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1 Introduction

A time-dependent analytical description of particle production from the available relativistic energy in
heavy-ion collisions is of considerable interest. In particular, the accurate modeling of transverse momen-
tum and rapidity distribution functions for produced particles is a basic requirement in attempts to under-
stand the relevant partonic and hadronic physical processes. Analytically solvable models offer transparent
approaches to the problem, including the possibility to extrapolate to other incident energies, such as from
RHIC energies

√
sNN = 19.6 – 200 GeV to LHC,

√
sNN = 5.52 TeV.

In this work I propose a nonequilibrium-statistical (and hence, time-dependent) approach that provides
analytical solutions for pseudorapidity distributions of produced particles. It is based on a nonlinear diffu-
sion equation in rapidity space, which accounts for the explicit dependence of the diffusion coefficient on
the rapidity density in the initial short (τp " 0.25 fm/c) partonic phase of the collision when most of the
particles are produced. This is followed by the somewhat more extended phase of color neutralization [16],
and a long-lasting color-neutral pre-hadronic or hadronic phase with rapid expansion of the system.

Three sources for particle production are considered, two for initial rapidities close to the beam val-
ues, and a third central source that arises mostly from gluon-gluon collisions. I consider the transition
from the initial, highly nonlinear partonic phase to the subsequent, essentially linear phase. Other inves-
tigations such as [17], and references to numerical simulations therein, corroborate the short duration of
the parton-production phase, and the long duration of the subsequent recombination (pre-hadronic) and
hadronic phase. According to parton-cascade models such as [18], the pre-hadrons are color singlets that
are generated from quark and gluon recombination in a statistical coalescence process. They decay into the
final hadrons according to their relative phase-space weights. Many numerical approaches to the problem
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use string models in the initial phase, and final-state hadronic collisions, but often hadronic rescattering is
not considered.

The second phase lasts about τint " 7-10 fm/c (depending on the system, the incident energy, and the
centrality). Phenomenologically, it is well accounted for in a Relativistic Diffusion Model (RDM) based
on a linear Fokker-Planck equation with constant diffusion coefficient, plus fast collective expansion. The
RDM had been developed some time ago [1–5] and compared in detail with data on net proton rapidity
distributions at SIS, AGS, SPS, and RHIC energies, and with produced-particle distributions. For pseudo-
rapidity distributions of produced charged hadrons, a χ2-optimization of the Jacobi-transformed analytical
solutions yields very precise agreement with the available RHIC data provided the midrapidity source for
particle production is taken into account.

For net-proton rapidity distributions at RHIC energies, there have been several investigations of non-
linear effects within the diffusion approach. A nonlinearity in the drift coefficient that secures the correct
Maxwell-Boltzmann equilibrium limit for t → ∞ has been investigated in [8], but the deviations from
linearity are small.

The strong effect of a nonlinearity in the diffusion coefficient that also persists over the full interaction
time of typically 10 fm/c [14, 15] as a consequence of the introduction of non-extensive statistics [10]
had been investigated in [8, 39] for net protons in heavy-ion collisions, and in [9] for produced particles
in pp̄-collisions. It seems that this is a way to account for the collective expansion of the system without
considering it explicitly. If one includes an explicit treatment of collective expansion [40], however, there
is no need to introduce non-extensive statistics when comparing the RDM-results with data, the linear
evolution after the parton-production phase yields excellent results for both net baryons, and produced
particles.

The linear diffusion model had also been proposed in order to calculate and predict transverse energy
distributions of hadrons [6], and more recently to calculate transverse momentum distributions of identi-
fied hadrons (neutral pions, as well as negative pions and kaons) in a nonequilibrium-statistical approach
including radial flow [7].

Equilibrium-statistical models [11–13] account in remarkable detail for relative production rates of
produced particles at central rapidity with only the temperature and the chemical potential as parameters.
Due to the lack of time dependence - and consequently, of nonequilibrium-statistical effects - a relevant
ingredient is, however, missing if one aims at the precise modeling of distribution functions.

The gradual approach of the system towards statistical equilibrium in the course of a relativistic heavy-
ion collisions is presented in a schematic analytical model in this work. I start with the nonlinear diffusion
model as expected to be valid during the parton-production phase in Sect. 2, followed by a consideration
of the so-called source solution of the nonlinear problem in Sect. 3. For sufficiently large times, the initial
power-law behaviour during the nonlinear parton-production phase is superseded by the essentially linear
diffusion (RDM-) phase in rapidity space which produces gaussian tails in pseudorapidity space, Sect. 4.

The late-stage time evolution is discussed in a comparison with RHIC data for the asymmetric d + Au-
system, which indeed show the gaussian tails. In an asymmetric system like d+Au, the nonequilibrium
effects are visible more directly than in case of symmetric systems such as Au + Au. The interaction ceases
long before statistical equilibrium with respect to the variable rapidity is reached. The conclusions are
drawn in Sect. 5.

2 The nonlinear diffusion equation

The origin of diffusion during and after particle production in a heavy-ion reaction at relativistic energies
is found in momentum space, through random momentum kicks of the produced particles – partons in the
soft-gluon field in the early stage, prehadrons and hadrons in later stages. Diffusion in coordinate space
appears as a secondary effect.
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The corresponding fluctuations can be seen in rapidity and pseudorapidity distributions of produced
particles [1–5], as well as in transverse energy and momentum distributions [6,7]. To provide an analytical
treatment of the problem in both early and late stages, I confine the present work to rapidity space, with
the lorentz-invariant rapidity y = 0.5 · ln((E + p)/(E − p)), and a subsequent Jacobian transformation to
pseudorapidity η that is required for the comparison to the available data for produced charged hadrons.

To incorporate the early parton-production phase into the relativistic diffusion model [1–3], a depen-
dence of the diffusion coefficient on the initially very high rapidity density R(y, t) has to be considered,
Dy → Dy(R), such that the linear transport equation in rapidity space that I investigated in [1] is replaced
by

∂

∂t
R(y, t) = −∇y

[
J(y)R(y, t)

]
+ ∇yDy(R(y, t))∇yR(y, t). (1)

The drift term J(y) governs the gradual approach of the mean values towards statistical equilibrium. The
diffusion coefficient Dy(R) depends on the rapidity density and hence, the equation is generally highly
nonlinear. It is therefore expected to account not only for the long-lasting, essentially linear diffusive phase
as in [1–3], but also for the partonic initial phase of high rapidity density. In this short-lived phase the major
part of particle production with rapidly rising norm of the distribution function takes place. The rising norm
is phenomenologically accounted for in this work by letting the integration constant in Eq.(1) depend on
particle number.

In case of the linear RDM [1, 6] with Dy(R) = Dy = const., I had assumed an instant production of
the particles in the three sources, and subsequent diffusion in y−space during the interaction time. This
initial condition is exactly fulfilled only for net baryons [1]. However, for produced charged hadrons, it
also yields extremely precise results when compared [2, 3, 5] in detail to the data. An explicit treatment
of the short nonlinear parton production phase with a strong dependence of the diffusion coefficient on
the distribution function should therefore preserve the model features of the subsequent, essentially linear
diffusive phase.

To account for the strong correlation between diffusion coefficient and rapidity density distribution in
the initial high-density particle production phase, I propose a dependence on a power κ of the rapidity
density according to

Dy[R(y, t)] = Dp
y · R(y, t)κ (2)

with Dp
y the rapidity diffusion constant in the particle production phase. For certain critical exponents κ,

analytical solutions of the diffusive part of the transport equation can be obtained.
In a two-step approach, the subsequent – probably mostly pre-hadronic and hadronic – evolution in

pseudorapidity space during the interaction time of τint " 7-10 fm/c (mean duration of the collision;
see [14] ) is accounted for in the Relativistic Diffusion Model [1] (RDM, κ = 0) with a linear drift term
J(y) = (yeq − y)/τy governed by the rapidity relaxation time τy and the equilibrium value of the rapidity
yeq. The diffusion term is here ∝ Dy

∂2

∂y2 R(y, t).
The diffusion constant Dy in this phase is significantly smaller than the value of Dp

y in the short pro-
duction phase with a large number of (partonic) degrees of freedom. The linear model with instant particle
production yields excellent agreement with d+Au, Cu+Cu and Au+Au data at RHIC energies, including
the detailed centrality dependence [3].

The initial short, highly nonlinear phase of parton production occurs within τp " 0.25 fm/c [17] in two
beam-like sources, and a central source in rapidity space. Since the time scale for particle production in
all three sources is faster than the one for the nonlinear diffusion, it turns out that the particle content in
the power-law tails remains small: there is little spread of the distribution function in rapidity space in this
initial phase.
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The mathematical treatment of the initial nonlinear phase is confined to the central source as an ex-
ample. The beam-like sources are then dealt with in an analogous way, but with the freedom to choose
different diffusion coefficients because the production mechanisms in the valence-quark dominated beam-
like regions of rapidity space are different from the central region with few valence quarks at RHIC or
LHC energies. Kinematic constraints in the beam-like sources expected at high absolute values of rapidity
are not considered here.

During the short production phase, the drift in y−space is not yet pronounced, and I therefore treat here
only the diffusive part of the nonlinear transport equation, R(y, t) → P (y, t) with

∂

∂t
P (y, t) = Dp

y∇yP (y, t)κ∇yP (y, t). (3)

The solution of this equation at the end of the nonlinear production phase (t = τp) can then be used
as initial condition for the subsequent linear diffusive time evolution treated in the Relativistic Diffusion
Model (RDM) [1–5],

R0(y, 0) = P (y, τp). (4)

With t∗ = t · Dp
y the nonlinear diffusion equation becomes

∂

∂t∗
P (y, t∗) = ∇yP (y, t∗)κ∇yP (y, t∗). (5)

This equation has been extensively studied in many diverse areas of science, and a large amount of mathe-
matical literature exists, [19–27], and references therein. It has mostly been considered for positive values
of κ such as κ = 1 for thin saturated regions in porous media, κ ≥ 1 for the percolation of gas through
porous media, κ = 3 for thin films spreading under gravity, and κ = 6 for radiative heat transfer by
Marshak waves. Many problems are dealt with in only one (spatial) dimension, analogous to the present
work which is confined to one (momentum-like) dimension. It has also been established that the number
of exact solutions is limited. Solutions for several power-law diffusivities with negative κ are known [25],
in particular, for κ = −1/2,−1,−4/3,−3/2 and −2.

The physically most interesting behaviour occurs in the region of small diffusion coefficients D(R),
where a moving boundary may exist. The behaviour of solutions for positive and negative values of κ is
distinctively different. Depending on the specific values for the constants of integration (see below), a free
boundary may occur for κ = 1 that has a finite gradient and moves with finite velocity, similarly for other
positive values of κ, but for κ > 1, the gradient at the boundary becomes infinite.

For κ = −1 and some other negative values, however, there is an instantaneous spread without a free
boundary, as was treated by Pattle [19], Pert [22] Hill [25] and others for instantaneous heat deposition in a
medium with concentration-dependent diffusion coefficient. This situation is in some respect analogous to
the initial parton production from the available energy in a relativistic heavy-ion collision. Here the initial
rapidity density distribution of the created partons should not have a free boundary in rapidity space, except
for kinematical constraints.

Hence I investigate solutions for negative values of κ emphasizing κ = −1. An exact solution is not
only useful to test the accuracy of numerical results, but it is also important to understand and describe the
physical behaviour of the system. In particular, the analytical solution at the end of the initial nonlinear
phase may then be used as initial condition for the subsequent, essentially linear diffusion process in
y−space which can be modeled analytically within the given simple but successful RDM-framework.

The majority of known exact solutions of the nonlinear problem are so-called similarity solutions [19–
26]: With an assumed functional form of the solution, the partial differential equation reduces to an ordinary
differential equation, or to a partial differential equation of lower order, which can then be integrated in
closed form under certain conditions. The similarity solution of (5) for t∗ → t is written as

P (y, t) = y2λ/κ(1+λ)Φ(ξ) (6)
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with

ξ = y1/(1+λ)/t1/2 (7)

and λ is an arbitrary constant with λ )= −1. Inserting this ansatz into the nonlinear differential equation (5)
yields first integrals for two values of λ (for κ = −1 and −2, only one value of λ)

λ1 = −κ/(κ+ 2) (8)

λ2 = −κ/(κ+ 1) (9)

which have been given by Hill and Hill (1990) [25] as

ΦκΦ
′

ξ
− 2Φκ+1

(κ+ 2)ξ2
+

2Φ
(κ+ 2)2

= C1 (10)

ΦκΦ
′

ξ
− (2κ+ 3)Φκ+1

(κ+ 1)2ξ2
+

Φ
(2κ+ 1)2

= C1 (11)

with Φ
′

= ∂Φ/∂ξ. For vanishing constants of integration C1 = 0, the so-called ”source” and ”dipole”
solutions arise from these first integrals. For finite C1 )= 0, a number of exact solutions for special values
of κ have also been derived [25]. Here I investigate the source solution for C1 = 0

Φ =( C2ξ
2κ/(κ+2) − κξ2

2(κ+ 2)
)1/κ. (12)

This solution is not defined for κ = −2, and becomes singular for κ < −2. Hence, a solution without a free
boundary as required for the initial rapidity diffusion problem can in principle only occur for −2 < κ< 0.
The desired solution for κ = −1 (and hence, λ = λ1 = 1) obeys the first-order partial differential equation

Φ
′

ξΦ
− 2
ξ2

+ 2Φ = 0 (13)

and the solution of the nonlinear diffusion equation

P (y, t) = Φ(ξ)/y (14)

with ξ = (y/t)1/2 becomes

P (y, t) = [C2yξ
−1 + yξ2/2]−1 (15)

where C2 is the constant of integration.

3 The source solution in particle production

The solution of the nonlinear diffusion problem in a high-density phase such as during parton production
in rapidity space has thus been reduced to

P (y, t) = [C2t + y2/(2t)]−1. (16)

To account for the increasing norm of the rapidity distribution function during the rapid parton production
process, I let the integration constant C2 depend on the particle number. Since the particle number is likely
to increase exponentially with time during the first collision phase where t ≡ t̂ < τp " 0.25 fm/c, I take
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Fig. 1 Time evolution of rapidity distributions for pro-
duced charged particles from minimum-bias d + Au col-
lisions at

√
sNN = 200 GeV in the initial nonlinear phase

for the midrapidity source. The norm of the distribution is
rising with increasing t∗ = Dp

y ·t until at t = τp all the par-
ticles have been produced and the linear diffusion process
in y−space starts. The dashed curve is a Gaussian with the
same particle content N3

ch = 22 as the power-law solution
of the nonlinear problem at t = τp.

the particle-number dependence into account phenomenologically by choosing the integration constant in
the denominator as

C2 = exp(−t̂). (17)

In the present two-step model, all particles are assumed to be produced until t = τp where the nonlinear
production phase turns into an (essentially linear) diffusion process with κ = 0. That is, for C2 = exp(−τp)
the norm of the solution reaches its maximum value

∫
P (y, t = τp)dy = 1. (18)

The corresponding solutions (16) of the nonlinear diffusion problem are shown in Fig. 1 for the central
source of parton production in d+Au at

√
sNN = 200 GeV. Results of the rapidity distribution functions for

produced particles multiplied with the number of charged hadrons produced in the central source (N3
ch =

22, [3]) are shown for four values of t∗ = t · Dp
y = 14, 14.5, 15, 16.4, with the norm of P (y, t) reaching∫

P (y, t)dy = 1 for t = τp = 0.25 fm/c at t∗ = 16.4.
The distribution functions are seen to rise strongly with increasing t∗ in a narrow midrapidity region due

to the fast increase of the particle number, with an only moderate increase in the power-law tails where the
particles with higher rapidities are created: these tails are already present at very short times. Physically,
the partons with the highest rapidity values are created already at the shortest times.

The rapidity diffusion coefficient in the particle production phase is thus Dp
y = 16.4/τp " (16.4/0.25)c/

fm " 66c/fm, which is significantly larger than the diffusion coefficient Dy in the subsequent long-lasting
(" 7 fm/c) linear diffusion phase. This reflects the larger number of degrees of freedom in the initial phase
which is mainly partonic, and the higher density of particles.

The dashed curve in Fig. 1 is a Gaussian that arises from a linear time evolution (κ = 0) and δ−function
initial conditions with instant particle production at t = 0. It has the same particle content (22 charged
hadrons) as the nonlinear solution at t∗ = τpDp

y = 16.4.
For the beam-like sources at initial rapidities y1,2 = ∓ymax, the solutions of the nonlinear problem for

κ = −1 are accordingly (t∗ = t · Dp
y1,2 → t)

P1,2(y, t) = [C2t + (y ± ymax)2/(2t)]−1. (19)

Here the diffusion coefficients in the particle production phase Dp
y1,2 are likely to differ from Dp

y in the
midrapidity region because the microscopic processes during particle production are substantially different,
with the diffusion coefficient at midrapidity mostly due to gluon-gluon collisions. The analytical solutions
at the end of the initial phase t = τp in the three sources are displayed in the upper part of Fig. 2 for
minimum-bias d+Au at

√
sNN = 200 GeV.
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Fig. 2 Rapidity distributions for produced charged parti-
cles from minimum-bias d + Au collisions at

√
sNN = 200

GeV at the end of the initial nonlinear phase (top) for the
three sources, with particle contents N1

ch = 55, N2
ch = 14,

and N3
ch = 22. In the bottom frame, corresponding Gaus-

sians are displayed (see also Fig. 3). They arise from a lin-
ear evolution with δ−function initial conditions.

The corresponding number of charged hadrons [3] created in the Au-like source is N1
ch = 55, in the

d-like source N2
ch = 14, and in the central source N3

ch = 22, with a total of 91 produced charged hadrons
in minimum-bias collisions. These particle numbers have been determined from a detailed comparison of
the subsequent linear diffusion phase with data, see Sect. 4. In the lower part of Fig. 2, Gaussians with the
same particle-number content are displayed, as they arise from a linear diffusive time evolution (κ = 0)
with δ−function initial conditions, see next section.

At t = τp the power-law solution of the initial nonlinear phase in the midrapidity source can be ex-
pressed as

P3(y, t) =
C

a2 + y2
(20)

with

C = 2τpDp
y (21)

a = τpDp
y

√
2 exp(−τpDp

y) (22)

for the central source, and analogously P1,2(y, t) for the beam-like sources with y → y ± ymax and
Dp

y → Dp
y1,2.

As was shown in [1–5], the linear diffusive evolution after the initial short parton production phase is in
very good agreement with the available data. Hence the power-law result (20) of the first phase can be used
as an initial condition for the second, essentially linear phase that is reconsidered as described by Eq. (31)
in the next section. With this initial condition, the solution of the linear diffusion problem for the central
source becomes [28]

R(y, t) =
C

2a

√
2π
σ2

y
,

[
exp

[
− (y + iv)2

2σ2
y

]
erfc(

iy − v√
2σ2

y

)
]

(23)
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with the variance

σ2
y(t) = Dp

yτy[1 − exp(−2t/τy)] (24)

and

v = a exp(−t/τy). (25)

For t → ∞ we have

,
[
erfc(

iy√
2σ2

y

)
]

= 1 (26)

such that the gaussian limit is attained

R(y, t → ∞) =

√
1

2πσ2
y

exp
[
− y2

2σ2
y

]
(27)

which is a solution of a linear Fokker-Planck equation (31) for t → ∞ with δ−function initial conditions.
For gaussian initial conditions with an initial variance σ2

0 , one obtains a gaussian solution with σ2
y(t) →

σ2
y(t) + σ2

0exp(−2t/τy) and hence, Eq.(27) results for t → ∞ as well.
To connect the diffusion approach with data, the linear Relativistic Diffusion Model (RDM) for the

second, long-lasting diffusion phase in pseudorapidity space [1–5] is reviewed in the next section.

4 Linear diffusion phase

Since the initial power-law behaviour is superseded by the Gaussian evolution at sufficiently large times,
the evolution is started here at t=0 with δ−function or gaussian initial conditions to illustrate the outcome
of the three-sources model for large times and in particular, to compare to data.

The situation at moderate times with δ−function initial conditions is shown in the lower part of Fig. 2,
with separate Gaussians in the three sources in rapidity space which have the same particle-number content
as the initial power-law solutions of the nonlinear particle-production problem. The subsequent time evo-
lution of these three sources leads to agreement with the experimental data at the interaction time t = τint,
and to statistical equilibrium for t → ∞.

The nonequilibrium-statistical description of this evolution is based on an essentially linear diffusion
equation which is briefly reviewed in this section. We have used a Fokker-Planck equation (Uhlenbeck-
Ornstein [29] version with κ = 0) [1–5] for the distribution function R(y, t) for produced charged hadrons
in rapidity space

∂

∂t
R(y, t) = −∇y

[
J(y)R(y, t)

]
+ Dy∇2

yR(y, t). (28)

The drift is now taken into account since we look at the large-time behaviour, and the drift function J(y)
determines the speed of the statistical equilibration in y-space. In order to attain the Boltzmann distribution
for large times, the drift term must have the form [8, 39]

J(y) ∝ m⊥ sinh(y) ∝ p‖ (29)

with the transverse mass m⊥ =
√

(m2 +p2
⊥), and the longitudinal momentum p‖. This introduces another

nonlinearity into the problem, which prohibits an analytical solution of the diffusion equation. Such an
analytical solution [1] is, however, possible by linearising the drift function in a relaxation ansatz

J(y) = (yeq − y)/τy (30)
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with the rapidity relaxation time τy , and the equilibrium value of the rapidity yeq that is calculated from
energy and momentum conservation in the system of participants. The deviations of the solutions for
nonlinear and linear versions of the drift are not pronounced [39] and hence, I have used the analytical
solutions of the linear problem for the components Rk(y, t) (k = 1, 2, 3) of the distribution function

∂

∂t
Rk(y, t) =

1
τy

∂

∂y

[
(y − yeq) · Rk(y, t)

]
+ Dk

y
∂2

∂y2
Rk(y, t). (31)

The diagonal components Dk
y of the rapidity diffusion tensor contain the microscopic physics in the re-

spective beam-like (k = 1, 2) and central (k = 3) regions. They account for the statistical broadening of
the distribution functions. To connect with data, one has to consider the additional broadening due to lon-
gitudinal collective expansion that leads to a larger (effective) value of Dy [40] than what is calculated [1]
from the dissipation-fluctuation theorem (Einstein relation).

As discussed above, the initial conditions in the linear phase are taken as R1,2(y, t = 0) = δ(y ± ymax)
with the maximum rapidity ymax = 5.36 at the highest RHIC energy of

√
sNN = 200 GeV (beam rapidities

are y1,2 = ∓ymax), and R3(y, t = 0) = δ(y). A midrapidity gluon-dominated symmetric source had also
been proposed by Bialas and Czyz [30].

This initial condition for the midrapidity source in the linear case corresponds to initial particle produc-
tion without any longitudinal motion, independently of the mass of the collision partners: the third source
is created at y = 0, and the drift towards the equilibrium value y = yeq, as well as the rapid collective
expansion, sets in subsequently. (In contrast, the nonlinear model as discussed in the previous section pro-
duces power-law tails at short times, which are superseded by the gaussian tails of the linear evolution only
at later times).

The mean values in the three sources have the time dependence

〈y1,2(t)〉 = yeq[1 − exp(−t/τy)] ∓ ymax exp (−t/τy) (32)

for the sources (1) and (2), and

〈y3(t)〉 = yeq[1 − exp(−t/τy)] (33)

for the moving central source. The three mean values reach the equilibrium limit for time to infinity. In our
previous RDM-calculation [3] with slightly different initial condition, the mean value of the central source
was at the equilibrium limit 〈y3(t)〉 = yeq independently of time, thus assuming instant equilibration in
this source regarding the mean values. The variances σ2

1,2,3(t) are as in Eq.(24), with Dy → Dp
y .

It turns out that for d+Au at the highest RHIC energy, one can not determine from a comparison with the
data which of the two possibilities for the initial conditions of the central source is more realistic because
the χ2 is nearly identical in both cases. The subsequent diffusion-model time evolution in pseudorapidity
space is followed up to the interaction time τint, when the produced charged hadrons cease to interact
strongly.

The quotient τint/τy is determined from the minimum χ2 with respect to the data, simultaneously
with the minimization of the other free parameters - namely, the variances of the three partial distribution
functions, and the number of particles produced in the central source. In this nonequilibrium-statistical
approach, the equilibrium value of the rapidity and its dependence on centrality is calculated from energy
and momentum conservation in the system of participants as

yeq(b) =
1
2

ln
〈mT

1 (b)〉 exp(−ymax) + 〈mT
2 (b)〉 exp(ymax)

〈mT
2 (b)〉 exp(−ymax) + 〈mT

1 (b)〉 exp(ymax)
(34)

with the transverse masses 〈mT
1,2(b)〉 =

√
(m2

1,2(b)+ 〈pT 〉2), and masses m1,2(b) of the ”target”(Au)- and
”projectile”(d)-participants that depend on the impact parameter b. The average numbers of participants
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Table 1 Produced charged hadrons in minimum-bias d + Au collisions at
√

sNN = 200 GeV, y1,2 = ∓
5.36 in the linear Relativistic Diffusion Model. The equilibrium value of the rapidity in the RDM is yeq, the
time parameter (see text) is p, the corresponding value of interaction time over relaxation time is τint/τy,
the variance of the central source in y-space is σ2

3 . The number of produced charged particles is N1,2
ch for

the sources 1 and 2 and N3
ch for the central source, the percentage of charged particles produced in the

midrapidity source is n3
ch, and χ2/d.o.f. is the result of the minimization [3] per number of degrees of

freedom.

yeq p τint/τy σ2
3 N1

ch N2
ch N3

ch n3
ch(%) χ2/d.o.f.

−0.664 0.54 0.78 4.19 55 14 22 24 2.44/48

〈N1,2(b)〉 from the Glauber calculations reported in [31] for minimum bias d + Au at the highest RHIC
energy are 〈N1〉 =6.6, 〈N2〉 =1.7, which we had also used in [3].

The average numbers of charged particles in the target- and projectile-like regions N1,2
ch are proportional

to the respective numbers of participants N1,2,

N1,2
ch = N1,2

(N tot
ch − Neq

ch )
(N1 + N2)

(35)

with the constraint N tot
ch = N1

ch + N2
ch + Neq

ch . Here the total number of charged particles N tot
ch is determined

from the data. The average number of charged particles in the equilibrium source N eq
ch is a free parameter

that is optimized together with the variances and τint/τy in a χ2-fit of the data using the CERN minuit-code.
The results are summarized in Table 1.

The FPE is solved analytically as outlined in [1], and the solutions are converted to pseudorapidity
space. This conversion is required because particle identification is not available. The relation between
scattering angle θ and pseudorapidity η is η = −ln[tan(θ/2)]. Here θ is measured relative to the direction
of the deuteron beam. Hence, particles that move in the direction of the gold beam have negative, particles
that move in the deuteron direction have positive pseudorapidities. The conversion from y− to η− space
of the rapidity density

dN

dη
=

p

E

dN

dy
= j(η, 〈m〉/〈pT 〉)

dN

dy
(36)

is performed through the Jacobian

j(η, 〈m〉/〈pT 〉) = cosh(η) · [1 + (〈m〉/〈pT 〉)2 + sinh2(η)]−1/2. (37)

The average mass 〈m〉 of produced charged hadrons in the central region is approximated by the pion mass
mπ, and a mean transverse momentum 〈pT 〉 = 0.4 GeV/c is used [3]. Due to the conversion, the partial
distribution functions are different from Gaussians. The charged-particle distribution in rapidity space is
obtained as incoherent superposition of nonequilibrium and local equilibrium solutions of (31)

dNch(y, t = τint)
dy

= N1
chR1(y, τint) + N2

chR2(y, τint) + N3
chR3(y, τint) (38)

with the interaction time τint (total integration time of the differential equation). The integration is stopped
at the value of τint/τy that produces the minimum χ2 with respect to the data and hence, the explicit value
of τint is not needed as an input. The resulting values for τint/τy are given in Table 1 together with the
widths of the central distributions, and the particle numbers in the three sources.
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Fig. 3 Time evolution of pseudorapidity distributions for
produced charged particles from minimum-bias d + Au col-
lisions at

√
sNN = 200 GeV in the linear diffusion model

as outlined in [3, 4]. The d-like source is shaded to illus-
trate the movement in η−space towards equilibrium. Dash-
dotted curves show the slightly moving, gluon-dominated
midrapidity source for hadron production. Results for five
time steps (p-values, cf. text) are displayed. Agreement
with the data [31] is reached at p = 0.54. Statistical equi-
librium centered at ηeq would be achieved at later times.
Reviewed from [4].

The time evolution is shown together with the comparison to PHOBOS minimum-bias data [31] in
Fig. 3. It is evident that the two beam-like distribution functions move towards smaller absolute pseudora-
pidities as time increases, and reach agreement with the data at p = 0.54. Here the time evolution parameter
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p in the numerical calculation is defined as 1

p = 1 − exp(−t/τy). (39)

The minimum-bias result also shows the asymmetric shape of the distribution function, which is very
well reproduced in the diffusion calculation. At larger values of the time evolution parameter p, all three
subdistributions tend to become symmetric in y with respect to the equilibrium value yeq, indicating the
approach to thermal equilibrium. At p = 0.999, the equilibrium state is already closely approached. The
slight asymmetry is due to the conversion from rapidity- to pseudorapidity space which tends to produce a
dip at η = 0. For time to infinity, statistical equilibrium in pseudorapidity space would be reached.

We have shown in [3] that with this linear RDM approach, the centrality dependence of the measured
pseudorapidity distributions [31] from central to very peripheral collisions can also be modeled in consider-
able detail, Fig. 4. For peripheral collisions, the asymmetry of the overall distribution is not yet pronounced
because here the d- and the Au-like partial distributions are similar in size due to the small number of par-
ticipants.

Towards more central collisions, the number of gold participants rises, and the corresponding partial
distribution of produced particles becomes more important. In addition, the distributions drift towards the
equilibrium value. Both effects produce the asymmetric shape, which is also seen in minimum-bias. The
tails of the distribution functions are of gaussian shape in perfect agreement with the data. This shows that
the power-law tails of the initial phase have not survived the time evolution, as is confirmed when the result
of the initial phase is used explicitly as an initial condition for the linear evolution.

It is interesting to compare the behaviour of the rapidity or pseudorapidity distribution functions with
results from different approaches to the problem such as saturation models [32, 33, 35], viscous hydrody-
namics [37], or ideal hydrodynamics [38].

Calculations within the framework of the Parton Saturation Model not only predict the midrapidity
value, but also the full rapidity distribution function (at RHIC energies, and also at LHC) [33, 34]. These
calculations are based on a classical effective theory that describes the gluon distribution in large nuclei at
high energies where saturation might occur at a critical momentum scale, to form a Color Glass Condensate
(CGC) [35].

This assumption has a clear and reasonable physical basis and yields good results for pseudorapidity
distribution functions of produced charged hadrons at the available RHIC energies. Problems may be ex-
pected for net-proton rapidity distributions since protons and antiprotons are produced in equal amounts
from the CGC. At LHC energies, the overall pseudorapidity distribution from the CGC as obtained with
the assumption of a constant αs for strong coupling is slightly narrower than the corresponding diffusion-
model prediction [5].

Additional consideration of a running coupling gives a midrapidity value that is of the order of 10%
smaller; another uncertainty arises from the extrapolation of the saturation scale to LHC energies. Various
predictions for central rapidity densities and pseudorapidity distributions at RHIC and LHC energies had
been summarized e.g. in [36], where also the differences among the existing models - including hydrody-
namical and pQCD approaches and their numerical implementations - had been discussed.

In relation to these approaches, the analytical diffusion model provides good results when compared in
detail to the experimental distribution functions at RHIC energies, in particular, in the tails of the distribu-
tions. To provide a microscopic foundation, however, a derivation of the diffusion coefficients in the three
sources would be required. Due to the valence-quark dominance in the beam-like sources as opposed to
the mainly gluonic midrapidity source, the diffusion coefficients may turn out to be substantially different
in the three sources.

1 There is a difference of a factor of two in the exponent as compared to the definition of p used in [3], which causes different
t/τy values for given p.
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Fig. 4 Calculated pseudorapidity distributions of pro-
duced charged particles in d + Au collisions at

√
sNN =

200 GeV for five different centralities, as outlined in [3, 4].
Central collisions are shown in the top frame, peripheral at
the bottom. The linear diffusion-model (RDM) results for
three sources (d-like source shaded) in η−space are shown
together with their incoherent sums as χ2− minimizations
at each centrality cut (c.c.). The time variable is p (see text).
The initial conditions for the central source are slightly dif-
ferent from [3], see text. Data are from PHOBOS [31]. Re-
viewed from [4].

5 Conclusion

I have presented a nonlinear Relativistic Diffusion Model that includes an explicit analytical treatment of
the initial parton-production phase in rapidity space. As a consequence of the high rapidity density at short
times t " 0.25 fm/c, the rapidity diffusion coefficient depends on the distribution function, such that the
problem is highly nonlinear in the initial phase.
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For a power-law dependence of the diffusion coefficient on the distribution function with an exponent
κ, the mathematical technique of similarity solutions that has been refined in many previous works proves
to be useful in the present physical context. In particular, I have investigated the so-called source solution
in rapidity space.

An adequate solution to the nonlinear problem should not have a free boundary in rapidity space that
moves with finite velocity as is the case for positive values of κ, but in parton production there should be
an instantaneous spread in y−space without a free boundary. This corresponds to the case κ = −1, which
can be solved analytically using the technique of similarity solutions.

During particle production in three sources, the norm of the distribution function increases, which I have
considered phenomenologically by letting the integration constant depend on particle number. Since parti-
cle production is very rapid - exponentially in time -, this increase of the norm of the distribution function
turns out to be faster than the spread of the distribution function in rapidity space due to nonlinear diffu-
sion and hence, the power-law tails of the distribution function remain small during the parton-production
phase.

The result of the parton-production phase is then used as initial condition for the later (pre-hadronic and
hadronic) stage of the collision, which is treated here in the linear relativistic diffusion model. The linear
evolution washes out the initial power-law tails of the distribution function, which become gaussian.

With the proper Jacobi transformation to pseudorapidity space, this approach yields very precise agree-
ment with charged-hadron data for both asymmetric systems (d+Au), and symmetric systems such as
Cu+Cu and Au+Au [2, 5]. It is also particularly suitable for predictions at LHC energies of 5.5 TeV for
Pb+Pb.

The second collision phase lasts about 7-10 fm/c depending on the system, the incident energy, and the
centrality. Due to the schematic treatment that is based on a linear partial differential equation, particle
number is conserved in this phase, which appears as a reasonable physical assumption even though it is
certainly not strictly valid.

For time to infinity, the evolution of the distribution function proceeds to statistical equilibrium with
respect to the variable rapidity or pseudorapidity. Comparing the data with this time evolution as modeled
by the solutions of the linear problem, it is evident that at the time of the measurement - when strong
interaction ceases - the system is still far from statistical equilibrium. This underlines the view that rel-
ativistic heavy-ion collisions are very suitable to observe strongly interacting many-body systems with a
large amount of particle production on their way to statistical equilbrium.

In this work I have not considered the connection between the diffusion approach and QCD. It is obvious
that the forward and backward sources for produced particles are related to the valence quarks, whereas the
central source is essentially due to gluon-gluon collisions. An actual microscopic calculation of the three
sources emphasizing their relative size (number of produced particles) is therefore of interest [41].
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[9] M. Rybczyński, Z. Włodarczyk, and G. Wilk, Nucl. Phys. B (Proc. Suppl.) 122, 325 (2003).
G. Wilk and Z. Włodarczyk, Phys. Rev. Lett. 84, 2770 (2000).

[10] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
[11] P. Braun-Munzinger, D. Magestro, K. Redlich, and J. Stachel, Phys. Lett. B 518, 41 (2001).
[12] A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772, 167 (2006), and references therein.
[13] F. Becattini, J. Cleymans, A. Keränen, E. Suhonen, and K. Redlich, Phys. Rev. C 64, 0249012 (2001).
[14] M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Ann. Rev. Nucl. Sci. 55, 357 (2005).
[15] R. Stock, Phys. Lett. B 456, 277 (1999).
[16] B. Z. Kopeliovich, J. Nemchik, and I. Schmidt, Nucl. Phys. A 782, 224 (2007).
[17] D. E. Kahana and S. H. Kahana, Phys. Rev. C 72, 024903 (2005); nucl-th/0707.2990.
[18] J. Ellis and K. Geiger, Phys. Rev. D 54, 1967 (1996).

K. Geiger and D. K. Srivastava, Phys. Rev. C 56, 2718 (1997).
[19] R. E. Pattle, Quart. J. Mech. Appl. Math. 12, 407 (1959).
[20] J. R. Philip, Aust. J. Phys. 13, 1 (1960).
[21] B. Tuck, J. Phys. D 9, 1559 (1976).
[22] G. J. Pert, J. Phys. A 10, 583 (1977).
[23] A. A. Lacey, J. R. Ockendon, and A. B. Tayler, SIAM J. Appl. Math. 42, 1252 (1982), and references therein.
[24] W. L. Kath, Physica 12D, 375 (1984).
[25] J. M. Hill, J. Engng. Math. 23, 141 (1989).

D. L. Hill and J. M. Hill, J. Engng. Math. 24, 109 (1990).
J. M. Hill and D. L. Hill, J. Engng. Math. 25, 287 (1991).

[26] M. L. Gandarias, P. Venero, and J. Ramirez, J. Nonlinear Math. Phys. 5, 234 (1998).
[27] Q. Changzheng, IMA J. Appl. Math. 62, 283 (1999).
[28] Y. Mehtar-Tani, private communication.
[29] G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).
[30] A. Bialas and W. Czyz, Acta Phys. Pol. B 36, 905 (2005).
[31] B. B. Back et al., PHOBOS Collaboration, Phys. Rev. Lett. 93, 082301 (2004); Phys. Rev. C 72, 031901 (2005).
[32] N. Armesto, C. Salgado, and U. Wiedemann, Phys. Rev. Lett. 94, 022002 (2005). K. Golec-Biernat and M.
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