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What is going on here?

Bose-Einstein condensate of sodium atoms in a confining, axially symmetric
harmonic potential is released

(Experimentally realized by the Ketterle Group at MIT 1996 [1])

Flight times for (a)–(f) are 1, 5, 10, 20, 30, and 45 ms, respectively. 2 / 39
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Theoretical Prediction

I First theoretical prediction by Bose [2] and Einstein
[3] in 1924

I Bose first proposed a derivation of the radiation law
of photons without the use of classical physics
leading to Bose statistics

I Einstein then recognized that at low temperatures
the ground state will be macroscopically occupied
by bosons, hence the name Bose-Einstein
condensate

I Modern description uses quantum statistics for
derivation

Satyendranath Bose

Albert Einstein
5 / 39
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Theoretical properties of an ideal Bose-Einstein condensate

I Bose and Einstein description
assumed an ideal Bose gas, i.e.
non-interacting bosonic particles

I A critical temperature can be
computed below which the ground
state begins to be more and more
occupied

Tc =
2π~2

kBm

( ρ

2.612

)2/3
I Experimentally a lower critical temperature is measured, which is a first hint

that interaction must be considered
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Experimental realization of a Bose-Einstein condensate

I Only after more than 70 years a condensate
was produced by Wieman and Cornell with
rubidium atoms [4] and by Ketterle with
sodium atoms [5] in 1995

I In 2001 they won the Nobel prize “for the
achievement of Bose-Einstein condensation in
dilute gases of alkali atoms, and for early
fundamental studies of the properties of the
condensates”

E.A. Cornell, C.E. Wieman and W. Ketterle Velocity distribution of Rb87 at JILA
[4]
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A new field in physics

I With the experimental realization of BECs a new field in physics was
established: Ultracold quantum gases

I New phenomena were measured such as quantum vortices in condensates,
different oscillation modes and (most importantly in this presentation)
hydrodynamic expansion of Bose-Einstein condensates

I Consideration of an ideal Bose gas is not sufficient! New techniques to
describe interacting Bose gases had to be found

I This lead to the rediscovery of the already formulated Gross-Pitaevskii
equation

8 / 39
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Historic introduction

I First developed independently by L. P. Pitaevskii [6]
and E. P. Gross [7]

I Historic motivation was the description of quantum
vortices in condensates, but there are far more
applications

I In general, the Gross-Pitaevskii equation describes
nonuniform, interacting bosons at very low
(zero) temperatures

i~
∂

∂t
Φ(r, t) =(

− ~2

2m
∇2 + Vext(r, t) + g|Φ(r, t)|2

)
Φ(r, t)

Lev P. Pitaevskii (1933-)

Eugene P. Gross (1926-1991)
10 / 39
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Short reminder: Second quantization

I Mostly developed by Dirac in 1927 [8] to describe quantum many-body
systems

I Classical fields are replaced by field operators:
Most importantly, the quantum field operators Ψ̂(r, t) and Ψ̂†(r, t)

I The Hamiltonian of a many-body system with a two-particle interaction
U(r− r′) and an external potential Vext(r, t) is given by

Ĥ =

∫
dr Ψ̂†(r, t)

(
− ~2

2m
∇2 + Vext(r, t)

)
Ψ̂(r, t)

+
1

2

∫
dr dr′ Ψ̂†(r, t)Ψ̂†(r′, t)U(r− r′)Ψ̂(r′, t)Ψ̂(r, t)

11 / 39
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Short reminder: Second quantization

I The field operators describe the creation/annihilation of a particle in
position space

I In the case of bosons they obey the following commutation relation[
Ψ̂(r, t), Ψ̂†(r′, t)

]
= δ(r− r′)

I Then, together with the Heisenberg equation i~ ∂tΨ = [Ψ, H] an equation
of motion for the field operator can be derived

i~
∂

∂t
Ψ̂(r, t) =(

− ~2

2m
∇2 + Vext(r, t) +

∫
dr′ Ψ̂†(r′, t)U(r− r′)Ψ̂(r′, t)

)
Ψ̂(r, t)

12 / 39
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First assumption: Mean field or zero temperature

I Firstly, expand the field operator in the following way

Ψ̂(r, t) = Φ(r, t) + ψ̂(r, t) with
〈

Ψ̂(r, t)
〉

= Φ(r, t)

This was initially done by Bogoliubov 1947 [9] but with a constant
exp. value

I At low temperatures, the expectation value can be related with the particle
number density of the condensate

|Φ(r, t)|2 = n(r, t) with

∫
drn(r, t) = N

I At zero temperature, all depletion from the condensate can be neglected,
so that the field operator is totally replaced by the complex exp. value:

Φ(r, t) is called order parameter/wave function of the condensate

13 / 39
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Second assumption: Dilution or pseudo-potential

I Scattering of a particle in quantum mechanics can be described by a
scattering amplitude. At low energies it can be replaced by a simple
number, the (s-wave) scattering length a

ψ(r) = eik·r + f(k, r/r)
eikr

r
−→ 1− a

r

I If the scattering length is much larger than the mean distance between
particles, i.e. the condensate is dilute n |a|3 � 1, a pseudo-potential can be
introduced

U(r− r′) = g δ(r− r′) with g =
4πa~2

m

I The scattering length a is positive for a repulsive interaction and negative
for an attractive one

14 / 39
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Set-up of the Gross-Pitaevskii equation

Starting from the equation of motion of an arbitrary field operator...

i~
∂

∂t
Ψ̂(r, t) =

(
− ~2

2m
∇2 + Vext(r, t) +

∫
dr′ Ψ̂†(r′, t)U(r− r′)Ψ̂(r′, t)

)
Ψ̂(r, t)

...using the following assumptions...

I Neglecting all depletion (zero temperature): Ψ̂(r, t) = Φ(r, t)

I Assuming a dilute condensate (n |a|3 � 1): U(r− r′) = g δ(r− r′)

... we end up at the Gross-Pitaevskii equation:

i~
∂

∂t
Φ(r, t) =

(
− ~2

2m
∇2 + Vext(r, t) + g|Φ(r, t)|2

)
Φ(r, t)

15 / 39
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Scales of the Gross-Pitaevskii equation

I The scattering length for sodium was measured to be a = 2.75 nm
(Tiesinga et al., 1996) [10]. With density values ranging from 1013 cm−3 to
1015 cm−3 the dilution parameter is of order:

n |a|3 < 10−3

I The confining, harmonic trap introduces another length scale

Vext(r) =
m

2

∑
ω2
i r

2
i namely a2ho =

~
mωho

with ωho = 3
√
ω1ω2ω3

I Using these scales one can make the GPE dimensionless, e.g. r2 → a2hor̃
2,

t→ ω−1ho t̃, Φ(r, t)→ a
−3/2
ho

√
N Φ̃(r̃, t̃) (with Φ̃ normalized to 1)

17 / 39
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Scales of the Gross-Pitaevskii equation

I Plugging all these new quantities with tilde in the GPE yields

2i
∂

∂t̃
Φ̃ =

(
−∇̃2 + r̃2 + 8π

Na

aho

∣∣∣Φ̃∣∣∣2)Φ̃

I The ratio Na/aho plays an important role! It can be shown (with use of the
virial theorem) [11]

Eint

Ekin
∝ N |a|

aho

I The experiments with sodium yield a relative large number of atoms
(106-107) [1, 5], so that Na/aho ∝ 103 − 104

Repulsive interaction is much stronger than kinetic energy!

18 / 39
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Thomas-Fermi approximation

I Repulsive interaction flattens the
density distribution

I Variation of the density can be
neglected, i.e. kinetic distribution
in the GPE

I GPE takes the form
(Thomas-Fermi approximation):

i~
∂

∂t
Φ(r, t) =(

Vext(r) + g|Φ(r, t)|2
)

Φ(r, t) Density distribution of 80 000 sodium atoms in the
trap of Hau et al. (1998) [12] as a function of the
axial coordinate. Dashed line: Non-interacting
bosons. (Figure from [11])

19 / 39
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Static solution of the Gross-Pitaevskii equation

I Constructing a static solution by making the typical ansatz:

Φ(r, t) = Φ(r) e−i
µ
~ t

I For the spatial part of the wave function this yields (enforcing the
Thomas-Fermi approximation)

µΦ(r) =
(
Vext(r) + g|Φ(r)|2

)
Φ(r) → n(r) =

µ− Vext(r)

g

for µ > Vext else n = 0. n(r) is then called the Thomas-Fermi density
I The chemical potential can be determined by calculating the total number

of particles

N =

∫
drn(r) → µ =

~ωho

2

(
15Na

aho

)2/5

20 / 39
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Collisionless hydrodynamics and superfluidity

I Looking at a system with many particles, the condensate can be described
by hydrodynamics as a superfluid at zero temperature (Stringari, 1996 [13])

I To that end, the wave function can be parameterized as

Φ(r, t) =
√
n(r, t) eiθ(r,t)

I The different derivatives appearing in the GEP can be calculated to

∂tΦ =

(
∂tn

2n
+ i∂tθ

)
Φ

∇2Φ = ∇
[(
∇n
2n

+ i∇θ
)

Φ

]
=

(
∇2√n√

n
− (∇θ)2 + i∇2θ + i

∇n
n
∇θ
)

Φ

21 / 39
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Collisionless hydrodynamics and superfluidity

I Plugging these derivatives into the GEP

i~
∂

∂t
Φ =

(
− ~2

2m
∇2 + Vext + g|Φ|2

)
Φ

and splitting the equation into a real and imaginary part yields

∂tn = − ~
m

(
n∇2θ +∇n∇θ

)
~ ∂tθ =

~2

2m

(
∇2√n√

n
− (∇θ)2

)
− Vext − gn

I Introducing the velocity field v = ~/m∇θ and applying the Thomas-Fermi
approx., the equations can be finally modified to...

22 / 39
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Collisionless hydrodynamics and superfluidity

∂

∂t
n+∇ · (nv) = 0 continuity eq.

m
∂

∂t
v +∇

(
mv2

2
+ Vext + gn

)
= 0 Euler eq.

I Hydrodynamic equations of a superfluid

I First equation: Continuity equation of the particle density and total particle
number conservation

I Second equation: Euler equation of frictionless fluid (zero viscosity!). Also:
irrotational velocity field and pressure given by p = gn2/2

23 / 39
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Expansion of an atomic cloud

I Much information of Bose condensed gases is extracted from expanded
atomic clouds

I For example: Temperature of the gas, the release energy and the aspect
ratio of the density profile

I Problem concerns non-linear dynamics of many particles, i.e. easiest way to
attack it by hydrodynamic description

I Equations can be solved in the Thomas-Fermi approx., which is fulfilled by
the experiments at MIT [1] and some others (e.g. with Rubidium atoms in
Konstanz [14])

25 / 39
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Ansatz: Time evolution conserves parabolic shape

I Consider the general case of an anisotropic potential with time dependent
trapping frequencies

Vext(r, t) =
m

2

∑
ω2
i (t)r

2
i

I The static values ωi(t = 0) = ω0i determine the initial equilibrium
distribution which is given by the Thomas-Fermi density

n(r, t = 0) =
µ− Vext

g
=

1

g

(
µ− m

2

∑
ω2
0ir

2
i

)
I Equilibrium distribution exhibits a parabolic shape! We assume it to be

conserved in the time evolution

26 / 39
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Ansatz: Time evolution conserves parabolic shape

I We are making the following ansatz for the density and velocity profile:

n(r, t) = a0(t)− ax(t)x2 − ay(t) y2 − az(t) z2

v(r, t) =
1

2
∇
(
αx(t)x2 + αy(t) y

2 + αz(t) z
2
)

where a0 is fixed by the total particle number a0 = (15N/8π)2/5(axayaz)
1/5

I The initial coefficients are fixed by the equilibrium density distribution to be

ai(t = 0) =
mω2

0i

2g
and αi(t = 0) = 0

I The evolution can then be determined by the hydrodynamic equations

27 / 39
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Ansatz: Time evolution conserves parabolic shape

I Short reminder what the hydrodynamic equations look like

∂

∂t
n+∇ · (nv) = 0 and m

∂

∂t
v +∇

(
mv2

2
+ Vext + gn

)
= 0

I Plugging the ansatz yields

ȧ0 −
∑

ȧir
2
i +

(
a0 −

∑
air

2
i

)∑
αj − 2

∑
αiair

2
i = 0∑

ei
(
mα̇iri +mα2

i ri +mω2
i ri − 2gairi

)
= 0

I Comparing the different variables and directions gives

ȧi + 2aiαi + ai
∑

αj = 0

α̇i + α2
i + ω2

i −
2g

m
ai = 0

28 / 39
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Choosing different parameterization

I New parameterization can be chosen such that
the equations reduce to three

I Consider the density profile radii at which the
cloud vanishes:

Ri(t) =

√
a0(t)

ai(t)
= Ri(0) bi(t) =

√
2µ

mω2
0i

bi(t)

I With that the coefficients can then be
expressed by the bi as:

ai =
mω2

0i

2gbxbybzb2i

Schematic density profile of a
bosonic condensate cloud
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Choosing different parameterization

I The evolution equations for the intrinsic parameterization

ȧi + 2aiαi + ai
∑

αj = 0 and α̇i + α2
i + ω2

i −
2g

m
ai = 0

then reduces to αi = ḃi/bi and

b̈i + ω2
i bi −

ω2
0i

bibxbybz
= 0

I Only three ordinary coupled differential equations! Great simplification to
initial problem

I Equation first formulated by Castin and Dum [15] and later by Kagan,
Surkov and Shlyapnikov [16] and finally by Dalfovo, Minniti, Stringari and
Pitaevskii [17] (all in 1996-1997)
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Comparison to experiment

b̈i + ω2
i bi −

ω2
0i

bibxbybz
= 0

I In the experiment at MIT [1] the bosons are trapped until t = 0. Then the
trap is switched off and the bosons can expand freely.

I The trap is axially symmetric so there are two independent frequencies
ω⊥ = ωx = ωy and ωz

I The equation of the evolution of the parameters bi then becomes

b̈⊥ −
ω2
⊥

b3⊥bz
= 0 and b̈z −

ω2
z

b2⊥b
2
z

= 0

with boundary conditions b⊥(t = 0) = 1 and bz(t = 0) = 1
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Comparison to experiment

I Interested in the evolution of the aspect ratio (Reminder: The equilibrium
were Ri(0) ∝ ω−10i )

R⊥
Rz

=
ωz
ω⊥

b⊥
bz

= λ
b⊥
bz

I Rewrite the equations in terms of λ by introducing a dimensionless time
τ = ω⊥t

d2

dτ2
b⊥ =

1

b3⊥bz
and

d2

dτ2
bz =

λ2

b2⊥b
2
z

I The experimental values of the trap are ωz = 2π × 16.23 Hz and
ω⊥ = 2π × 248 Hz (cigar shaped trap). The ratio then calculates to
λ = 0.065�1. In this limit the equations can be analytically solved [15]!
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Comparison to experiment

I In the small lambda limit λ� 1 the
equations are solved by

b⊥(τ) =
√

1 + τ2

bz(τ) = 1 + λ2
(
τ arctan τ − ln

√
1 + τ2

)
I So the aspect ratio calculates to

R⊥
Rz

=
λ
√

1 + τ2

1 + λ2
(
τ arctan τ − ln

√
1 + τ2

)
with limτ→∞ (R⊥/Rz) = 2/(πλ) = 9.794 Aspect ratio of the expanding cloud at

MIT [1] (Figure from [11])
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Summary

I Whole new field of physics established by the first achievement of a
Bose-Einstein condensate by Ketterle [5] and Cornell and Wieman [4]:
Ultracold quantum gases

I Description is needed for interacting bosons at low temperatures:
Gross-Pitaevskii equation
I Description of nonuniform, dilute bosonic condensate at zero temperature

I Experimentally observed that condensates expand after being released from
the trap [1]

I Hydrodynamic description was delivered shorty after observation by Castin
and Dum 1996 [15]
I Condensate expands while preserving shape (given by the trap)
I Expands faster in the direction the trap was more confining
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Outlook

I With the Gross-Pitaevskii equation collective oscillation can be determined,
e.g. the Bogoliubov dispersion relation [9] can be recovered

I Quantum vortices can be described by the Gross-Pitaevskii equation (as was
the original motivation). These can even be experimentally realized, as was
done here [18]

I Many more applications! For a nice introduction I recommend the review by
Dalfovo, Giorgini, Pitaevskii and Stringari [11]
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