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We investigate baryon transport in relativistic heavy-ion collisions at energies reached at the CERN Super
Proton Synchrotron (SPS), BNL Relativistic Heavy-Ion Collider (RHIC), and CERN’s Large Hadron Collider
(LHC) in the model of saturation. An analytical scaling law is derived within the color glass condensate framework
based on small-coupling QCD. Transverse momentum spectra, net-baryon rapidity distributions, and their energy,
mass, and centrality dependencies are well described. In comparison with RHIC data in Au + Au collisions at√

sNN = 62.4 and 200 GeV, the gradual approach to the gluon saturation regime is investigated and limits for the
saturation-scale exponent are determined. Predictions for net-baryon rapidity spectra and the mean rapidity loss
in central Pb + Pb collisions at LHC energies of

√
sNN = 5.52 TeV are made.
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I. INTRODUCTION

Gluon saturation has been the focal point of important
and interesting particle-physics investigations for many years.
Its observation would allow to access a new regime of
quantum chromodynamics where high-density gluons form
a coherent state. In regions of large parton densities the
physics is governed by a single hard scale, Qs � �QCD, which
increases with energy and thus allows the use of small-coupling
techniques [1]. In this regime, gluon recombination starts to
compete with the exponentially increasing gluon splitting, and
the gluon distribution function is expected to saturate.

At the HERA, some evidence for gluon saturation in the
proton was found in deep inelastic e + p collisions at high
energy and low values of Bjorken-x, but the results are still
open to interpretation [2]. The existence of geometric scaling
as predicted by the color glass theory as an approach to
saturation physics was indeed confirmed, constituting the most
important evidence for saturation so far [3].

Since the saturation scale is enhanced by a factor A1/3 in
heavy ions, as compared to protons, it is natural to investigate
saturation in relativistic heavy-ion collisions, as has been
done by many authors [4]. Here theoretical QCD-based ap-
proaches have, so far, usually concentrated on charged-hadron
production and, in the central rapidity region, a reasonable
understanding was achieved in the color glass condensate
framework [1,5–7] through inclusive gluon production [8,9].

In p + A collisions the nuclear wave function is being
probed at small x in the forward direction and it should
show saturation below a characteristic value of x. Hence, the
effect of gluon condensation and quantum evolution should be
measurable, as was attempted by the BRAHMS Collaboration
at the Relativistic Heavy-Ion Collider (RHIC) in d + Au
collisions [10]. Measurements of the nuclear modification
factor showed the Cronin enhancement at midrapidity, but the
modification factor is suppressed at forward rapidities. This
is in qualitative agreement with the color-glass predictions
[11,12].

Experimental heavy-ion investigations at the Large Hadron
Collider (LHC) concentrate on the midrapidity region since
ALICE [13] covers rapidities up to |y| = 2. It provides
measurements of lower x values than before—down to 10−5—

at an energy scale that is high enough to provide crucial tests
of gluon saturation.

In the present phenomenological investigation we use the
transverse momentum spectra and rapidity distributions of net
baryons (B − B̄) in relativistic heavy-ion collisions [14,15] as
a testing ground for saturation physics. A primary account of
our approach was given in Ref. [16]. It made use of the color-
glass framework [1,5–9]. Related approaches of other authors
to the net-baryon problem with respect to gluon saturation are
Refs. [17,18]. We compare with data that were obtained by
scaling distributions of identified net protons at Super Proton
Synchrotron (SPS) and RHIC energies, and extrapolate to LHC
energies. This problem was treated with different approaches
based on QCD without saturation [19–21].

In A + A collisions, two distinct and symmetric peaks
with respect to rapidity y occur at SPS energies [22] and
beyond. The rapidity separation between the peaks increases
with energy and decreases with increasing mass number,
A, reflecting larger baryon stopping for heavier nuclei, as
was investigated phenomenologically in the nonequilibrium-
statistical relativistic diffusion model [23,24]. In this work we
show how the evolution of the peaks can be linked to saturation
physics.

The net-baryon number is essentially transported by va-
lence quarks that probe the saturation regime in the target
by multiple scatterings. During the collision, the fast valence
quarks in one nucleus scatter in the other nucleus by ex-
changing soft gluons, leading to their redistribution in rapidity
space. We take advantage of the fact that the valence quark
parton distribution is well known at large x, which corresponds
to the forward and backward rapidity region, to access the
gluon distribution at small x in the target nucleus. Therefore,
this picture provides a clean probe of the unintegrated gluon
distribution, ϕ(x, pT ), at small x in the saturation regime. Here
pT is the transverse momentum transfer.

In particular, we use net-baryon rapidity distributions in
central relativistic heavy-ion collisions from SPS to LHC
energies to probe saturation physics through their energy and
mass-number dependence on a geometric scaling variable τ .

We discuss the net-baryon rapidity distributions from SPS
to LHC energies in Sec. II. Their dependence on the scaling
variable τ is investigated and the position of the fragmentation
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peak as a function of the saturation-scale exponent λ is derived.
Possible conclusions about saturation from the midrapidity
valley in net baryons are drawn and the effect of quark
fragmentation into hadrons is considered.

In Sec. III, theoretical results are compared with data on
transverse momentum spectra for Au + Au at RHIC energies
of 62.4 and 200 GeV and with rapidity spectra at SPS energies
of 17.3 GeV, as well as at RHIC energies. Predictions for the
rapidity distribution of net baryons at LHC energies are made.
Net-kaon rapidity distributions are also discussed. Centrality
and system-size dependence are investigated, and the mean
rapidity loss as a function of beam rapidity, or energy, is
discussed. Finally, conclusions are drawn in Sec. IV.

II. RAPIDITY DISTRIBUTIONS IN THE COLOR
GLASS CONDENSATE

The differential cross section for valence quark production
in a high-energy nucleus-nucleus collision reads [12,25]

dN

d2pT dy
= 1

(2π )2

1

p2
T

x1qv(x1,Qf ) ϕ(x2, pT ), (1)

where pT is the transverse momentum of the produced quark
and y its rapidity. The longitudinal momentum fractions
carried, respectively, by the valence quark in the projectile
and the soft gluon in the target are x1 = pT /

√
s exp(y) and

x2 = pT /
√

s exp(−y). The contribution of valence quarks in
the other beam nucleus is added incoherently by changing
y → −y. The valence quark distribution of a nucleus, qv ≡
q − q̄, is assumed to be given by the sum of valence quark
distributions qv,N of individual nucleons, qv ≡ Aqv,N , where
A is the atomic mass number.

The factorization scale is usually set equal to the trans-
verse momentum, Qf ≡ pT . Since the valence quark parton
distribution is weakly dependent on Qf we neglect it in the
following discussion. The gluon distribution is related to the
forward dipole scattering amplitude N (x, rT ) [25], for a quark
dipole of transverse size rT , through the Fourier transform

ϕ(x, pT ) = 2πp2
T

∫
rT drTN (x, rT )J0(rT pT ). (2)

Assuming the rapidity distribution for net-baryons is
proportional to the valence quark rapidity distribution up to
a constant factor of C, we obtain, by integrating over pT ,

dN

dy
= C

(2π )2

∫
d2pT

p2
T

x1qv(x1,Qf ) ϕ(x2, pT ). (3)

We show that this is indeed a good approximation, at high
energy, in the section devoted to the issue of fragmentation
functions.

A. Scaling property of the net-baryon distribution

Since the valence quark distribution is well known, net-
baryon production represents a good observable to probe
saturation effects in high-energy heavy-ion collisions through
the respective gluon distributions. One important prediction of
the color glass condensate theory is geometric scaling: The

gluon distribution depends on x and pT only through the
scaling variable p2

T /Q2
s (x), where Q2

s (x) = A1/3Q2
0 x−λ; the

scale Q0 sets the dimension. Geometric scaling was confirmed
experimentally at HERA [3]. The fit value λ = 0.2–0.3 agrees
with theoretical estimates based on next-to-leading order
Balitskii-Fadin-Kuraev-Lipatov (BFKL) results [26,27]. To
show that, in the high-energy limit, the net-baryon distribution
reflects the geometric scaling of the gluon distribution, we
perform the following change of variables:

x ≡ x1, x2 ≡ x e−2y, p2
T ≡ x2s e−2y. (4)

Thus, we rewrite Eq. (3) as

dN

dy
(τ ) = C

2π

∫ 1

0

dx

x
xqv(x) ϕ(x2+λeτ ), (5)

where τ = ln(s/Q2
0) − ln A1/3 − 2(1 + λ) y is the correspond-

ing scaling variable. Hence, the net-baryon multiplicity is
only a function of a single scaling variable τ , which relates
the energy dependence to the rapidity and mass-number
dependence. From the equation for the isolines, τ = const, we
obtain the evolution of the position of the fragmentation peak.
This reflects the interplay of the valence quark distribution,
peaked at x1 ∼ 0.2, with the gluon distribution peaked at
pT ∼ Qs , in the forward region with respect to the variables
of the problem

ypeak = 1

1 + λ
(yb − ln A1/6) + const, (6)

where yb = (1/2) ln[(E + pL)/(E − pL)] � ln(
√

s/m) is the
beam rapidity at beam energy E and longitudinal momentum
pL with the nucleon mass m.

In Fig. 1, we show the peak positions as given by Eq. (6)
for different incident energies. Hence, different values of yb,
as functions of y ′ with y ′ = y − yb in the upper panel, and
y ′ = y − yb/(1 + λ) in the lower panel, where y ′ is linearly
related to our scaling variable τ through τ = −2(1 + λ)y ′ are
shown. In this calculation we include baryon mass effects
by the replacement pT →

√
p2

T + m2. We then observe clear
violations of the y − yb scaling in the upper panel. Hence,
according to our model, limiting fragmentation phenomena
as observed in particle production [28], where the rapidity
distribution scales as y − yb, is violated in net-baryon rapidity
distributions, which should instead exhibit a scaling with
y ′ = y − yb/(1 + λ). This is shown in the lower panel, where
scaling is fulfilled in the peak region. The deviations outside
the peak region are largely due to mass effects. To draw
this conclusion we do not yet need to specify the form of
the gluon distribution, although for numerical calculations we
must specify one. The details of the computations are given in
Sec. III.

The compilation of the SPS data at
√

s = 17.3 GeV [22] and
RHIC at

√
s = 62.4 and 200 GeV [15] provides an opportunity

to verify the scaling law in Eq. (6). The scaling properties
of net-baryon rapidity distributions were investigated by the
BRAHMS Collaboration for the one-nucleus contribution (see
Ref. [15] for more details about the subtraction procedure of
the projectile contribution). Despite the lack of data in the peak
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FIG. 1. Projectile contributions to the net-baryon rapidity dis-
tribution plotted as a function of the variable y ′ = y − yb (upper
panel) for central Au + Au collisions at RHIC energies of

√
sNN =

62.4 GeV (dotted curve) and 200 GeV (dashed curve) and for Pb + Pb
at LHC energies of

√
sNN = 5520 GeV (solid curve). The limiting

fragmentation property is obviously broken for net baryons. The
lower panel shows the equivalent curves for our variable y ′ =
y − yb/(1 + λ) with λ = 0.2; here scaling is fulfilled in the peak
region.

region at RHIC, the data seem to exhibit a scaling with y − yb

compatible with the limiting fragmentation picture.
A new and more refined analysis of SPS data was recently

done by the NA49 Collaboration [29], showing a slight
discrepancy with the previous data [22]. The new data are
shown as black squares in Fig. 2 for y ′ = y − yb (upper panel)
and for the scaling with y ′ = y − yb/(1 + λ) (lower panel)
with λ = 0.2. The present data do not allow us to distinguish
between the two different scaling laws. The value of the
saturation-scale exponent λ = 0.2 was determined by recent
calculations [18] in the saturation picture, including running
coupling effects, in agreement with particle production at
RHIC. To improve the agreement with the new SPS data as
compared to the analysis reported in Ref. [16], which was
based on the old NA49 data, we increased λ from 0.15 to 0.2
in the present work. Note, however, that the applicability of
the color glass condensate (CGC) picture may be questionable
at the relatively low SPS energies.

In the peak region, the average x in the projectile is x �
0.2–0.3, which corresponds to the average momentum fraction
carried by a valence quark. In the target, x = (0.2–0.3) e−2ypeak ,
it decreases with increasing energy. In this kinematic regime
we have a natural intrinsic hard momentum, the saturation
scale Qs . This justifies the use of small-coupling techniques
in QCD for calculating integrated yields [30]. The effects of
the medium are expected to be small at forward rapidity since
the fast moving valence quarks escape the interaction zone
quickly. A detailed measurement of the peak region will then
enable us to reconstruct the gluon distribution from Eq. (3).
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FIG. 2. Measured projectile contributions to the net-baryon rapid-
ity distribution plotted as a function of y ′ = y − yb (upper panel) and
y ′ = y − yb/(1 + λ) (lower panel), with a saturation-scale exponent
λ = 0.2. Black squares are preliminary new Pb + Pb SPS data
at

√
sNN = 17.3 GeV [29], open squares are old Pb + Pb NA49

data [22], circles are Au + Au BRAHMS data at 62.4 GeV [15], and
triangles are BRAHMS data at 200 GeV [14].

B. Midrapidity valley in net protons

It is worthwhile to analytically investigate some limits of
Eq. (3). In this section, we derive a parametric formula for
the region of small x1 (away from the peak), corresponding
to the midrapidity valley (y ∼ 0). In this kinematic regime
the valence quark distribution behaves as xqv ∝ x�, where
� � 0.5 is the intercept of the Regge trajectory [17], which
allows us to perform analytic calculations.

First, let us recall that the unintegrated gluon distribution is
peaked at qT = Qs , or x1 = exp (−τ/2 + λ), reflecting the fact
that most of the gluons sit at this value. Therefore, we expect
dN/dy ∼ x1q(〈x1〉), with 〈x1〉 ≡ 〈Qs〉/

√
s exp(y). Recalling

that Q2
s = A1/3Q2

0x
−λ
2 and x2 = x1 exp(−2y), we can solve

the equation for 〈x1〉, yielding

〈x1〉 =
(

A1/6Q0√
s

)1/(1+ λ
2 )

exp

[
2

1 + λ

2 + λ
y

]
. (7)

Finally, we obtain

1

A

dN

dy
∝

(
A1/6Q0√

s

)�/(1+ λ
2 )

cosh

[
2�

1 + λ

2 + λ
y

]
. (8)

This property reflects the following asymptotic behavior at
large τ , and x � 1, of the gluon distribution:

lim
τ→∞ ϕ(x, τ ) ∝ δ(x2+λeτ − 1). (9)

This approximation is valid as long as τ is large (and x � 1),
typically in the midrapidity valley at asymptotic energies. For
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λ = 0 we recover Eq. (80) in Ref. [17] plus the A dependence:

1

A

dN

dy
∝

(
A1/6

√
s

)�

cosh (2� y). (10)

C. The fragmentation function

In this section we investigate the effect of quark fragmenta-
tion on our conclusions about geometric scaling. By including
the fragmentation function of a quark into net baryons,
D(z) ≡ D�B/q(z) = DB/q(z) − DB̄/q(z) (z = EB/Eq being
the fraction of the quark energy carried by the baryon fragment)
and using isospin symmetry D(z) ≡ D�B/q(z) = −D�B/q̄(z),
the cross section for the production of a hadron of transverse
momentum pT at rapidity y reads

dN

d2pT dy
= 1

(2π )2

∫ 1

xF

dz

z2
D(z)

1

q2
T

x1qv(x1) ϕ(x2, qT ), (11)

where qT =
√
p2

T + m2/z is the quark momentum,
xF =

√
p2

T + m2/
√

s exp(y) is the Feynman-x, and x1 =
qT /

√
s exp(y), x2 = qT /

√
s exp(−y). Integrating Eq. (11)

over pT up to the kinematic boundary pmax = √
s e−y

imposed by xF < 1, and inverting the order of the integrals,
yields

dN

dy
=

∫ pmax

0

d2pT

(2π )2

∫ 1

xF

dz

z2
D(z)

1

q2
T

x1qv (x1) ϕ (x2, qT )

= 1

(2π )2

∫ 1

z0

dzD(z)
∫ qmax

m/z

d2qT

q2
T

x1qv(x1) ϕ(x2, qT ),

(12)

with z0 = m/
√

s exp(y) and qmax = √
s exp(−y). Now, if we

assume geometric scaling we have

dN

dy
= 1

2π

∫ 1

z0

dzD(z)
∫ 1

z0/z

dx

x
xqv(x) ϕ(x2+λeτ ). (13)

Obviously, since z0 depends on the energy and on the rapidity,
it violates explicitly geometric scaling. However, in the high-
energy limit, when s → ∞, or more precisely when m �
〈pT 〉, the lower bound of the integral can be set to 0 and
one recovers the geometric scaling formula of Eq. (5) with
C = ∫ 1

0 dzD(z).
At this stage, we anticipate the discussion on the appli-

cability of fragmentation functions for the observables of
interest. The main contribution to the rapidity distribution
comes from baryons of transverse momentum pT ∼ 1 GeV,
which is low enough to render the use of the fragmentation
functions questionable. Moreover, it was pointed out clearly
by Bass and co-workers [31] that, for pT <∼ 5 GeV, parton
recombination dominates the hadronization process in particle
production. Hence, the hadrons will be produced by partons
of smaller energy instead of fragmentation of partons of larger
energy as required by the fragmentation picture. Therefore,
to simplify the discussion, we assume D(z) ∝ δ(1 − z) to
account roughly for the competition between recombination
and fragmentation.

To gain more insight into the hadronization process of the
valence quarks, let us recall the relationship between the peak

position and the parton transverse momentum. At the peak
position, the peak of the valence quark distribution x1 � 0.2
is reflected. Hence, one can extract the mean transverse
momentum as

〈qT 〉 � 0.2
√

s exp(−ypeak). (14)

Moreover, the mean hadron transverse momentum 〈pT 〉 can
be extracted from the hadron spectra. Therefore, one obtains
a measure of the energy that flows from the valence quark to
the net protons (baryons) as

〈z〉 = 〈pT 〉
〈qT 〉 . (15)

For 〈z〉 < 1, the hadronization process is dominated by
fragmentation, in other words, the valence quarks lose energy
by radiating gluons and, therefore, the produced baryon
carries a fraction of the quark momentum. Furthermore, for
〈z〉 > 1, the mean momentum of the hadron is larger than
that of the valence parton, which can be achieved by parton
recombination [31].

III. THEORY VERSUS DATA

To take into account saturation effects in the target we
choose the Golec-Biernat-Wüsthoff model [32] for the forward
dipole scattering amplitude N , leading to (cf. Eq. (2) and
Ref. [25])

ϕ(x, pT ) = 4π
p2

T

Q2
s (x)

exp

(
− p2

T

Q2
s (x)

)
, (16)

in the fundamental representation of SU(3). This Gaussian
form actually reflects the multiple scatterings performed by
the valence quarks in the color glass. It is interesting to
make the connection to the fitting procedure performed by the
BRAHMS Collaboration when integrating the spectra. Indeed,
while the usual fitting functions used for particle production
are exponential in pT or have a Boltzmann form, the BRAHMS
Collaboration noticed that, for net-proton spectra, the best
fits are obtained with Gaussians in pT . This corroborates our
picture.

First, we investigate transverse momentum distributions
for net protons in comparison with BRAHMS data taken
at different rapidities to fix Q0. The spectra constrain our
model that contains only two parameters, Q0, and the overall
normalization C. This investigation also provides some hints
regarding the transition from a coherent gluonic state (the color
glass condensate) at low transverse momenta to incoherent
partonic (jetlike) interactions at high transverse momenta.

The valence quark parton distribution function (pdf) of the
nucleus is taken to be equal to the valence quark pdf in a
nucleon times the number of participants in the nucleus. Here,
we focus on the forward rapidity region and interpolate to
midrapidity where small-x quarks are dominant, by matching
the leading-order distributions [33] and the Regge trajectory,
xqv ∝ x0.5, at x = 0.01 [17].

We compare the data to two calculations corresponding to
different assumptions concerning hadronization of the valence
quarks. First, we use fragmentation functions for valence
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FIG. 3. Net-proton spectra for Au + Au at RHIC energies of
√

sNN = 200 GeV for different rapidities. From left to right, y = 0, 0.9, 1.9,
and 2.9. The triangles represent BRAHMS data [14]; at y = 2.9, more recent preliminary BRAHMS data are shown [35]. The saturation-scale
exponent in the calculations is λ = 0.2. Full lines correspond to the no-fragmentation hypothesis with Q2

0 = 0.04 GeV2, whereas the dashed
lines include fragmentation with Q2

0 = 0.1 GeV2.

quarks to net-protons [34] (the only ones that are presently
available),

Dp−p̄(z) = N za (1 − z)b, (17)

with N = 520142, a = 11.6, and b = 6.74 fitted at Q =
1.4 GeV. We can neglect QCD evolution in the range of
interest. This is represented by dashed curves in Figs. 3 and 4.
We refer to this result as the F-model (for fragmentation
model). In the NF-model (no-fragmentation), we assume that,
on average, the energy of the parton is equal to that of the
produced baryon, namely D(z) ∝ δ(1 − z). This assumption is
based on the fact that hadronization at low pT is poorly known
and it was proven [31] that it is dominated by recombination
of partons instead of fragmentation, which will imply z > 1.

Hence, there should be a competition between the two
phenomena, fragmentation and recombination. Namely, due to
the high parton density characteristic of high-energy heavy-ion
collisions, the parton showers described in the fragmentation
picture can overlap. Hence, the recombination of partons from
different showers can occur in addition to the recombination
of shower partons with thermal partons [31,36].

To fix the scale Q0 we use the forward-rapidity net-proton
spectra at 200 GeV where we expect our model to be valid:
high energy and large rapidity. Whereas Q0 is fixed once for
all the available energies, the normalization is tuned at each
energy to fit the data owing to our lack of knowledge on the

hadronization process. Moreover, our calculation is at leading
order, therefore, a K-factor is required.

For λ = 0.2, we fix Q2
0 = 0.04 GeV2 in the NF-model

(0.1 GeV2 in the F-model), leading to Q2
s = 0.6 GeV2

(1.5 GeV2 in the F-model) at x = 0.01. When comparing
to investigations of charged-hadron production, such as in
Refs. [8,12], which involve the gluon distribution in the adjoint
representation of SU(3), we must consider a rescaling of
our net-baryon Q2

s by the color factor NC/CF with CF =
(N2

C − 1)/2NC and NC = 3, corresponding to a factor 9/4.

A. Transverse momentum spectra and rapidity distributions at
200 and 62.4 GeV

In Figs. 3 and 4, the pT spectra at 200 and 62.4 GeV are
shown for a large rapidity range. Results for the NF-model
(full curves) are compared with the F-model (dashed curves).
The increasing discrepancy between the data and both models
toward midrapidity is expected because of the reduction of
the window for saturation effects with decreasing energy and
rapidity. In addition, the quark-nucleus cross section is valid
in the eikonal approximation: It is meant to be applicable
at forward rapidity where the valence-quark longitudinal
momentum fraction is x1 ∼ 1. Another source of uncertainty
can result from an additional rescattering of the valence quark
in the quark-gluon plasma leading to an enhancement of
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FIG. 4. Net-proton spectra for

Au + Au at RHIC energies of
√

sNN =
62.4 GeV for different rapidities. From
left to right, y = 0, 0.65, 2.3, and 3.
The squares represent the BRAHMS
data [15]. The full lines correspond
to the no-fragmentation hypothesis
with Q2

0 = 0.04 GeV2 and the dashed
lines include fragmentation with
Q2

0 = 0.1 GeV2. The saturation-scale
exponent is λ = 0.2 in all cases.
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sNN = 62.4 GeV (middle frame,

0%–10%) and 200 GeV (right frame, 0%–5%) for central Au + Au, our corresponding theoretical results are compared with BRAHMS net
baryon data (circles) [14,15]. At 200 GeV, triangles are preliminary scaled BRAHMS net proton data points for 0%–10% [37]. The full lines
correspond to the no-fragmentation hypothesis with Q2

0 = 0.04 GeV2 and the dashed lines include fragmentation with Q2
0 = 0.1 GeV2. Arrows

indicate the beam rapidities.

the mean pT broadening, essentially at midrapidity, where
medium effects are expected to be important,

〈pT 〉 � Qs → 〈pT 〉 � Qs + 〈pT 〉med, (18)

resulting in a harder spectrum at midrapidity and better
agreement with the data.

The integrated net-proton rapidity distributions, scaled by
a factor of 2.05 [15] to obtain the net-baryon distributions, are
shown in Fig. 5. Whereas the NF-model (full line) describes the
data well, the implementation of the fragmentation function
gives an unsatisfactory result. The estimated numbers of
participants are 390, 315, and 357 for

√
s = 17.3, 62.4, and

200 GeV, respectively [15]. From the integration of the rapidity
distribution of the NF-model about 15% of the participant
baryons are missing, most of them in the tails of the distribu-
tions, which are too steep in our high-energy model. Hence,
the NF-model accounts for about 85% of the estimated baryon
number, whereas the F-model, which includes fragmentation,
accounts for significantly fewer baryons. We believe that a
better description of the hadronization process, in particular
by incorporating recombination, will improve the overall
agreement with the data.

We extrapolate our results for the NF-model to central
(0%–5%) Pb + Pb collisions at LHC energies of 5.52 TeV
in Fig. 6, where the theoretical distribution is shown for λ =
0.2 and Q2

0 = 0.04 GeV2. Since ALICE measures identified
protons and antiprotons only in the rapidity range |y| < 2,
a direct observation of the fragmentation peaks, and of
the dependence of the peak position on the saturation-scale
exponent as discussed in Ref. [16], will depend on future
extensions of the LHC heavy-ion detectors to enhance forward
capabilities.

A further test of our model, and of the value of the deduced
saturation scale, is provided by comparing it with net-kaon
distribution functions and, in particular, dN/dy for net kaons.
The bulk of the produced K+ and K− mesons are due to
inclusive gluon production in the midrapidity source. The net
kaon distribution (K+ − K−), however, is essentially due to

the interaction of fast valence quarks with soft gluons in the
target, just as in the case of the net-proton distribution that we
have discussed thus far.

The net-kaon distribution that is obtained from the
200-GeV BRAHMS data is shown in Fig. 7. The data show the
same trend as the net-baryon results. For kaons, the net-charge
content is 44. (In the total charge balance of the collision,
we must consider all particle species. Since negative pions
are slightly more abundant than positive pions, the integral of
net-proton and kaon distributions may actually exceed 158.)
The calculation, as shown in Fig. 7, agrees well with these
data.

B. Centrality and system-size dependence

We also investigate the centrality dependence of the
net-baryon distribution. Formally, in Sec. II, we show the
dependence of the rapidity distribution on the mass number
A through the saturation scale Qs ∝ A1/6. The centrality
dependence of particle production is essentially determined
by the number of participants and hence we now make the
replacement A → Npart.

∆B
dN

   
  /

dy
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FIG. 6. Rapidity distribution of net baryons in 0%–5% central
Pb + Pb collisions at LHC energies of

√
sNN = 5.52 TeV. The

theoretical distribution is shown for λ = 0.2 and Q2
0 = 0.04 GeV2.
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FIG. 7. Net-kaon rapidity distribution as obtained from our model
in comparison with the BRAHMS data [38] for central (0%–5%)
Au + Au at

√
sNN = 200 GeV. The calculation is for λ = 0.2 and

Q2
0 = 0.04 GeV2.

Let us recall first a general feature of net-baryon distri-
butions as a function of system size A: More stopping is
observed for larger systems. In other words, it corresponds to
the shift of the fragmentation peaks toward midrapidity with
increasing A. To quantify this, we consider two experiments
involving different nuclei, A1 and A2 such that A1 > A2 � 1,
then according to Eq. (6) for the net-baryon peak position, we
obtain for the rapidity difference of the peaks for two different
mass numbers:

�ypeak = ypeak(A1) − ypeak(A2) = − 1

1 + λ
ln

(
A1

A2

)1/6

, (19)

where the negative sign reflects the increasing stopping with
increasing A. Let us consider a central gold-gold collision with
Npart � 350 ≡ A1 and a peripheral one with Npart � 50 ≡ A2.
Using Eq. (19), for λ = 0.2, we obtain for the rapidity shift
�ypeak � 0.27. Hence, provided the measurements of the peak
region are precise, we access the value of λ by measuring
the peak shift. Unfortunately, the data are not completely
conclusive yet. In Fig. 8, we show that the data for Pb +
Pb collisions at 17.3 GeV with Npart = 352 in the measured
rapidity range (390 if one extrapolates to full rapidity range)
indeed scales with the data for S + S collisions with Npart = 52
in the measured region [39] according to Eq. (6).
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FIG. 8. Pb + Pb net-baryon rapidity distribution at
√

sNN =
17.3 GeV (open squares are NA49 data [22]) and S + S rapidity
distribution at

√
sNN = 19.4 GeV (black diamonds are NA35 data

[39]) plotted as functions of the scaling variable y ′ = y − (yb −
ln N

1/6
part )/(1 + λ) with Npart = 352 for Pb + Pb and Npart = 52 for

S + S.

dN
   

  /
dy
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FIG. 9. Rapidity distribution of net baryons in Pb + Pb collisions
at SPS energies of

√
sNN = 17.3 GeV (upper frame). The theoretical

calculations for λ = 0.2 and Q2
0 = 0.04 GeV2 are compared with

recent preliminary NA49 results [29] for centralities of 0%–5%,
12.5%–23.5%, and 33.5%–43.5% (top to bottom; net-proton data
scaled to net baryons). At RHIC energies of

√
sNN = 200 GeV

(bottom frame) for Au + Au, our corresponding theoretical results
without fragmentation are compared with preliminary BRAHMS net
baryon data for centralities of 0%–10%, 10%–20%, 20%–40%, and
40%–60% [37].

We show in Fig. 9 the computation resulting from the NF-
model, the centrality dependence of the rapidity distribution
at 17.3 and 200 GeV. Whereas the 17.3-GeV and the more
peripheral 200-GeV theoretical curves agree with the data, the
more central 200-GeV curve does not reproduce the absolute
magnitude of the data at forward rapidity (see also Fig. 5).

C. Mean rapidity loss

With increasing energy the peaks move apart, and the
solutions behave like traveling waves in rapidity space [40],
which can be probed experimentally at distinct values of
the beam energy or the corresponding beam rapidity. We
derive the peak position as a function of the beam rapidity
as ypeak = v yb + const with the peak velocity v = 1/(1 + λ)
[cf. Eq. (6)]. The position of the peak in rapidity space as a
function of the beam energy can, in principle, be determined
experimentally or at least estimated (RHIC). Theoretically, its
evolution with energy provides a measure of the saturation-
scale exponent λ. Hence, a precise determination of the
net-baryon fragmentation peak position as a function of beam
energy will provide detailed information about the gluon
saturation scale.

The mean rapidity loss 〈δy〉 = yb − 〈y〉 is shown in Fig. 10.
Our result is in agreement with the experimental values of
baryon stopping that was obtained at Alternating Gradient
Synchrotron (AGS) and SPS energies [22,41]. Assuming that
the mean rapidity evolves similarly to the peak position,
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FIG. 10. (Color online) The mean rapidity loss 〈δy〉 as obtained
from our theoretical results is plotted as a function of beam rapidity
yb (solid curve). The star at ybeam = 8.68 is our prediction for central
Pb + Pb at LHC energies of

√
sNN = 5.52 TeV with λ = 0.2 and

Q2
0 = 0.04 GeV2. Analysis results from AGS Au + Au data (E917,

E802/E866, triangles) [41], SPS Pb + Pb data (NA49, square) [22],
and RHIC Au + Au data (BRAHMS, dots, with triangles as lower
and upper limits) [14,15] are compared with the calculations.

〈y〉 ≡ ypeak + const, we show that the mean rapidity loss
increases linearly at large yb:

〈δy〉 = λ

1 + λ
yb + const, (20)

where the slope is related to λ. Hence, the mean rapidity
loss that accompanies the energy loss in the course of the
slowing down of baryons provides a measure for λ and thus
a test for saturation physics. The gray band in Fig. 10 reflects
the uncertainty of how to place the remaining baryons that
are missing in our model. We refer to them by �N , with
N ≡ Npart. The upper limit corresponds to the case where
the missing baryons sit at the mean rapidity, roughly about
the peak rapidity. Then the corrected mean rapidity loss is
equivalent to the theoretical one, 〈δy〉corr ≡ 〈δy〉. The lower
limit corresponds to the case where they sit at the beam rapidity,
〈δy〉corr ≡ (1 − �N/N )〈δy〉. The full line is the mean value
of the two calculations and it is in reasonable agreement with
the upper limit of the data given by BRAHMS.

IV. CONCLUSION

In summary, we present a saturation model for net-baryon
distributions that successfully describes net-proton rapidity
distributions and their energy and mass dependence. The
remarkable feature of geometric scaling predicted by the CGC
is reflected in the net-baryon rapidity distribution, providing a
direct test of saturation physics.

In particular, we show that the peak position in net-proton or
net-baryon rapidity distributions of centrally colliding heavy
ions at ultrarelativistic energies obeys a scaling law involving
the mass number and the beam energy. We explore the validity

of that scaling law in comparisons with experimental rapidity
distributions from central Pb + Pb and Au + Au collisions
at SPS and RHIC energies and find good agreement with the
NA49 and BRAHMS data on net-proton distributions that were
scaled to net baryons.

We simultaneously investigate net-proton transverse mo-
mentum spectra at RHIC energies, as measured by the
BRAHMS Collaboration, to find reasonable agreement of our
model results with the data away from midrapidity. There is an
increasing discrepancy toward midrapidity, which is expected
because the window for saturation effects is reduced with
decreasing energy and rapidity.

The parameters saturation-scale exponent λ and momentum
scale Q2

0 are determined from the transverse momentum
spectra for Au + Au at 200 GeV and then kept fixed at all
energies (SPS, RHIC, and LHC) in the calculations for the
pT spectrum at 62.4 GeV, and in all calculations of rapidity
distributions. The third parameter is the overall normalization
constant C, which we adjust to the data.

Model calculations for the rapidity distribution in central
Pb + Pb collisions at LHC energies of 5.52 TeV are obtained;
we previously discussed the dependence of the position of the
fragmentation peak on the gluon saturation-scale exponent λ

in Ref. [16] and do not repeat it here.
Our analytical scaling law yields an excellent description

of the mass dependence of the net-baryon distribution at SPS
energies in a comparison of S + S and Pb + Pb results. The
centrality dependence of the Pb + Pb rapidity distribution at
17.3 GeV is well reproduced, whereas discrepancies remain
for Au + Au at RHIC energies.

The theoretical result for the mean rapidity loss in
√

sNN =
200 GeV Au + Au is larger than the BRAHMS result as
derived from their data, but consistent with the experimental
upper limit. This emphasizes the importance of a detailed
analysis at LHC energies, where it may then be possible
to determine the value of the saturation-scale exponent λ

more accurately [16] and establish the attainment of gluon
saturation.

To achieve this, forward measurements of identified
hadrons—and in particular, baryons—for central heavy-ion
collisions will be desirable. The ATLAS and Compact Muon
Solenoid (CMS) detectors for p + p collisions are being
extended to the forward region already; TOTEM is a dedicated
forward detector. It will be useful to exploit these capabilities
for central Pb + Pb physics as well.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft under Grant No. STA 509/1-1 and the ExtreMe
Matter Institute, EMMI.

[1] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. 100,
1 (1983); A. H. Mueller and J. Qiu, Nucl. Phys. B268, 427
(1986); J. P. Blaizot and A. H. Mueller, ibid. B289, 847 (1987);
L. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994).
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[22] H. Appelshäuser et al. (NA49 Collaboration), Phys. Rev. Lett.
82, 2471 (1999).

[23] G. Wolschin, Eur. Phys. J. A 5, 85 (1999); Europhys. Lett. 47, 30
(1999); 74, 29 (2006); Phys. Lett. B569, 67 (2003); Phys. Rev.
C 69, 024906 (2004); Prog. Part. Nucl. Phys. 59, 374 (2007);
Ann. Phys. (Berlin) 17, 462 (2008).

[24] G. Wolschin, M. Biyajima, T. Mizoguchi, and N. Suzuki, Phys.
Lett. B633, 38 (2006); Ann. Phys. (Leipzig) 15, 369 (2006);
R. Kuiper and G. Wolschin, ibid. 16, 67 (2007); W. M. Alberico
and A. Lavagno, Eur. Phys. J. A 40, 313 (2009).

[25] A. Dumitru, A. Hayashigaki, and J. Jalilian-Marian, Nucl. Phys.
A765, 464 (2006).

[26] L. N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976); E. A. Kuraev,
L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977);
I. I. Balitskii and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822
(1978).

[27] D. N. Triantafyllopoulos, Nucl. Phys. B648, 293 (2003).
[28] B. B. Back et al. (PHOBOS Collaboration), Phys. Rev. Lett. 91,

052303 (2003); Phys. Rev. C 72, 031901 (2005); 74, 021901(R)
(2006).

[29] C. Blume et al. (NA49 Collaboration), PoS (Confinement 8),
110 (2008).

[30] A. Dumitru, L. Gerland, and M. Strikman, Phys. Rev. Lett. 90,
092301 (2003).

[31] R. J. Fries, B. Müller, C. Nonaka, and S. A. Bass, Phys. Rev.
Lett. 90, 202303 (2003); R. J. Fries, B. Müller, C. Nonaka, and
S. A. Bass, Phys. Rev. C 68, 044902 (2003).

[32] K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D 59, 014017
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