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Abstract: In this seminar paper Bose-Einstein condensates of bosonic atoms are in-
vestigated. In detail, the theoretical foundation of cold ideal Bose gases is introduced
and then expanded onto interacting Bose-Einstein condensates by deriving the Gross-
Pitaevskii equation. It is shown that this equation describes dilute, interacting Bose
gases at zero temperature and a few properties of it are discussed. Finally, the hydrody-
namic expansion of initially trapped Bose-Einstein condensates is theoretically explained.
Thereby, the results of theoretical predictions and measurements are compared.
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1 Motivation

Figure 1: This image is taken from an experiment by the Ketterle Group at MIT in 1996 [1].
Depicted is a Bose-Einstein condensate of sodium-23 atoms that is initially trapped in an axially-
symmetric harmonic potential generated by magnets. The trap is then switched o�, so that the
condensate can expand freely. The �ight times for (a)�(f) are 1, 5, 10, 20, 30, and 45 ms, respec-
tively.

This seminar paper is concerned with Bose-Einstein condensates of bosonic atoms and more
concretely with the dynamics of condensates in harmonic traps governed by the Gross-
Pitaevskii equation. To justify the assumptions and derivations as much as possible we
want to compare the use and applications of the following computations with experiments.
For comparison, we pick the �rst experiment where the expansion of a condensate was
observed (cf. Fig. 1). In this experiment, conducted by the Ketterle Group at MIT in
1996, a condensate of sodium-23 atoms was produced and trapped in an axially-symmetric
harmonic potential. After switching the trap o�, it was observed that the condensate
expands in a speci�c way. The aim of this seminar paper will be to understand and predict
this expansion precisely.
Therefore, we start by sketching the most important facts and features of Bose-Einstein
condensates in section 2, followed by the introduction and derivation of the Gross-Pitaevskii
equation in section 3. As it turns out the Gross-Pitaevskii equation describes the time-
evolution of nonuniform, dilute, interacting Bose gases at zero temperature. Since this
equation is a nonlinear partial di�erential equation, it has a rich and complicated structure.
However, we will investigate a few properties of it in section 4 in order to conduct the
following computations appropriately. Finally, the established framework will be used to
describe the hydrodynamic expansion of the condensate in section 5 and compare our
results with the experiment.

2 Bose-Einstein condensate of bosonic atoms

In order to investigate the dynamics and expansion of a Bose-Einstein condensate it seems
sensible to �rstly remind ourselves what a Bose-Einstein condensate is and how it is theo-
retically explained and experimentally achieved. Therefore, we start by brie�y introducing
the historic development of Bose-Einstein condensates.

2.1 Bose-Einstein condensates in theory

In 1900 Max Planck initially introduced his hypothesis that energies on small scales only
exists in discrete packages, thus laying the foundation of quantum theory. Almost a quarter
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Figure 2: Occupation of the ground state in an ideal Bose gas in dependence of temperature.

of a century later in 1924 Satyendranath Bose working at the university of Dhaka found
the same radiation law of photons by Planck, however, without the use of classical physics
[2]. Afterwards, he sent his paper to Albert Einstein who, being impressed by his work,
translated it to German and started working on the thermal properties of quantum gases
aswell. In the same year he found that at low temperatures all gas particles will occupy
the ground state at the same time meaning that they share the same quantum state [3],
hence the gas transforms into a new phase, which is called, referring to the physicists who
found that peculiar behavior, Bose-Einstein condensate.
In more detail, Bose and Einstein considered an ideal bosonic gas to derive its thermal
properties at low temperatures. Bosons, contrary to fermions, can occupy the same state
any number of times. Following this idea, it can be shown that below a certain critical
temperature Tc all particles will gather in the ground state of the system (cf. Fig. 2). This
critical temperature can be derived, for example in the framework of quantum statistics,
to be

Tc =
2π~2

kBm

( ρ

2.612

)2/3
, (1)

where ρ is the density of the Bose gas and m the particle mass. Experimentally it is
well established, that this critical temperature does not often match the measured value.
This hints towards the fact, that the consideration of a non-interacting, ideal Bose gas
is not su�cient to quantitatively describe the properties of a Bose-Einstein condensate.
Therefore, we will establish the framework of interacting Bose gases in the next sections,
which will �rstly lead us to the Gross-Pitaevskii equation. Beforehand, the experimental
realization of Bose-Einstein condensates is discussed.

2.2 Bose-Einstein condensates in experiments

More than 70 years later in 1995, the experimental realization of a Bose-Einstein condensate
was achieved, independently by E. A. Cornell and C. E. Wieman at the Joint Institute
for Laboratory Astrophysics in Colorado with rubidium atoms [4] and by W. Ketterle at
the MIT in Massachusetts with sodium atoms [5]. They used evaporative cooling in order
to establish temperatures of a few nanokelvins. In 2001 they received the Nobel prize in
physics �for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms,

and for early fundamental studies of the properties of the condensates�1.
This achievement lead to a whole new �eld investigated in physics, namely the theory
of ultra cold quantum gases. New phenomena were measured, such as the formation of
quantum vortices in condensates, di�erent collective oscillation modes of the condensate
and the hydrodynamic expansion, which is the topic of this seminar paper. However, a

1The Nobel Prize in Physics 2001. www.nobelprize.org/prizes/physics/2001/summary/
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lot of the theoretical framework had not been developed yet, so that theoretical physicists
started to research on ultra cold quantum gases in the following years. In particular,
this led to a reuse of the Gross-Pitaevskii equation, that was already formulated in 1961,
in order to describe the dynamics of Bose-Einstein condensates. The derivation of this
equation will be sketched in the next section.

3 Gross-Pitaevskii equation

So far we have seen that below a certain critical temperature bosons form the so-called
Bose-Einstein condensate by occupying the ground state of the system, so that the ma-
jority of the particles share the same quantum state. To that end, only non-interacting
bosons were considered which led indeed to the right qualitative description. Quantita-
tively, however, we will see that a theory of non-interacting bosons is not su�cient to
explain the measurements of an experiment accurately. Considering that a condensate
possesses a denser pro�le than a gas, meaning that the particles are closer together, this
is not surprising.
It turns out that in order to describe the dynamics of a Bose-Einstein condensate inter-
action necessarily needs to be considered, which leads naturally to a more complicated
mathematical framework. Nevertheless, the foundation of the description of condensates
has been already delivered by Lev P. Pitaevskii [6] and Eugene P. Gross [7] in 1961. The
physicists researched independently of each other, Pitaevskii at the Academy of Sciences
in the Soviet Union and Gross at CERN in Geneve, on the formation of quantum vortices
in Bose-Einstein condensates, which led them to a formulation of an equation that de-
scribes the dynamics of condensate. Therefore, this equation is called the Gross-Pitaevskii
equation and, as we will see, describes the behavior of nonuniform, interacting, dilute Bose
condensates at zero temperature.
In this section, the derivation of the Gross-Pitaevskii equation is sketched, as it was origi-
nally done by Gross and Pitaevskii. Therefore, we �rstly need to remind ourselves of the
general notion of quantum many-body systems, since a system of many bosonic particle is
exactly that.

3.1 Second quantization

Quantum many-body systems were initially introduced by Dirac [8] in 1926 in order to
quantize the electromagnetic �eld. Thereby, classical �elds are replaced by �eld operators,
thus, elevating quantum mechanics to a theory that respects the spacetime structure of
relativity. A natural consequence thereof is that particles can be created and annihilated
in quantum many-body systems. A thorough discussion of the development from quantum
mechanics to the description of quantum �eld theories would go beyond the constraints of
this seminar paper. Therefore, we concentrate on the the most important aspects of this
notion in order to derive the Gross-Pitaevskii equation by making certain assumptions.
As already mentioned, the number of particles is not a �xed value in quantum systems.
Thus, a new Hilbert space needs to be introduced to describe the states a many-body
system can obtain. The general idea is to consider ordinary Hilbert spaces of �xed particle
numbers, e.g. the zero-particle Hilbert space H0, one-particle Hilbert space H1, etc., and
then construct the so-called Fock space F as a tensor sum of all these Hilbert spaces

F = H0 ⊕H1 ⊕ . . . . (2)

States in this Fock space can then simply be thought of as a set of occupation numbers
that describe the number of particles that share the same energy within the system. To
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describe the dynamics of the system it is useful to introduce the so-called creation and an-

nihilation operators â†i and âi, where the index i numerates the di�erent energy eigenvalues
of the system. These operators create and annihilate particles which are in the ith energy
eigenstates, respectively. It turns out that further useful operators, that are convenient to
de�ne, are the quantum �eld operators. There are de�ned by the following equations

Ψ̂(r) =
∑
i

φi(r) âi and Ψ̂†(r) =
∑
i

φ∗i (r) â†i , (3)

where the sum goes over all energy eigenvalues and the φi describe the respective en-
ergy eigenstates in position space. Historically, these �eld operators were thought of as
quantized versions of the wave functions in quantum mechanics. Hence, the term `Second
quantization', which suggests that quantum mechanics is somehow quantized even further.
However, the interpretation has changed so that the modern view is quite di�erent. Quan-
tum �eld operators are now thought of as operators which create and annihilate particles
of all energies in speci�c points in space, respectively.
One of the most important distinctions between the quantum �eld operators is whether
they describe bosonic or fermionic states. As it is well known all bosonic particles obey
speci�c commutation laws which directly transfer to the commutation laws of the bosonic
�eld operators [

Ψ̂(r, t), Ψ̂†(r′, t)
]

= δ(r− r′) , (4)[
Ψ̂(r, t), Ψ̂(r′, t)

]
= 0 and

[
Ψ̂†(r, t), Ψ̂†(r′, t)

]
= 0 . (5)

Having introduced the operators to describe quantum many-body systems, we now have to
consider their time evolution. Therefore, it is useful to formulate the Hamilton operator of
the system and then, subsequently, derive the time evolution of the �eld operators in terms
of the Heisenberg picture. In order to work out the Hamilton operator one can think of
ordinary operators in quantum mechanics and transfer their action onto many particles by
the framework established above. This is not done in detail here but rather simply stated
and motivated by its form

Ĥ =

∫
dr Ψ̂†(r, t)

(
− ~2

2m
∇2 + Vext(r, t)

)
Ψ̂(r, t)

+
1

2

∫
drdr′ Ψ̂†(r, t)Ψ̂†(r′, t)U(r− r′)Ψ̂(r′, t)Ψ̂(r, t) . (6)

In the �rst line of the equation one sees the action of the kinetic energy and an external
potential Vext(r, t) on every particle of the system which is established by the annihilation
and creation of a particle at a speci�c point r that is then integrated over all space.
Further, in the second line a two-particle interaction U(r− r′) is described by the creation
and annihilation of two particles at r and r′. In total, the Hamilton operator therefore
describes the dynamics of a quantum many-body system with external potential and two-
particle interaction.
Finally, the time evolution of the quantum �eld operator can be derived by using the
Heisenberg equation

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
, (7)

and applying the bosonic commutation relations (4) and (5). This directly leads to a
partial di�erential equation for the �eld operator

i~
∂

∂t
Ψ̂(r, t) =

(
− ~2

2m
∇2 + Vext(r, t) +

∫
dr′ Ψ̂†(r′, t)U(r− r′)Ψ̂(r′, t)

)
Ψ̂(r, t) . (8)

6



BEC of bosonic atoms 3 Gross-Pitaevskii equation

So far, only the general concepts of quantum many-body systems were introduced. From
here on, the Gross-Pitaevskii equation can be derived by making two important assump-
tions about the system.

3.2 Derivation of the Gross-Pitaevskii equation

First assumption: Zero temperature approach. The �rst assumptions concerns
the temperature of the system. Since we are interested in a description of Bose-Einstein
condensates, it seems appropriate to investigate the system at very low temperatures. To
that end, the �eld operator introduced above is expanded in its expectation value and the
quantum �uctuations of it

Ψ̂(r, t) = Φ(r, t) + ψ̂(r, t) with
〈

Ψ̂(r, t)
〉

= Φ(r, t) . (9)

As mentioned, considering low temperatures it is known that most of the bosonic particles
will occupy the ground state of the system. Hence, one can assume that the expectation
values of the �eld operators correspond to the creation and annihilation operators of the
ground state. The disturbances ψ̂(r, t) can then be interpreted as thermal �uctuations
from that ground state.
Such an expansion was initially introduced by Bogoliubov in 1947 [9] in order to describe
the super�uid properties of Bose-Einstein condensate. He assumed the condensate itself
to be uniform and time-independent, thus being a �xed number Φ(r, t) = const., and
only looked at the linear �uctuations of it. Thereby, he found the famous Bogoliubov
quasi-particle excitation explaining the basics of the super�uid properties of condensates
at very low temperatures. The ansatz Gross and Pitaevskii made is exactly the opposite.
They considered nonuniform, time-dependent Bose-Einstein condensates, thus searching
for properties of the condensate itself. Therefore, all thermal �uctuations are neglected,
e.g. ψ̂(r, t) = 0, meaning that the system is assumed to be at zero temperature.
Consequently, the �eld operator can be replaced by its expectation value, which is then
called the order parameter or simply wave function of the condensate. It describes the
particle number density of the system and �xes its total particle number

|Φ(r, t)|2 = n(r, t) with
∫

drn(r, t) = N . (10)

As can be seen, the operator is replaced by a classical complex �eld, meaning that all
quantum features of the condensate are neglected. The reasoning for this is that at zero
temperature all particles are in the same state, so that the noncommutivity of the particle
operators are not important. In fact, this is analogous to the transition from quantum
electrodynamics to classical electrodynamics. If the majority of the photons share the same
state, the electromagnetic �elds can be describe, employing classical functions instead of
operators.

Second assumption: Pseudo-potential. As established, we consider the system to
be at very low temperatures. Hence it can be assumed that the de Broglie wave number
k of the particles is large compared to other characteristic length of the system. Most
importantly, one can expect the variations of the interaction potential to be much smaller
than the wave number of the particles, so that the interaction between two particles can
be characterized by a single number, the so-called (s-wave) scattering length a. In detail,
the general scattering of a particle is described by an incoming plane wave and an outgoing
spherical wave that amplitude is �xed by the scattering amplitude f(k, r/r). Because of
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the reasons above, at low temperatures this amplitude can be replaced by the scattering
length

ψ(r) = eik·r + f(k, r/r)
eikr

r
−→ 1− a

r
.

Figuratively, one can interpret the scattering length a as the radius of hard spheres that
scatter with each other, so that the length corresponds to the typical distance two particles
need to have in order to interact with each other.
The important assumption that is then made, is to assume the condensate to be dilute,
which means that on average there is always much less than one particle per scattering
volume n |a|3 � 1, where n denotes the particle density on average. Firstly, this justi�es
that only two-particle interactions have to be examined because the interaction of three
particles is too unlikely. Secondly, the potential then needs to be assumed to be a pseudo-
potential, so that any bound states between two particles can be prevented. Further this is
justi�ed because the speci�c shape of the potential can be ignored as already mentioned.
The interaction strength can then be related to the scattering length

U(r− r′) = g δ(r− r′) with g =
4πa~2

m
. (11)

The speci�c value and sign of a solely depends on the considered particles. If a is positive
the interaction between particles is repulsive, if a is negative the interaction is attractive.
In 1996 the scattering length of sodium-23 was measured to be a = 2.75 nm by Tiesinga
et al. at the University of Chicago, so that the interaction between sodium particles is
repulsive, which is going to be important later.
Before we �nally set up the Gross-Pitaevskii equation, we want to convince ourselves that
the dilution condition is actually ful�lled by most condensates. With scattering lengths
of order of a few nanometres and density values ranging from 1013 cm−3 to 1015 cm−3 the
dilution parameter is typically of order n |a|3 < 10−3, which is su�cient for assuming the
condensate to be dilute.

With these assumption the Gross-Pitaevskii equation can �nally be formulated. There-
fore, one simply starts with the equation of motion of the quantum �eld operator (8) and
replaces the operator by the classical wave function of the condensate. Subsequently, re-
placing the general interaction potential by the pseudo-potential and integrating over it,
leaves one with the Gross-Pitaevskii equation as it was originally formulated

i~
∂

∂t
Φ(r, t) =

(
− ~2

2m
∇2 + Vext(r, t) + g|Φ(r, t)|2

)
Φ(r, t) . (12)

Looking at this equation, the resemblance to the Schrödinger equation is quite obvious.
The only di�erent feature is the last term in the brackets, which arose from the interaction
of the system. This term leads to a non-linearity of the equation which gives rise to
completely new and rich features of the condensate compared to non-interacting ones, as
we will see. However, it also makes it almost impossible to solve the equation analytically
since non-linearities always make dynamics vastly more complicated. Therefore, we deal
with a few properties of the equation in the next section.

4 Properties of the Gross-Pitaevskii equation

4.1 Scales of the Gross-Pitaevskii equation and Thomas-Fermi approx-

imation

Having discussed the derivation of the Gross-Pitaevskii equation, it is now time to choose
the external potential to �t the problem that is considered here. As mentioned in the
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motivation the external potential is a harmonic oscillator

Vext(r) =
m

2

∑
ω2
i r

2
i , (13)

where m denotes the mass of the particles. The potential is described by three di�er-
ent oscillation frequencies corresponding to the di�erent space dimensions. With these
frequencies a new length scale is introduced, the so-called harmonic oscillator length

a2ho =
~

mωho
with ωho = 3

√
ω1ω2ω3 . (14)

This length scale can be used to make the Gross-Pitaevskii equation (12) dimensionless
by rescaling the dimensional variables, for example r2 → a2hor̃

2, t → ω−1ho t̃, Φ(r, t) →
a
−3/2
ho

√
N Φ̃(r̃, t̃). Here, Φ̃(r̃, t̃) was also chosen to be normalized to 1. The resulting

equation can then be derived to be

2i
∂

∂t̃
Φ̃(r̃, t̃) =

(
−∇̃2 + r̃2 + 8π

Na

aho

∣∣∣Φ̃(r̃, t̃)
∣∣∣2)Φ̃(r̃, t̃) . (15)

As can be seen, the only relevant scale left is the dimensionless ratio of the total particle
number times the scattering length divided by the harmonic oscillator length Na/aho. In
fact, it can be shown that this ratio is proportional to the ratio of the total kinetic energy
Ekin to the total interaction energy Eint that the condensate posses. From the Gross-
Pitaevskii equation it can be inferred that the total interaction energy is proportional to
|g|Nn, where the average density can be expressed by n = N/a3ho. On the other side, the
kinetic energy is of the order of N~ωho, which is then proportional to N/a2ho. In total, the
ratio of the energies is then indeed proportional to the dimensionless value found in the
dimensionless Gross-Pitaevskii equation (15)

Eint

Ekin
∝ N |a|

aho
. (16)

The order of the value of this ratio is strongly dependent on the experimental setup and
type of particles used. For the experiments with sodium at MIT condensates were es-
tablished with a comparatively large number of atoms of order from 106 to 107 [1, 5].
Therefore, this ratio is of order of Na/aho ∝ 103 − 104, meaning that the interaction
between the sodium atoms is much larger than the kinetic energy the atoms possess on
average. Considering that the repulsive interaction as well as the kinetic energy drives the
condensate apart, one can neglect the e�ect of the kinetic term in the Gross-Pitaevskii
equation, since it is at least thousand times smaller than the e�ect of the interaction. This
seemingly crude approximation is called the Thomas-Fermi approximation and simpli�es
the Gross-Pitaevskii equation extremely

i~
∂

∂t
Φ(r, t) =

(
Vext(r) + g|Φ(r, t)|2

)
Φ(r, t) . (17)

Another way to justify the Thomas-Fermi-approximation is by visualizing it. As can be
seen in Fig. 3, the e�ect of the interaction �attens the density pro�le strikingly. Hence,
the variation of the particle number density described by the laplacian of the kinetic term
can be neglected compared to the e�ect of the repulsive interaction.
At this point, it should be stressed that the application of the Thomas-Fermi approxima-
tion is very limited by the experiment that is considered. For example, experiments with
rubidium as conducted at JILA by Wieman and Cornell [4] cannot produce condensates
with an equally high number of atoms, so that the ratio (16) turns out to be much smaller.
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Thus, this approximation cannot be used to deliver a quantitative description of the con-
densate. Moreover, for experiments with bosons that attract each other, as for example
with lithium [12], the approximation also cannot be applied. The reason for that is that
the kinetic energy counteracts the attractive interaction between the particles. Hence,
a neglect of the kinetic term would immediately lead to a collapse of the Bose-Einstein
condensate.

4.2 Static solutions of the Gross-Pitaevskii equation

Using the Thomas-Fermi approximation, searching for static solutions of condensates be-
comes a simple task. Considering the Gross-Pitaevskii equation (17) with the approxi-
mation enforced one sees that the di�erential equation became ordinary, since the kinetic
term is neglected. By applying a simple separation ansatz for the wave function

Φ(r, t) = Φ(r) e−i
µ
~ t , (18)

where µ denotes the energy per particle, i.e. the chemical potential, the Gross-Pitaevskii
equation reduces to

µΦ(r) =
(
Vext(r) + g|Φ(r)|2

)
Φ(r) . (19)

Rearranging this equation and inserting the external potential (13) lead to an expression
for the particle number density, which is called Thomas-Fermi density referring to the
application of the Thomas-Fermi approximation

n(r) = |Φ(r)|2 =
1

g

(
µ− m

2

∑
ω2
i r

2
i

)
. (20)

This equation only holds when the chemical potential is greater than the external potential
so that the particle number density does not become zero. As can be seen, the static
shape of the condensate is fully determined by the form of the external potential. In
the case of a harmonic trap, one obtains a parabolic shape for the density pro�le of the

Figure 3: Density distribution of 80 000 sodium atoms in a trap of Hau et al. (1998) [10] as a
function of the axial coordinate. Points describe the measured value, the solid line the theoretical
prediction by the Gross-Pitaevskii equation and the dashed line the case for non-interacting bosons.
(Figure from [11])
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condensate (cf. Fig. 3).
Moreover, using (20) the chemical potential of the static con�guration can be determined
by enforcing that the total particle number N is �xed

N =

∫
drn(r) → µ =

~ωho

2

(
15Na

aho

)2/5

. (21)

The fact that the chemical potential depends on N2/5 is indeed well �tted by experimental
measurements [1].

4.3 Collisionless hydrodynamics and super�uidity

Having discussed the static solutions of the Gross-Pitaevskii equation we take a step back
and examine again the full equation (12). Considering that we are interested in describing
the dynamics of many particles that are interacting with each other, a hydrodynamic
description of the condensate would be convenient. In order to establish such a description
the wave function of the condensate is written in the following way

Φ(r, t) =
√
n(r, t) eiθ(r,t) , (22)

where it is used that the modulus of the wave function is equal to the square root of the
number density. Inserting this expression into the Gross-Pitaevskii equation and comput-
ing the spatial and time derivatives in terms of derivatives acting on n and θ, leads to
di�erential equations for the number density of the condensate and the phase of the wave
function by splitting the equation into its real and imaginary part

∂

∂t
n(r, t) = − ~

m
∇[n(r, t)∇θ(r, t)] , (23)

~
∂

∂t
θ(r, t) =

~2

2m

(
∇2
√
n(r, t)√
n(r, t)

− (∇θ(r, t))2
)
− Vext(r, t)− g n(r, t) . (24)

Firstly, the Thomas-Fermi approximation is again applied, so that the �rst term in the
brackets on the right-hand side of the second equation, which is called kinetic pressure, can
be neglected. Secondly, one notices that the �rst equation can be rewritten as a continuity
equation if a velocity �eld is introduced in the following way

v(r, t) =
~
m
∇θ(r, t) . (25)

In fact, this de�nition coincides with the particle current density of the wave function.
Moreover, it becomes apparent that the velocity �eld itself is a gradient �eld. Using this
de�nition, (24) can be written in terms of the velocity �eld, which then reads as follows

m
∂

∂t
v(r, t) +∇

(
mv2(r, t)

2
+ Vext(r, t) + g n(r, t)

)
= 0 . (26)

Using that the rotation of the velocity vanishes due to the fact that it is a gradient �eld,
the �rst term in the brackets can be rewritten as a directional derivative of the velocity
�eld. Additionally, one can interpret the gradient of the external potential as the external
force and de�ne a pressure �eld by p = gn2/2. The di�erential equation of the velocity
�eld than takes the form of an Euler equation. In total, one achieves from (23) and (24)
the following equations

∂

∂t
n+∇ · (nv) = 0 , (27)

m

(
∂

∂t
+ (v ·∇)

)
v = −∇p

n
−∇Vext . (28)
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To conclude, one recognizes by starting from the Gross-Pitaevskii equation and apply-
ing the Thomas-Fermi approximation a continuity equation and Euler equation of the
condensate can be derived. From the �rst one immediately total particle number conser-
vation follows. More interestingly, in the second equation are no terms proportional to the
laplacian of the velocity �eld, hence meaning that the condensate possesses zero viscosity,
making it a super�uid. Moreover, the pressure of the condensate is fully determined by
the repulsive particle interaction.
These important equations describe the super�uid nature of Bose-Einstein condensate and
were derived by Stringari in 1996 [13] starting from the Gross-Pitaevskii equation. They
will be the starting point in our discussion about the hydrodynamic expansion of Bose-
Einstein condensates.

5 Hydrodynamic expansion

In the last sections the Gross-Pitaevskii equation was derived and it was shown that it
describes the dynamics of nonuniform, dilute, interacting Bose gases at low temperature.
Thus, it is able to describe the time evolution of a Bose-Einstein condensate. Subsequently,
a few properties of the equation were discussed, for example the Thomas-Fermi approxi-
mation, that can be taken, and a static solution, that can be analytically computed. Most
importantly, the hydrodynamic equations of a super�uid were deduced from the Gross-
Pitaevskii equation. After having established all of this framework, we are �nally able to
come back to the main problem of this paper namely to theoretically explain the expansion
of a freed condensate.
The motivation to consider such an expansion of a condensate is a simple practical one. A
condensate is typically produced while being trapped in a harmonic potential. However,
many important properties of the condensate are measured only after it is being freed.
For example, the temperature of the condensate or collective excitations. Moreover, the
measurements of the expansion itself can be used to compare theoretical results, as is the
topic of this seminar paper.

5.1 Time evolution of an expanding condensate

Generally, one naturally assumes that the hydrodynamic equations (27) and (28) are a
promising starting point in order to describe the time evolution of a Bose-Einstein conden-
sate, since it is dealt with an interacting system of many particles. Beforehand, however,
one needs to specify the external potential, which is following the experiment, a harmonic
potential. Assuming the most general case, we choose an anisotropic oscillator with time
dependent frequencies

Vext(r, t) =
m

2

∑
ω2
i (t)r

2
i . (29)

The static values ωi(t = 0) = ω0i then determine the initial equilibrium distribution which
is given by the Thomas-Fermi density, as was discussed in the previous section

n(r, t = 0) =
1

g

(
µ− m

2

∑
ω2
0ir

2
i

)
. (30)

Thus, the equilibrium density pro�le exhibits a parabolic shape. As an ansatz, it is assumed
that this parabolic shape is conserved during the expansion, so that the density pro�le and
velocity pro�le should possess the following form

n(r, t) = a0(t)− ax(t)x2 − ay(t) y2 − az(t) z2 , (31)

v(r, t) =
1

2
∇
(
αx(t)x2 + αy(t) y

2 + αz(t) z
2
)
, (32)

12
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where the ai and αi determine the time evolution of this con�guration. Again, the number
density is everywhere zero, where (31) gives a negative value. Thereby, the velocity pro�le is
constructed to be a gradient �eld as is demanded by the hydrodynamic equations. Further,
one notices the enormous simpli�cation this ansatz delivers, namely that now only the time
evolution has to be computed, since the spatial distribution is �xed. The Thomas-Fermi
density determines the boundary conditions of the ai(t), whereas the αi(t) are initially zero
since the equilibrium density pro�le possesses no velocity �eld

ai(t = 0) =
mω2

0i

2g
and αi(t = 0) = 0 . (33)

The coe�cient a0(t) can be at all times determined by �xing the total particle number to
be N

a0 = (15N/8π)2/5(axayaz)
1/5 . (34)

Plugging the ansatz into the continuity equation (27) and the Euler equation (28) yields a
scalar and vector equation for the di�erent coe�cients

ȧ0 −
∑

ȧir
2
i +

(
a0 −

∑
air

2
i

)∑
αj − 2

∑
αiair

2
i = 0 , (35)∑

ei
(
mα̇iri +mα2

i ri +mω2
i ri − 2gairi

)
= 0 , (36)

where a dot above the coe�cients denotes a time derivative. Since the equations need
to hold for any values of the spatial coordinates, one can compare the prefactors in front
of them and set them to zero independently. Thus, one achieves six coupled di�erential
equations for the time evolution of the coe�cients

ȧi + 2aiαi + ai
∑

αj = 0 , (37)

α̇i + α2
i + ω2

i −
2g

m
ai = 0 . (38)

It should be mentioned that in the above equations the sums go over the spatial indices
and the Einstein sum convention is not implied.

Although the original problem is already vastly simpli�ed by these equations one can
reduce the amount of equations even further by considering a di�erent parameterization.

Figure 4: Schematic density pro�le of a bosonic condensate cloud, that is trapped in an axially
symmetric potential. Sketched are the classical radii Rz and R⊥.
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To that end, the parabolic shape is characterized by its classical radii, i.e. the radii in each
spatial direction where the number density vanishes (cf. Fig. 4). Comparing them with the
ansatz (31), these radii are given by Ri(t) =

√
a0(t)/ai(t)). Following the idea, that the

parabolic shape of the density pro�le is conserved, scaling functions bi(t) are introduced
that govern the time evolution of the classical radii

Ri(t) = Ri(0) bi(t) =

√
2µ

mω2
0i

bi(t) , (39)

where the initial values of the radii are again �xed by the static Thomas-Fermi density
(20). Relating the initially introduced coe�cients in the ansatz with the scaling parameters
and solving for the coe�cients yield

ai =
mω2

0i

2gbxbybzb2i
. (40)

Using these expressions, the time evolution of the initial parameterization by ai and αi
(cf. (37) and (38)) reduces to αi = ḃi/bi and the following equations that describe the time
evolution of the new scaling parameters

b̈i + ω2
i bi −

ω2
0i

bibxbybz
= 0 . (41)

These equations are the end result of the derivation and describe the dynamics of the
hydrodynamic expansion of Bose-Einstein condensates completely. By making the ansatz
that the parabolic shape of the density pro�le is conserved and choosing the right param-
eterization, the initial coupled partial di�erential equation of hydrodynamics reduces to
three ordinary coupled di�erential equations which simpli�es the problem to a great extent.
Equations (41) where �rstly derived by Castin and Dum at the École Normale Supérieure
in Paris in 1996 [14], in the same year that the experiment at the MIT was conducted.
Shortly after that also Kagan, Surkov and Shlyapnikov [15] and �nally Dalfovo, Minniti,
Stringari and Pitaevskii [16] derived the same equations.

5.2 Comparison to the experiment

With the equations (41) we are �nally able to predict the measurements of the experiment
[1] and compare the theoretical and experimental results. Therefore, the experimental
setup needs to be speci�ed further. The condensate is initially trapped in an axially
symmetric harmonic potential, meaning that only two independent frequencies need to be
considered ω⊥ = ωx = ωy and ωz. At the time t = 0 the trap is switched o� completely
so that the free expansion can be observed. In terms of the equations (41) this means
that they reduce from three independent ones to two, and additionally, that the second
terms can be canceled since the external potential is switched o�. In total, the following
equations are obtained

b̈⊥ −
ω2
⊥

b3⊥bz
= 0 and b̈z −

ω2
z

b2⊥b
2
z

= 0 , (42)

where b⊥ = bx = by. The boundary conditions are b⊥(t = 0) = 1, bz(t = 0) = 1,
ḃ⊥(t = 0) = 0 and ḃz(t = 0) = 0, since the initial scaling is normalized and static.
To e�ectively compare the theory with the experimental results, it is aimed to derive the
so-called aspect ratio of the condensate, which is given by the ratio o� the two classical
radii R⊥ and Rz

R⊥(t)

Rz(t)
=
Rz(0)

R⊥(0)

b⊥
bz

=
ωz
ω⊥

b⊥
bz

= λ
b⊥
bz
, (43)
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Figure 5: Aspect ratio of the expanding Bose-Einstein condensate at MIT [1] (Figure from [11]).
The points correspond to the experimentally measured data points, the solid line to the exact
numerical result of the hydrodynamic expansion equations, the dashed line (not seen because it
almost completely matches the solid line) is the analytical result in the limit λ � 0 and the
dashed-dotted line corresponds to the expansion of a non-interacting condensate.

where in the second equality it is used that the initial classical radii are inversely propor-
tional to the static frequencies of the harmonic trap. Furthermore, the ratio λ = ωz/ω⊥
that describes the con�guration of the trap is de�ned. Equations (42) can be rewritten in
terms of λ by introducing the dimensionless time τ = ω⊥t

d2

dτ2
b⊥ =

1

b3⊥bz
and

d2

dτ2
bz =

λ2

b2⊥b
2
z

. (44)

This form has the advantage that the ratio λ can be computed from the experimental
setup before solving the equations. The experimental values of the trap are given by
ωz = 2π × 16.23 Hz and ω⊥ = 2π × 248 Hz, which explains why the initial pro�le has a
cigar-like shape since the condensate is much tighter con�ned in the radial direction than
in the axial one. The ratio then calculates to be λ = 0.065, which is much smaller than
one. Using this limit the equations (44) can be even solved perturbatively as shown by the
authors in [14]. The solutions up to second order in λ read

b⊥(τ) =
√

1 + τ2 , (45)

bz(τ) = 1 + λ2
(
τ arctan τ − ln

√
1 + τ2

)
. (46)

Plugging them into the formula for the aspect ratio (43) yield the �nal result

R⊥
Rz

=
λ
√

1 + τ2

1 + λ2
(
τ arctan τ − ln

√
1 + τ2

) , (47)

which predicts the hydrodynamic expansion of the condensed gas quite perfectly as can be
seen in Fig. 5. At longer times the condensate obtains again a static aspect ratio given by
limτ→∞ (R⊥/Rz) = 2/(πλ) = 9.794. In particular, this means that the expansion is faster
in that direction the trap was initially tighter con�ning. As can also be seen in Fig. 5
a non-interacting condensate would behave extremely di�erent. In that case, the wave
function of the condensate would simply obey the Schrödinger equation so that it would
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di�use according to the dispersion relation of a massive wave packet.
All in all, we see that the Gross-Pitaevskii equation delivered a precise theoretical explana-
tion for the expansion of the condensate. Remarkably, even an analytical result is obtained
by making right assumptions that are justi�ed by experiments, as we have seen.

6 Conclusion and outlook

In this seminar paper, Bose-Einstein condensates of bosonic atoms were investigated. These
are a peculiar phase of Bose gases at low temperatures, where the majority of the particles
occupy the same quantum state. With the �rst achievements of Bose-Einstein condensates
by Ketterle [5] and Cornell and Wieman [4] a whole new �eld in physics was established,
namely the �eld of ultra-cold quantum gases. Following this experimental milestone new
theoretical explanations were developed based on the Gross-Pitaevskii equation, that was
1961 derived by Gross [7] and Pitaevskii [6] independently. In a few words, the Gross-
Pitaevskii equation describes the dynamics of nonuniform, dilute, interacting bosonic con-
densates at zero temperature. In particular, it was observed that Bose-Einstein condensates
expand after being released from a trap [1]. This seminar paper followed the theoretical
explanation by Castin and Dum [14] in order to describe this hydrodynamic expansion
starting from the Gross-Pitaevskii equation. One of the main features of the expansion are
that the initial shape of the density pro�le is conserved, which is in the case of an initially
harmonic trap a parabolic shape. Moreover, it was shown that the expansion is in those
spatial directions faster the trap was initially tighter con�ning. At last, the theoretical
results were compared with the measurements and it was shown that they �t perfectly
(cf. Fig. 5).

Figure 6: Experimentally realized vortex formation in a Bose-Einstein condensate of sodium
atoms by [17]. The vortices are produced by stirring the condensate with a laser.

Further interesting properties that can be investigated in Bose-Einstein condensates us-
ing the Gross-Pitaevskii equation are for example soliton solutions or di�erent oscillation
modes. In particular, one can show that the Bogoliubov dispersion relation can be re-
covered from the Gross-Pitaevskii equation. Another property that can be examined are
quantum vortices, as was the initial motivation for the derivation of the Gross-Pitaevskii
equation. In fact, such vortices can nowadays even be experimentally realized (cf. Fig. 6).
There are many more applications of the Gross-Pitaevskii equation and features of trapped
Bose-Einstein condensates that are interesting to investigate. For a nice introduction to
this topic the review by Dalfovo, Giorgini, Pitaevskii and Stringari [11] is recommended.
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