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Historic Overview




Historic Overview

m 1954: Cooper-pairs (in momentum space). Bound state of two electrons via
phonon interaction on top of filled fermi sphere.

m 1957 Barden, Cooper and Schrieffer extended single Cooper pair to many
particle wave function. Succesfully explained superconductivity at the time.

m 1962: Yang conjectures that BEC is possible for fermions if density matrix
exhibits off-diagonal long-range order

m 1970's: 3He-superfluidity discovered. Apparantly fermionic pairs without
phonons. BCS more general?

m 1980: Leggett assumed pairs of oppotsite spin and contact interaction — first
theory of BCS-BECat T =0

m 1985: Noziéres and Schmitt-Rink extended Leggett's theory to T~ T,



Historic Overview

m 1986: Discovery of high-temperature superconductors. Engelbrecht, Randeria
and Sa de Melo extended low temperature theory.

m 2003: first BEC of fermionic pairs at MIT and Innsbriick:

-

bLi atoms form a condensate at T~ 600 nK. Condensate fraction: 0.75.
Taken from [2]




Off-Diagonal Long-Range Order



Properties of reduced density matrices

N-particle density matrix p , Tr(p) =

m Define reduced density matrices:
(i| o ]i) = ,pa , (ij| p2 IRl = Tr(a;ajpala}) , etc. (1)

m Generally, largest eigenvalue 2; of p; bounded by:

METr(p) =N, A, <Tr(p,)=N(N-1), etc. (2)
m Fermions:
A,<1, A, <N— 2, ~N means BEC! (3)



Off-Diagonal Long-Range Order (ODLRO)

Idea corresponds to long-range correlation in (classical) solids!

m Definition of ODLRO:
(X p1|y)> 0 for [x—y| - 00 <= 2, =0(N)=aN ()
m For fermions no ODLRO in p, , butin p,:

(X:X,| p2 |V4¥,) ~ O execpt region around X:=X, =X, and y:=y, =y, V X,y

<~ A, =0(N)=aN (5)

— BEC is simply a form of ODLRO!



Basics of interacting fermi gas and ground
state




Cooper pairs

Consider two fermions on top of a filled,
non-interacting fermi sphere:

m Scattering takes place in
narrow band (blue)

m Binding energy depends
on number of possible
scattering states

m Largest binding energy
for opposite momentum
pairs

— Only consider (k, -k) pairs

taken from [1]




Many body state

m Many body state of fermionic pairs:

f [ 1270 (1 )0 ()0 (). (s — ) e (r0) ) (6)
e—lk~r e_ik'(r1—r2)
chg‘/_ and¢(r1—r2):;¢kT @)

m Introduce pair creation operator:
b =D oncicliy (®)
k

m |V) becomes formally identical to Gross-Pitaevskii ground state of a
condensate of bosons:

) = (b")? o) (9)



State ket

More convinient: grand canonical ensemble — N not fixed, but u!

m In BEC limit, this corresponds to coherent state of bosons:

) = C exp(AbT)|0) = Cl_Iexp 7L¢kaT kl)|o =C I—[(1+A¢kc%cikl)|o) (10)
k

Note:

eXp(A(kaLTciklNO):[1+A¢kCLTcikl (A,(pk) (CkT) ( ikl)2+0((k¢k)3)]|0)
:[1+A¢kC&TCikl]|0> , because

{ci . ck }Hoy=0 <> ¢ _cf lo)=—c] c} [0) = (c} )"lo)=0Vn>2



Final form of state ket

State ket so far: [¥) =C [ [, (1+ M’kC&TCikl) o)
m Choose normalisation C =] [, Uk, A¢k = Vi/uk and uy® + vy = 1:

Wecs) = | J(ur+viciychy))10) (1)
k

m Remarkable: started with coherent state of bosons in BEC, but ended up with
BCS wave function!

— same kind of wave function for both limits!
m Next step: determine uy and vy



We will only cosider s-wave scattering! Should be sufficient for cold dilute gases.

m Hamiltonian with contact interaction U:

0] h°k?
H—uN = Z(ek—,u)cfwckg +v ZCLTCT—klck’lc—k'T = (12)
k kK
m Contact interaction U characterized by scattering lenght as:

1 m d*k 1
= — (13)
U 4rhag (2m)3 2€k

— ﬁas defines three regions of the interacting fermi gas:

1 1

BCS: <—-1, BEC: >1, BCS-BEC crossover: —1< <1 (1)

kras kras kras



Intuitive picture: Interparticle spacing

& @9 On BEC side:
@ m Two body bound state of size
L= &
BCS BEC

taken from [8]




In order to derive equations for uy and vy, we will minimize the free energy
F=(H—uN)=(U|H—uN|P):

u
— P P — 2 —_— 7/ 7/
F=(U|H—uN|¥) =2 Ek (ex—w)Iviel® + v kEk/ UkVkUy Vi (15)

m U’ +v,2 =1 allows parametrisation:
ux = cos(6) , vk = sin(6y)

m Minimize F by aa_ng =0
u
= 2(ek—,u)ukvk+V(uﬁ—vﬁ);uk/vw —0 (16)



Introducing gap equation

Minimizing F yields equation for uy and vy

U .
2(ex—p)ukVk—(Up—Vp)A=0, A:= ——Zuk/vk/:Z(cch_kl) «— gap equation (17)
Vv " .

m Defining Ex = 4/ (ex—u)2 + A2, ug and vy are then solved by:

1 Ek— U 1 €k—U
=-(1 , Vik=—(1— 18
=501+ £ ) Vie= 5 ( E ) (18)
m Inserting uy and vy into gap equation yields:
A U A — 1 d3k 1 (19)
- V42ky 2Ek )3 2E)



m Inserting relation for scattering length leads to:

1 d3k 1 - _ m [ &k (L_L) (20)
U | (2m)3 2E urhas ) (2m)3'2Ek 26k
m Additional constrain by number equation:
d’k
_ 21
=2 g (21

m Use standard integrals and ...

[e%e} oo 2__
I1:f dxx2(;—l) and Izzf dxx2(1—L) (22)
0 (—z)2+1 X 0 (@—2z)2 +1




Dimensionless form of gap and number equations

< 1 1 < X2—z
h=] dxxl———=-—]and L=| dxx*[1—-——— (23)
o (x2—z)2+1 X o (x2—2)2 +1

m..and Ef= %, ke = (372n)3 to write:
3
1 2 | A u 3(AN, u
— =—\|=—1(=) , 1==| — | L(—= 2
e (2 )ty (21)
m Or inserting the second eqn into first:
1 2 2 )3 u A ( 2 )§
- == LW=), == (25)
kras “(3’2(%)) 1(A) Er 3’2(%)

— by solving first eqn for & as function of %as and inserting into second eqn
gives us the gap A!



Gap as function of inverse scattering length

gap given by red line

2 1 0 -1 -2

taken from [1]



Solution of number equation for different regimes

. : : i 2 ({4 __ecn 4
After having obtained A, we can insert it into ny = vi = [3(1 —(ek—u)2+A2)]

1

0.8
Nk 0.6

0.4

0.2

taken from [1]



Low excitations



Alternativ approach: Mean field and Bogoliubov transformation

m Bogoliubov transformation of operators leaves the anti-commutation relation

unchanged:
Tie ) _ (U —Vi|[ Sk ol ol s I
(Yikl)_(vk Uk)(Cikl — {yka’yk’a'}_{Cka’ck’a/}_a(k K650/ (26)

m Mean field + Bogoliubov transformation gives Hamiltonian in terms of
quasi-particles states:

A2 t t
H—pN =~V +;(ek—u—fk)+;5k(mm+Yklm) (27)

— At finite temperatures there will be excitations of quasi-particle states which
modify the gap equation



Low excitations

Recall gap equation: A=Y, (CkC_k|)
m In terms of quasi-particles, the so-called paring field becomes:
(Ck1Cat) = —UVi(1= (Y Tip) = (T Tr)) (28)

m Since quasi-particles follow Fermi-Dirac statistics (yaTykT)
equation becomes

m [ k[ 1 BEk 1
_4nhzas_f(2ﬂ)3(25ktanh( = )_2€k> (29)

recall: Ex=+/(ex—p)2+ A2

the gap

1+eﬁEk’




Solution for A(T) in the BCS regime

Solving temperature dependent gap equation yields with A, = e%exp(—#las‘):

— /21 AkgT exp(— B0y forT< Tc
A(T)N SksTey/1— o forTc-T> T, (30)
75(3) slc orlc-1>1I¢
1.0+
0.8
& 0.6
=
< 0.41
0.2
0.0 1 . T r 1
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e taken from [1]



Pair formation and condensation tempera-
ture




Temperature of pair formation T*

We want to know at which temperature T* fermionic pairs start to form:
m This happens, when the gap vanishes, i.e. A =0, which yields

m f(d3k (2( 1 tanh(ﬂ*(ek_'u))—L) (31)

CunhPas ) (2n)3\ 2(ex—p) 2 2€k

m Solve this while keeping the constraint for the number density above T* given
by Fermi-Dirac statistics:

n_zf d3k 1 (32)
) (@) a+exp(B(en—w)

— These equations allow us to calculate T*



(Pair formation and critical) temperature

m In BCS regime u> kgT* — u~ Ef:
e’ 8

TECS - TC,BCS = ——EXp(

e ) ; e’ ~1.78 (33)

2kF|as|

m T;.. involves so-called Lambert W-function — basically T} continues to
increase very steeply into BEC regime
m Deeply in BEC regime T¢ ggc is simply given by the well known T for bosons
with molecular density ny =n/2 and mass my =2m:
27Th2 Ny
Tegee=— (5737
mu Z(3)

m Small corrections if we go into crossover towards BCS:

)?/3 = 0.22E¢ (34)

Te~ Teec(1+1.31)° -0.6as) (35)

— There should be a smooth crossover in T from BCS to BEC, hence a maximum
between them



Pair formation and superfluid/condensation temperature
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Condensate fraction

m Following ODLRO by Yang:

No = %ZI(cch_u){z
k

E
= Zuﬁvﬁtanrﬁ(%)
k

(36)

Condensate Fraction

m In BEC regime: In experiment
condensate decays due to
1/kea heating

taken from [1]
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