = \frac{1}{2}(e^x - e^{-x})$ and $\cosh x = \frac{1}{2}(e^x + e^{-x})$. The metric (7) becomes

$$ds^2 = dt^2 - dx^2 = (dt + dx)(dt + dx) = du dv = e^{a(v - u)} du dv$$

and the field equations (15) can be expressed as

$$\partial_u \partial_v \phi(\bar{u}, \bar{v}) = 0, \quad \partial_u \partial_v \phi(u, v) = 0,$$

with

$$\phi(\bar{u}, \bar{v}) = A(\bar{u}) + B(\bar{v}), \quad (24)$$

$$\phi(u, v) = P(u) + Q(v). \quad (25)$$

²However, unlike (11), (8) is static (i.e. there exists a time-like Killing vector field), which justifies the choice of positive frequency solutions $\sim e^{-i\omega t}$ to the Klein-Gordon equation.
To obtain the lightcone mode expansion of \(\phi(\bar{u}, \bar{v}) \), (18) must first be split in two integrals:

\[
\hat{\phi}(t, x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi \sqrt{2k}} \left[e^{-ikx} \hat{a}_k + e^{ikx} \hat{a}_k^+ \right] + \int_{-\infty}^{0} \frac{dk}{\sqrt{2\pi}} \left[e^{-ikx} \hat{a}_k + e^{ikx} \hat{a}_k^+ \right],
\]

(26)

On introducing \(\omega = |k| \) as the integration variable and substituting from (20), (26) becomes:

\[
\hat{\phi}(\bar{u}, \bar{v}) = \int_{0}^{\infty} \frac{d\omega}{\sqrt{2\pi}} \frac{1}{\sqrt{2\omega}} \left[e^{-i\omega \bar{u}} \hat{a}_\omega + e^{i\omega \bar{u}} \hat{a}_\omega^+ \right] + e^{-i\omega \bar{v}} \hat{a}_- - e^{i\omega \bar{v}} \hat{a}_-^+ \left(\hat{a}_\omega \right] \right]
\]

(27)

Compare this with the general solution (24) of the field equations (23) to find:

\[
\hat{A}(u) = \int_{0}^{\infty} \frac{d\Omega}{2\pi} \frac{1}{\sqrt{2\Omega}} \left[e^{-i\Omega u} \hat{a}_\Omega + e^{i\Omega u} \hat{a}_\Omega^+ \right]
\]

(28)

\[
\hat{B}(v) = \int_{0}^{\infty} \frac{d\omega}{\sqrt{2\pi}} \frac{1}{\sqrt{2\omega}} \left[e^{-i\omega v} \hat{a}_- - e^{i\omega v} \hat{a}_-^+ \right]
\]

(29)

The exact procedure gets through for \(\hat{\phi}(u, v) = \hat{P}(u) + \hat{Q}(u, v) \) and one finds

\[
\hat{P}(u) = \int_{0}^{\infty} \frac{d\Omega}{2\pi} \frac{1}{\sqrt{2\Omega}} \left[e^{-i\Omega u} \hat{b}_\Omega + e^{i\Omega u} \hat{b}_\Omega^+ \right]
\]

(30)

\[
\hat{Q}(v) = \int_{0}^{\infty} \frac{d\omega}{\sqrt{2\pi}} \frac{1}{\sqrt{2\omega}} \left[e^{-i\omega v} \hat{b}_- - e^{i\omega v} \hat{b}_-^+ \right]
\]

(31)

Now, observe that the coordinate transformations (20) and (21) do not mix u’s and v’s. One can therefore write

\[
\hat{A}(\bar{u}(u)) = \hat{P}(u),
\]

(32)

\[
\hat{B}(\bar{v}(v)) = \hat{Q}(v).
\]

(33)

Remember that the goal is to express mode operators \(\hat{a}_\omega^\pm \) as linear combinations of \(\hat{b}_\omega^\pm \). The obvious next step would therefore be to Fourier transform both sides of equations (32) and (33). The transformed RHS of (32) reads

\[
\int_{-\infty}^{+\infty} \frac{du}{\sqrt{2\pi}} e^{i\Omega u} \hat{P}(u) = \int_{0}^{\infty} \frac{d\Omega}{2\pi} \frac{1}{\sqrt{2\Omega}} \left[e^{-i\Omega u} \hat{b}_\Omega + e^{i\Omega u} \hat{b}_\Omega^+ \right]
\]

\[
= \int_{-\infty}^{+\infty} \frac{d\Omega}{\sqrt{2\pi}} \frac{1}{\sqrt{2\Omega}} \left[e^{-i\Omega u} \hat{b}_\Omega + e^{i\Omega u} \hat{b}_\Omega^+ \right]
\]

\[
= \int_{0}^{+\infty} \frac{d\Omega}{\sqrt{2\pi}} \left[e^{-i\Omega |\Omega|} \hat{b}_\Omega + e^{i\Omega |\Omega|} \hat{b}_\Omega^+ \right]
\]

\[
= \frac{1}{\sqrt{2|\Omega|}} \left\{ \begin{array}{ll}
\hat{b}_{\Omega}, & \Omega > 0 \\
\hat{b}_{\Omega}, & \Omega < 0
\end{array} \right.
\]

(34)

while the LHS is given by

\[
\int_{-\infty}^{+\infty} \frac{du}{\sqrt{2\pi}} e^{i\Omega u} \hat{A}(u) = \int_{-\infty}^{+\infty} \frac{du}{\sqrt{2\pi}} \left[e^{i\Omega u} \hat{a}_\Omega + e^{-i\Omega u} \hat{a}_\Omega^+ \right]
\]

(35)

\[
= \int_{0}^{+\infty} \frac{d\omega}{\sqrt{2\omega}} \left[F(\omega, \Omega) \hat{a}_\omega^- + F(-\omega, \Omega) \hat{a}_\omega^- \right],
\]

where the apparently divergent auxiliary function

\[
F(\omega, \Omega) = \int_{-\infty}^{+\infty} \frac{du}{2\pi} e^{i\Omega u - i\omega u}
\]

\[
= \int_{-\infty}^{+\infty} \frac{du}{2\pi} \exp \left[i\Omega u + i\omega \frac{a}{a} e^{-au} \right]
\]

(36)

is defined in the distributional sense\(^3\). Compare (34) and (35) to find

\[
\hat{b}_\Omega^- = \int_{-\infty}^{+\infty} d\omega \left[\alpha_{\Omega\Omega} \hat{a}_\omega^- + \beta_{\Omega\Omega} \hat{a}_\omega^+ \right], \quad \Omega > 0,
\]

(37)

with

\[
\alpha_{\Omega\Omega} = \sqrt{\frac{\Omega}{\omega}} F(\omega, \Omega),
\]

\[
\beta_{\Omega\Omega} = \sqrt{\frac{\Omega}{\omega}} F(-\omega, \Omega),
\]

\(\hat{b}_\Omega^-\) can be computed by hermitian conjugating (37). The transformations relating \(\hat{a}_\omega^\pm \) and \(\hat{b}_\Omega^\pm \) follow analogously from (33).

Observe that the Bogolyubov transformation (37) mixes mode operators at different momenta \(\omega \) and \(\Omega \) and is therefore more general than that introduced in [1]. In fact, the general Bogolyubov transformation is given by

\[
\hat{b}_\Omega^- = \int_{-\infty}^{+\infty} d\omega \left[\alpha_{\omega\Omega} \hat{a}_\omega^- + \beta_{\omega\Omega} \hat{a}_\omega^+ \right]
\]

(38)

of which (37) is a special case, for \(\alpha_{|\omega|, \Omega} = \beta_{-|\omega|, \Omega} \equiv 0 \). To derive the corresponding normalization conditions, we use the commutation relations \([\hat{a}_\omega^-, \hat{a}_\omega^+] = \delta(\omega - \omega') \) and \([\hat{b}_\Omega^-, \hat{b}_\Omega^+] = \delta(\Omega - \Omega') \) together with (38) to find

\[
\int_{-\infty}^{+\infty} d\omega (\alpha_{\omega\Omega} \alpha_{\omega'\Omega'}^* - \beta_{\omega\Omega} \beta_{\omega'\Omega'}^*) = \delta(\Omega - \Omega')
\]

(39)

(cf. equation (21) of [1]).

V. PARTICLE DENSITY AND THE UNRUH TEMPERATURE

The mean number of particles the accelerated observer detects is given by the Minkowski vacuum expectation value of the \(\beta \)-particle number operator \(\hat{N}_\Omega = \hat{b}_\Omega^\dagger \hat{b}_\Omega \) as

\[
\langle \hat{N}_\Omega \rangle = \langle 0 | \hat{b}_{\Omega}^\dagger \hat{b}_\Omega | 0 \rangle
\]

\[
= \langle 0 | \int d\omega [\alpha_{\omega\Omega} \hat{a}_\omega^- + \beta_{\omega\Omega} \hat{a}_\omega^+] \hat{b}_\Omega^* \hat{b}_\Omega | 0 \rangle
\]

\[
\times \int d\omega' [\alpha_{\omega'\Omega'} \hat{a}_\omega^- + \beta_{\omega'\Omega'} \hat{a}_\omega^+] | 0 \rangle
\]

\[
= \int d\omega |\beta_{\omega\Omega}|^2 = \int d\omega \frac{\Omega}{\omega} |F(-\omega, \Omega)|^2,
\]

using (37) and its hermitian conjugate. To proceed, we must have a closer look at the auxiliary function (36). We claim that

\[
F(\omega, \Omega) = F(-\omega, \Omega) \exp \left(\frac{\pi \Omega}{a} \right), \quad \text{for } \omega, \Omega, a > 0.
\]

(41)

\(^3\)Much like how \(\delta(x) = \int_{-\infty}^{+\infty} dk \right. \exp(ikx). \)
To see this, substitute \(x = \exp(-au) \) to find

\[
F(\omega, \Omega) = \frac{1}{2\pi a} \int_0^\infty dx \, x^{s+1} e^{-bx}.
\]

where \(s = -i\Omega/a, \ b = -i\omega/a \). If we impose a shift of \(s \) and \(b \) by a small, positive parameter \(\varepsilon > 0 \), we may use a \(\Gamma \)-function identity \(^4\) to obtain the distributional limit as

\[
F(\omega, \Omega) = \lim_{\varepsilon \to 0} \frac{1}{2\pi a} \int_0^\infty dx \, x^{s+\varepsilon-1} e^{-(b+\varepsilon)x}.
\]

\[
= \lim_{\varepsilon \to 0} \frac{1}{2\pi a} e^{-(s+\varepsilon)\ln(b+\varepsilon)} \Gamma(s + \varepsilon).
\]

The relevant observation is that the sign function leads to \(+1\), since \(\omega \) is positive and under change to \(F(-\omega, \Omega) \) this changes to \(-1\). Hence, we obtain (41).

The last step is then to take (39) while setting \(\Omega' = \Omega \) and insert (41) to find that

\[
\int_0^\infty d\omega |F(-\omega, \Omega)|^2 = \delta(0) \left[\exp \left(\frac{2\pi \Omega}{a} \right) - 1 \right]^{-1}.
\]

If we divide out the volume factor \(\delta(0) \) we thus obtain the number density

\[
n_\Omega = \left[\exp \left(\frac{2\pi \Omega}{a} \right) - 1 \right]^{-1}, \quad \Omega > 0.
\]

A completely analogous treatment of the negative frequency modes operators leads to

\[
n_{\Omega} = \left[\exp \left(\frac{2\pi |\Omega|}{a} \right) - 1 \right]^{-1}, \quad \Omega < 0.
\]

Now note that for massless 2-dimensional scalar fields \(|\Omega| \equiv E \). We formulate the final result as a Bose-Einstein distribution

\[
n(E) = \frac{1}{\exp \frac{E}{T} - 1},
\]

where \(T = a/2\pi \) defines the Unruh temperature.

VI. CONCLUSION

We found that in a Minkowski spacetime (reduced to 1+1 dimensions) hosting a massless scalar field a uniformly accelerated observer finds a thermal spectrum of field excitations when travelling through Minkowski vacuum, where temperature is identified with proper acceleration.

This effect generalizes to 1+3-dimensional scalars (and other quantum field theories) with much more effort [3]. It is very small in practical terms, as becomes clear from reinstating SI-Units: a temperature of 1K corresponds to \(a \approx 10^{30}\)m/s\(^2\).

\(^4\)The \(\Gamma \)-function is defined on \(\mathbb{C} \) except non-positive integers as the analytic continuation of the integral

\[
\Gamma(t) = \int_0^\infty dx \, x^{t-1} e^{-x}, \quad \text{for} \quad t \in \mathbb{C} \text{ with Re } t > 0.
\]

One can show that for \(\text{Re } b > 0, \ 1 > \text{Re } s > 0 \)

\[
\int_0^\infty dx \, x^{s-1} e^{-bx} = e^{-s \ln b} \Gamma(s),
\]

where the logarithm here is defined in the right complex half-plane as \(\ln(A + iB) = \ln(|A + iB|) + i \text{sgn}(B) \arctan(|B|/A)) \).

REFERENCES