Bose-Einstein condensate of bosonic atoms: Gross-Pitaevskii equation and hydrodynamic expansion

Albert Bekov

Statistical Physics Seminar Prof. Wolschin University of Heidelberg

17.07.2020

BEC of bosonic atoms

Albert Bekov

Motivatior

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

What is going on here?

Bose-Einstein condensate of sodium atoms in a confining, axially symmetric harmonic potential is released (Experimentally realized by the Ketterle Group at MIT 1996 [1])

Flight times for (a)–(f) are 1, 5, 10, 20, 30, and 45 ms, respectively.

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

Outline

1. Motivation

- 2. Bose-Einstein condensates BEC in theory BEC in experiments
- 3. Gross-Pitaevskii equation Historic introduction Second quantization Assumptions Gross-Pitaevskii equation
- 4. Properties of the GPE

Scales of the GPE Thomas-Fermi approximation Hydrodynamics and superfluidity

- 5. Hydrodynamic expansion Motivation Time evolution of the condensate Comparison to experiment
 6. Summary and outlook
- 6. Summary and outlook
- 7. References

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

Outline

1. Motivation

- 2. Bose-Einstein condensates BEC in theory BEC in experiments
- 3. Gross-Pitaevskii equation Historic introduction Second quantization Assumptions Gross-Pitaevskii equation
- 4. Properties of the GPE

Scales of the GPE Thomas-Fermi approximation Hydrodynamics and superfluidity

- 5. Hydrodynamic expansion Motivation Time evolution of the condensate Comparison to experiment
 6. Summary and outlook

Absorption 100%

BEC of bosonic atoms

Albert Bekov

Motivatior

Bose-Einstein condensates

BEC in theory BEC in experiments

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

Theoretical Prediction

- First theoretical prediction by Bose [2] and Einstein
 [3] in 1924
- Bose first proposed a derivation of the radiation law of photons without the use of classical physics leading to Bose statistics
- Einstein then recognized that at low temperatures the ground state will be macroscopically occupied by bosons, hence the name Bose-Einstein condensate
- Modern description uses quantum statistics for derivation

Satyendranath Bose

Albert Einstein

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

BEC in theory BEC in experiments

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

Theoretical properties of an ideal Bose-Einstein condensate

- Bose and Einstein description assumed an ideal Bose gas, i.e. non-interacting bosonic particles
- A critical temperature can be computed below which the ground state begins to be more and more occupied

$$T_{\rm c} = \frac{2\pi\hbar^2}{k_{\rm B}m} \Big(\frac{\rho}{2.612}\Big)^{2/3}$$

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

BEC in theory BEC in experiments

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

References

Experimentally a lower critical temperature is measured, which is a first hint that interaction must be considered

Experimental realization of a Bose-Einstein condensate

- Only after more than 70 years a condensate was produced by Wieman and Cornell with rubidium atoms [4] and by Ketterle with sodium atoms [5] in 1995
- In 2001 they won the Nobel prize "for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates"

E.A. Cornell, C.E. Wieman and W. Ketterle

BEC of bosonic atoms

Albert Bekov

Notivation

Bose-Einstein condensates BEC in theory BEC in experiments

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

- With the experimental realization of BECs a new field in physics was established: Ultracold quantum gases
- New phenomena were measured such as quantum vortices in condensates, different oscillation modes and (most importantly in this presentation)
 hydrodynamic expansion of Bose-Einstein condensates
- Consideration of an ideal Bose gas is not sufficient! New techniques to describe interacting Bose gases had to be found
- This lead to the rediscovery of the already formulated Gross-Pitaevskii equation

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates BEC in theory BEC in experiments

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

Outline

1. Motivation

- 2. Bose-Einstein condensates BEC in theory BEC in experiments
- 3. Gross-Pitaevskii equation Historic introduction Second quantization Assumptions Gross-Pitaevskii equation
- 4. Properties of the GPE

Scales of the GPE Thomas-Fermi approximation Hydrodynamics and superfluidity

- Hydrodynamic expansion Motivation Time evolution of the condensa Comparison to experiment
 Summary and outlook
- 6. Summary and outloo
- 7. References

BEC of bosonic atoms

Albert Bekov

Motivatior

Bose-Einstein condensates

Gross-Pitaevskii equation

Historic introduction Second quantization Assumptions Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

Historic introduction

- First developed independently by L. P. Pitaevskii [6] and E. P. Gross [7]
- Historic motivation was the description of quantum vortices in condensates, but there are far more applications
- In general, the Gross-Pitaevskii equation describes nonuniform, interacting bosons at very low (zero) temperatures

$$\begin{split} &i\hbar\frac{\partial}{\partial t}\Phi(\mathbf{r},t) = \\ & \left(-\frac{\hbar^2}{2m}\nabla^2 + V_{\text{ext}}(\mathbf{r},t) + g|\Phi(\mathbf{r},t)|^2\right)\Phi(\mathbf{r},t) \end{split}$$

Lev P. Pitaevskii (1933-)

Eugene P. Gross (1926-1991)

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Second quantization Assumptions

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

Short reminder: Second quantization

- Mostly developed by Dirac in 1927 [8] to describe quantum many-body systems
- Classical fields are replaced by field operators: Most importantly, the quantum field operators $\hat{\Psi}(\mathbf{r},t)$ and $\hat{\Psi}^{\dagger}(\mathbf{r},t)$
- The Hamiltonian of a many-body system with a two-particle interaction $U(\mathbf{r} \mathbf{r}')$ and an external potential $V_{\text{ext}}(\mathbf{r}, t)$ is given by

$$\begin{split} \hat{H} &= \int \mathrm{d}\mathbf{r} \,\hat{\Psi}^{\dagger}(\mathbf{r},t) \bigg(-\frac{\hbar^2}{2m} \nabla^2 + V_{\mathrm{ext}}(\mathbf{r},t) \bigg) \hat{\Psi}(\mathbf{r},t) \\ &+ \frac{1}{2} \int \mathrm{d}\mathbf{r} \,\mathrm{d}\mathbf{r}' \,\hat{\Psi}^{\dagger}(\mathbf{r},t) \hat{\Psi}^{\dagger}(\mathbf{r}',t) U(\mathbf{r}-\mathbf{r}') \hat{\Psi}(\mathbf{r}',t) \hat{\Psi}(\mathbf{r},t) \end{split}$$

BEC of bosonic atoms

Albert Bekov

Notivation

Second quantization

Short reminder: Second quantization

- The field operators describe the creation/annihilation of a particle in position space
- In the case of bosons they obey the following commutation relation

$$\left[\hat{\Psi}(\mathbf{r},t),\hat{\Psi}^{\dagger}(\mathbf{r}',t)\right] = \delta(\mathbf{r}-\mathbf{r}')$$

• Then, together with the Heisenberg equation $i\hbar \partial_t \Psi = [\Psi, H]$ an equation of motion for the field operator can be derived

$$\begin{split} i\hbar \frac{\partial}{\partial t} \hat{\Psi}(\mathbf{r},t) &= \\ \left(-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{ext}}(\mathbf{r},t) + \int \mathrm{d}\mathbf{r}' \, \hat{\Psi}^{\dagger}(\mathbf{r}',t) U(\mathbf{r}-\mathbf{r}') \hat{\Psi}(\mathbf{r}',t) \right) \hat{\Psi}(\mathbf{r},t) \end{split}$$

BEC of bosonic atoms

Albert Bekov

Notivation

Bose-Einstein condensates

equation Historic introduction Second quantization Assumptions Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

First assumption: Mean field or zero temperature

Firstly, expand the field operator in the following way

$$\hat{\Psi}(\mathbf{r},t) = \Phi(\mathbf{r},t) + \hat{\psi}(\mathbf{r},t) \quad \text{with} \quad \left\langle \hat{\Psi}(\mathbf{r},t) \right\rangle = \Phi(\mathbf{r},t)$$

This was initially done by Bogoliubov 1947 [9] but with a constant exp. value

At low temperatures, the expectation value can be related with the particle number density of the condensate

$$|\Phi(\mathbf{r},t)|^2 = n(\mathbf{r},t) \quad ext{with} \quad \int \mathrm{d}\mathbf{r} \, n(\mathbf{r},t) = N$$

At zero temperature, all depletion from the condensate can be neglected, so that the field operator is totally replaced by the complex exp. value:

• (r, t) is called order parameter/wave function of the condensate

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation Historic introduction Second quantization Assumptions Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

Second assumption: Dilution or pseudo-potential

Scattering of a particle in quantum mechanics can be described by a scattering amplitude. At low energies it can be replaced by a simple number, the (s-wave) scattering length a

$$\psi(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} + f(\mathbf{k},\mathbf{r}/r) \frac{e^{ikr}}{r} \longrightarrow 1 - \frac{a}{r}$$

▶ If the scattering length is much larger than the mean distance between particles, i.e. the condensate is **dilute** $\overline{n} |a|^3 \ll 1$, a pseudo-potential can be introduced

$$U(\mathbf{r} - \mathbf{r}') = g \,\delta(\mathbf{r} - \mathbf{r}') \quad \text{with} \quad g = \frac{4\pi a \hbar^2}{m}$$

The scattering length a is positive for a repulsive interaction and negative for an attractive one BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates Gross-Pitaevskii equation Historic introduction Second quantization Assumptions Gross-Pitaevskii equatio

Properties of the GPE

Hydrodynamic Expansion

Summary and outlook

Set-up of the Gross-Pitaevskii equation

Starting from the equation of motion of an arbitrary field operator...

$$i\hbar\frac{\partial}{\partial t}\hat{\Psi}(\mathbf{r},t) = \left(-\frac{\hbar^2}{2m}\nabla^2 + V_{\text{ext}}(\mathbf{r},t) + \int d\mathbf{r}'\,\hat{\Psi}^{\dagger}(\mathbf{r}',t)U(\mathbf{r}-\mathbf{r}')\hat{\Psi}(\mathbf{r}',t)\right)\hat{\Psi}(\mathbf{r},t)$$

... using the following assumptions...

- Neglecting all depletion (zero temperature): $\hat{\Psi}(\mathbf{r},t) = \Phi(\mathbf{r},t)$
- Assuming a dilute condensate ($\overline{n} |a|^3 \ll 1$): $U(\mathbf{r} \mathbf{r'}) = g \, \delta(\mathbf{r} \mathbf{r'})$

... we end up at the Gross-Pitaevskii equation:

$$i\hbar\frac{\partial}{\partial t}\Phi(\mathbf{r},t) = \left(-\frac{\hbar^2}{2m}\nabla^2 + V_{\text{ext}}(\mathbf{r},t) + g|\Phi(\mathbf{r},t)|^2\right)\Phi(\mathbf{r},t)$$

BEC of bosonic atoms

Albert Bekov

Motivatior

Bose-Einstein ondensates

Gross-Pitaevskii equation Historic introduction Second quantization Assumptions Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

Outline

1. Motivation

- 2. Bose-Einstein condensates BEC in theory BEC in experiments
- 3. Gross-Pitaevskii equation Historic introduction Second quantization Assumptions Gross-Pitaevskii equation
- 4. Properties of the GPE

Scales of the GPE Thomas-Fermi approximation Hydrodynamics and superfluidity

- Hydrodynamic expansion Motivation Time evolution of the conder
 - Comparison to experiment
- Summary and outlook
- 7. References

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Scales of the GPE Thomas-Fermi approximation

Hydrodynamics and superfluidity

Hydrodynamic expansion

Summary and outlook

The scattering length for sodium was measured to be a = 2.75 nm (Tiesinga et al., 1996) [10]. With density values ranging from 10¹³ cm⁻³ to 10¹⁵ cm⁻³ the dilution parameter is of order:

$$\overline{n}\left|a\right|^{3} < 10^{-3}$$

▶ The confining, harmonic trap introduces another length scale

$$V_{
m ext}({f r}) = rac{m}{2} \sum \omega_i^2 r_i^2$$
 namely $a_{
m ho}^2 = rac{\hbar}{m\omega_{
m ho}}$ with $\omega_{
m ho} = \sqrt[3]{\omega_1 \omega_2 \omega_3}$

▶ Using these scales one can make the GPE dimensionless, e.g. $\mathbf{r}^2 \to a_{\rm ho}^2 \tilde{\mathbf{r}}^2$, $t \to \omega_{\rm ho}^{-1} \tilde{t}$, $\Phi(\mathbf{r}, t) \to a_{\rm ho}^{-3/2} \sqrt{N} \tilde{\Phi}(\tilde{\mathbf{r}}, \tilde{t})$ (with $\tilde{\Phi}$ normalized to 1)

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Scales of the GPE

Thomas-Fermi approximation

Hydrodynamics and superfluidity

Hydrodynamic expansion

Summary and outlook

Scales of the Gross-Pitaevskii equation

Plugging all these new quantities with tilde in the GPE yields

$$2i\frac{\partial}{\partial \tilde{t}}\tilde{\Phi} = \left(-\tilde{\nabla^2} + \tilde{\mathbf{r}}^2 + 8\pi \frac{Na}{a_{\rm ho}}\left|\tilde{\Phi}\right|^2\right)\tilde{\Phi}$$

The ratio Na/aho plays an important role! It can be shown (with use of the virial theorem) [11]

$$rac{E_{
m int}}{E_{
m kin}} \propto rac{N|a|}{a_{
m ho}}$$

> The experiments with sodium yield a relative large number of atoms (10^6-10^7) [1, 5], so that $Na/a_{\rm ho} \propto 10^3 - 10^4$

Repulsive interaction is much stronger than kinetic energy!

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Scales of the GPE Thomas-Fermi

approximation

Hydrodynamics and superfluidity

Hydrodynamic expansion

Summary and outlook

Thomas-Fermi approximation

- Repulsive interaction flattens the density distribution
- Variation of the density can be neglected, i.e. kinetic distribution in the GPE
- GPE takes the form (Thomas-Fermi approximation):

$$egin{aligned} &i\hbarrac{\partial}{\partial t}\Phi(\mathbf{r},t)=\ &\left(V_{\mathrm{ext}}(\mathbf{r})+g|\Phi(\mathbf{r},t)|^2
ight)\Phi(\mathbf{r},t) \end{aligned}$$

Density distribution of 80 000 sodium atoms in the trap of Hau et al. (1998) [12] as a function of the axial coordinate. Dashed line: Non-interacting bosons. (Figure from [11])

BEC of bosonic atoms

Albert Bekov

Iotivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Scales of the GPE

Thomas-Fermi approximation

Hydrodynamics and superfluidity

Hydrodynamic expansion

Summary and outlook

Static solution of the Gross-Pitaevskii equation

Constructing a static solution by making the typical ansatz:

 $\Phi(\mathbf{r},t) = \Phi(\mathbf{r}) e^{-i\frac{\mu}{\hbar}t}$

 For the spatial part of the wave function this yields (enforcing the Thomas-Fermi approximation)

$$\mu \Phi(\mathbf{r}) = \left(V_{\text{ext}}(\mathbf{r}) + g |\Phi(\mathbf{r})|^2 \right) \Phi(\mathbf{r}) \quad \rightarrow \quad \left| n(\mathbf{r}) = \frac{\mu - V_{\text{ext}}(\mathbf{r})}{g} \right|$$

for $\mu > V_{\rm ext}$ else $n=0.~n({\bf r})$ is then called the Thomas-Fermi density

The chemical potential can be determined by calculating the total number of particles

$$N = \int d\mathbf{r} \, n(\mathbf{r}) \quad \to \quad \mu = \frac{\hbar \omega_{\rm ho}}{2} \left(\frac{15Na}{a_{\rm ho}}\right)^{2/5}$$

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Scales of the GPE

Thomas-Fermi approximation

Hydrodynamics and superfluidity

Hydrodynamic expansion

Summary and outlook

Collisionless hydrodynamics and superfluidity

- Looking at a system with many particles, the condensate can be described by hydrodynamics as a superfluid at zero temperature (Stringari, 1996 [13])
- ▶ To that end, the wave function can be parameterized as

$$\Phi(\mathbf{r},t) = \sqrt{n(\mathbf{r},t)} e^{i\theta(\mathbf{r},t)}$$

`

The different derivatives appearing in the GEP can be calculated to

$$\partial_t \Phi = \left(\frac{\partial_t n}{2n} + i\partial_t \theta\right) \Phi$$

$$\nabla^2 \Phi = \nabla \left[\left(\frac{\nabla n}{2n} + i \nabla \theta \right) \Phi \right] = \left(\frac{\nabla^2 \sqrt{n}}{\sqrt{n}} - (\nabla \theta)^2 + i \nabla^2 \theta + i \frac{\nabla n}{n} \nabla \theta \right) \Phi$$

BEC of hosonic atoms

Albert Bekov

Hydrodynamics and superfluidity

Collisionless hydrodynamics and superfluidity

Plugging these derivatives into the GEP

$$i\hbar\frac{\partial}{\partial t}\Phi = \left(-\frac{\hbar^2}{2m}\nabla^2 + V_{\rm ext} + g|\Phi|^2\right)\Phi$$

and splitting the equation into a real and imaginary part yields

$$\partial_t n = -\frac{\hbar}{m} \left(n \nabla^2 \theta + \nabla n \nabla \theta \right)$$

$$\hbar \partial_t \theta = \frac{\hbar^2}{2m} \left(\frac{\nabla^2 \sqrt{n}}{\sqrt{n}} - (\nabla \theta)^2 \right) - V_{\text{ext}} - gn$$

▶ Introducing the velocity field $\mathbf{v} = \hbar/m \nabla \theta$ and applying the Thomas-Fermi approx., the equations can be finally modified to...

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Scales of the GPE Thomas-Fermi approximation

Hydrodynamics and superfluidity

Hydrodynamic expansion

Summary and outlook

Collisionless hydrodynamics and superfluidity

$$\frac{\partial}{\partial t} n + \nabla \boldsymbol{\cdot} (n \mathbf{v}) = 0 \quad \text{continuity eq.}$$

$$m \frac{\partial}{\partial t} \mathbf{v} + \nabla \left(\frac{m \mathbf{v}^2}{2} + V_{\text{ext}} + gn \right) = 0$$
 Euler eq.

Hydrodynamic equations of a superfluid

- First equation: Continuity equation of the particle density and total particle number conservation
- ▶ Second equation: Euler equation of frictionless fluid (zero viscosity!). Also: irrotational velocity field and pressure given by $p = gn^2/2$

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Scales of the GPE Thomas-Fermi approximation

Hydrodynamics and superfluidity

Hydrodynamic expansion

Summary and outlook

Outline

1. Motivation

- 2. Bose-Einstein condensates BEC in theory BEC in experiments
- Gross-Pitaevskii equation Historic introduction Second quantization Assumptions Gross-Pitaevskii equation
- 4. Properties of the GPE

Scales of the GPE Thomas-Fermi approximation Hydrodynamics and superfluidity

- 5. Hydrodynamic expansion Motivation Time evolution of the condensate Comparison to experiment
- 6. Summary and outlook
- 7. References

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Motivation Time evolution of the condensate Comparison to experiment

Summary and outlook

- Much information of Bose condensed gases is extracted from expanded atomic clouds
- For example: Temperature of the gas, the release energy and the aspect ratio of the density profile
- Problem concerns non-linear dynamics of many particles, i.e. easiest way to attack it by hydrodynamic description
- Equations can be solved in the Thomas-Fermi approx., which is fulfilled by the experiments at MIT [1] and some others (e.g. with Rubidium atoms in Konstanz [14])

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Motivation

Time evolution of the condensate Comparison to experiment

Summary and outlook

Ansatz: Time evolution conserves parabolic shape

 Consider the general case of an anisotropic potential with time dependent trapping frequencies

$$V_{\rm ext}(\mathbf{r},t) = \frac{m}{2} \sum \omega_i^2(t) r_i^2$$

▶ The static values $\omega_i(t=0) = \omega_{0i}$ determine the initial equilibrium distribution which is given by the Thomas-Fermi density

$$n(\mathbf{r}, t=0) = \frac{\mu - V_{\text{ext}}}{g} = \frac{1}{g} \left(\mu - \frac{m}{2} \sum \omega_{0i}^2 r_i^2 \right)$$

Equilibrium distribution exhibits a parabolic shape! We assume it to be conserved in the time evolution BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Motivation

Time evolution of the condensate Comparison to experimen

Summary and outlook

Ansatz: Time evolution conserves parabolic shape

We are making the following ansatz for the density and velocity profile:

$$n(\mathbf{r}, t) = a_0(t) - a_x(t) x^2 - a_y(t) y^2 - a_z(t) z^2$$
$$\mathbf{v}(\mathbf{r}, t) = \frac{1}{2} \nabla \left(\alpha_x(t) x^2 + \alpha_y(t) y^2 + \alpha_z(t) z^2 \right)$$

where a_0 is fixed by the total particle number $a_0 = (15N/8\pi)^{2/5} (a_x a_y a_z)^{1/5}$ The initial coefficients are fixed by the equilibrium density distribution to be

$$a_i(t=0)=\frac{m\omega_{0i}^2}{2g} \quad \text{and} \quad \alpha_i(t=0)=0$$

The evolution can then be determined by the hydrodynamic equations

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Motivation

Time evolution of the condensate Comparison to experiment

Summary and outlook

Ansatz: Time evolution conserves parabolic shape

Short reminder what the hydrodynamic equations look like

$$\frac{\partial}{\partial t}n + \nabla \cdot (n\mathbf{v}) = 0 \quad \text{and} \quad m \frac{\partial}{\partial t}\mathbf{v} + \nabla \left(\frac{m\mathbf{v}^2}{2} + V_{\text{ext}} + gn\right) = 0$$

Plugging the ansatz yields

$$\dot{a}_0 - \sum \dot{a}_i r_i^2 + \left(a_0 - \sum a_i r_i^2\right) \sum \alpha_j - 2 \sum \alpha_i a_i r_i^2 = 0$$
$$\sum \mathbf{e}_i \left(m \dot{\alpha}_i r_i + m \alpha_i^2 r_i + m \omega_i^2 r_i - 2g a_i r_i\right) = 0$$

Comparing the different variables and directions gives

$$\dot{a}_i + 2a_i\alpha_i + a_i\sum_{i}\alpha_j = 0$$
$$\dot{\alpha}_i + \alpha_i^2 + \omega_i^2 - \frac{2g}{m}a_i = 0$$

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Motivation

Time evolution of the condensate Comparison to experiment

Summary and outlook

Choosing different parameterization

- New parameterization can be chosen such that the equations reduce to three
- Consider the density profile radii at which the cloud vanishes:

$$R_i(t) = \sqrt{\frac{a_0(t)}{a_i(t)}} = R_i(0) \, b_i(t) = \sqrt{\frac{2\mu}{m\omega_{0i}^2}} b_i(t)$$

With that the coefficients can then be expressed by the b_i as:

$$a_i = \frac{m\omega_{0i}^2}{2gb_x b_y b_z b_i^2}$$

Schematic density profile of a bosonic condensate cloud

BEC of bosonic atoms

Albert Bekov

Motivatior

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Motivation

Time evolution of the condensate

Summary and outlook

Choosing different parameterization

▶ The evolution equations for the intrinsic parameterization

$$\dot{a}_i + 2a_i lpha_i + a_i \sum lpha_j = 0$$
 and $\dot{lpha}_i + lpha_i^2 + \omega_i^2 - rac{2g}{m}a_i = 0$

then reduces to $\alpha_i = \dot{b}_i/b_i$ and

$$\ddot{b}_i + \omega_i^2 b_i - \frac{\omega_{0i}^2}{b_i b_x b_y b_z} = 0$$

- Only three ordinary coupled differential equations! Great simplification to initial problem
- Equation first formulated by Castin and Dum [15] and later by Kagan, Surkov and Shlyapnikov [16] and finally by Dalfovo, Minniti, Stringari and Pitaevskii [17] (all in 1996-1997)

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Motivation

Time evolution of the condensate Comparison to experiment

Summary and outlook

Comparison to experiment

$$\ddot{b}_i + \omega_i^2 b_i - \frac{\omega_{0i}^2}{b_i b_x b_y b_z} = 0$$

- In the experiment at MIT [1] the bosons are trapped until t = 0. Then the trap is switched off and the bosons can expand freely.
- The trap is axially symmetric so there are two independent frequencies ω_⊥ = ω_x = ω_y and ω_z
- \blacktriangleright The equation of the evolution of the parameters b_i then becomes

$$\ddot{b}_{\perp} - rac{\omega_{\perp}^2}{b_{\perp}^3 b_z} = 0$$
 and $\ddot{b}_z - rac{\omega_z^2}{b_{\perp}^2 b_z^2} = 0$

with boundary conditions $b_{\perp}(t=0)=1$ and $b_z(t=0)=1$

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Motivation

Time evolution of the condensate

Comparison to experiment

Summary and outlook

Comparison to experiment

▶ Interested in the evolution of the **aspect ratio** (Reminder: The equilibrium were $R_i(0) \propto \omega_{0i}^{-1}$)

$$\frac{R_{\perp}}{R_z} = \frac{\omega_z}{\omega_{\perp}} \frac{b_{\perp}}{b_z} = \lambda \frac{b_{\perp}}{b_z}$$

• Rewrite the equations in terms of λ by introducing a dimensionless time $\tau = \omega_{\perp} t$

$$rac{\mathrm{d}^2}{\mathrm{d} au^2}b_\perp=rac{1}{b_\perp^3b_z}\quad ext{and}\quad rac{\mathrm{d}^2}{\mathrm{d} au^2}b_z=rac{\lambda^2}{b_\perp^2b_z^2}$$

The experimental values of the trap are ω_z = 2π × 16.23 Hz and ω_⊥ = 2π × 248 Hz (cigar shaped trap). The ratio then calculates to λ = 0.065 ≪1. In this limit the equations can be analytically solved [15]! BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Motivation

condensate Comparison to experiment

Summary and

Comparison to experiment

 \blacktriangleright In the small lambda limit $\lambda \ll 1$ the equations are solved by

$$b_{\perp}(\tau) = \sqrt{1 + \tau^2}$$

$$b_z(\tau) = 1 + \lambda^2 \left(\tau \arctan \tau - \ln \sqrt{1 + \tau^2}\right)$$

So the aspect ratio calculates to

$$\frac{R_{\perp}}{R_z} = \frac{\lambda\sqrt{1+\tau^2}}{1+\lambda^2 \left(\tau \arctan \tau - \ln \sqrt{1+\tau^2}\right)}$$

with $\lim_{ au
ightarrow \infty} \left(R_{\perp}/R_z
ight) = 2/(\pi\lambda) =$ 9.794

Aspect ratio of the expanding cloud at MIT [1] (Figure from [11])

Albert Bekov

Iotivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Motivation Time evolution of the

Comparison to experiment

Summary and outlook

Outline

1. Motivation

- 2. Bose-Einstein condensates BEC in theory BEC in experiments
- 3. Gross-Pitaevskii equation Historic introduction Second quantization Assumptions Gross-Pitaevskii equation
- 4. Properties of the GPE

Scales of the GPE Thomas-Fermi approximation Hydrodynamics and superfluidity

- Hydrodynamic expansion Motivation Time evolution of the condensa Comparison to experiment
- 6. Summary and outlook

7. References

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

Summary

- Whole new field of physics established by the first achievement of a Bose-Einstein condensate by Ketterle [5] and Cornell and Wieman [4]: Ultracold quantum gases
- Description is needed for interacting bosons at low temperatures: Gross-Pitaevskii equation
 - Description of nonuniform, dilute bosonic condensate at zero temperature
- Experimentally observed that condensates expand after being released from the trap [1]
- Hydrodynamic description was delivered shorty after observation by Castin and Dum 1996 [15]
 - Condensate expands while preserving shape (given by the trap)
 - Expands faster in the direction the trap was more confining

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

Outlook

- With the Gross-Pitaevskii equation collective oscillation can be determined, e.g. the Bogoliubov dispersion relation [9] can be recovered
- Quantum vortices can be described by the Gross-Pitaevskii equation (as was the original motivation). These can even be experimentally realized, as was done here [18]

 Many more applications! For a nice introduction I recommend the review by Dalfovo, Giorgini, Pitaevskii and Stringari [11]

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

References I

- M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee and W. Ketterle, Bose-Einstein Condensation in a Tightly Confining dc Magnetic Trap, Phys. Rev. Lett. **77** (1996) 416.
- S. Bose, Plancks Gesetz und Lichtquantenhypothese, Zeitschrift für Physik 26 (1924) 178.
- A. Einstein, Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung, Sitz.ber. Preuss. Akad. Wiss. Phys. 23 (1924) 245.
- M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269 (1995) 198 [https://science.sciencemag.org/content/269/5221/198.full.pdf].
- K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn et al., *Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett.* **75** (1995) 3969.
- L. P. Pitaevskii, Vortex Lines in an Imperfect Bose Gas, JETP 13 (1961) 451.
- E. P. Gross, Structure of a quantized vortex in boson systems, Il Nuovo Cimento (1955-1965) 20 (1961) 454.

BEC of bosonic atoms

Albert Bekov

Motivatior

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

References II

- P. A. M. Dirac, The Quantum Theory of the Emission and Absorption of Radiation, Proceedings of the Royal Society of London **114** (1927) 243.
- N. Bogolyubov, On the theory of superfluidity, J. Phys. (USSR) 11 (1947) 23.
- E. Tiesinga, C. J. Williams, P. S. Julienne, K. M. Jones, P. D. Lett and W. D. Phillips, A Spectroscopic Determination of Scattering Lengths for Sodium Atom Collisions, Journal of research of the National Institute of Standards and Technology 101 (1996) 505.
 - F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, *Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys.* **71** (1999) 463.

L. Vestergaard Hau, B. D. Busch, C. Liu, Z. Dutton, M. M. Burns and J. A. Golovchenko, *Near-resonant spatial images of confined Bose-Einstein condensates in a 4-Dee magnetic bottle, Phys. Rev. A* **58** (1998) R54.

- S. Stringari, Collective Excitations of a Trapped Bose-Condensed Gas, Phys. Rev. Lett. 77 (1996) 2360.
- U. Ernst, J. Schuster, F. Schreck, A. Marte, A. Kuhn and G. Rempe, *Free expansion of a Bose–Einstein condensate from an loffe–Pritchard magnetic trap, Applied Physics B* **67** (1998) 719.

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

BEC of bosonic atoms

Albert Bekov

Motivation

Bose-Einstein condensates

Gross-Pitaevskii equation

Properties of the GPE

Hydrodynamic expansion

Summary and outlook

References

Y. Castin and R. Dum, *Bose-Einstein Condensates in Time Dependent Traps, Phys. Rev. Lett.* **77** (1996) 5315.

Y. Kagan, E. L. Surkov and G. V. Shlyapnikov, *Evolution of a Bose-condensed gas under variations of the confining potential*, *Phys. Rev. A* **54** (1996) R1753.

F. Dalfovo, C. Minniti, S. Stringari and L. Pitaevskii, *Nonlinear dynamics of a Bose condensed gas*, *Physics Letters A* **227** (1997) 259–264.

J. R. Abo-Shaeer, C. Raman, J. M. Vogels and W. Ketterle, *Observation of Vortex Lattices in Bose-Einstein Condensates, Science* **292** (2001) 476 [https://science.sciencemag.org/content/292/5516/476.full.pdf].