Fermionic pairs and BCS-BEC crossover

Jörg Holsten

24 July 2020

1. Historic Overview
2. Off-Diagonal Long-Range Order
3. Basics of interacting fermi gas and ground state
4. Low excitations
5. Pair formation and condensation temperature

Historic Overview

■ 1954: Cooper-pairs (in momentum space). Bound state of two electrons via phonon interaction on top of filled fermi sphere.
■ 1957 Barden, Cooper and Schrieffer extended single Cooper pair to many particle wave function. Succesfully explained superconductivity at the time.

- 1962: Yang conjectures that BEC is possible for fermions if density matrix exhibits off-diagonal long-range order
■ 1970's: ${ }^{3} \mathrm{He}$-superfluidity discovered. Apparantly fermionic pairs without phonons. BCS more general?
■ 1980: Leggett assumed pairs of oppotsite spin and contact interaction \rightarrow first theory of BCS-BEC at $\mathrm{T}=0$
- 1985: Nozières and Schmitt-Rink extended Leggett's theory to $T \approx T_{C}$

■ 1986: Discovery of high-temperature superconductors. Engelbrecht, Randeria and Sa de Melo extended low temperature theory.
■ 2003: first BEC of fermionic pairs at MIT and Innsbrück:

${ }^{6} \mathrm{Li}$ atoms form a condensate at $T \approx 600 \mathrm{nK}$. Condensate fraction: 0.75 . Taken from [2]

Off-Diagonal Long-Range Order

Properties of reduced density matrices

N-particle density matrix $\rho, \operatorname{Tr}(\rho)=1$.

- Define reduced density matrices:

$$
\begin{equation*}
\left.\langle i| \rho_{1}|j\rangle=\operatorname{Tr}\left(a_{i} \rho a_{j}^{\dagger}\right),\langle i j| \rho_{2}|k|\right\rangle=\operatorname{Tr}\left(a_{i} a_{j} \rho a_{l}^{\dagger} a_{k}^{\dagger}\right) \text {, etc. } \tag{1}
\end{equation*}
$$

■ Generally, largest eigenvalue λ_{i} of ρ_{i} bounded by:

$$
\begin{equation*}
\lambda_{1} \leq \operatorname{Tr}\left(\rho_{1}\right)=N, \lambda_{2} \leq \operatorname{Tr}\left(\rho_{2}\right)=N(N-1) \text {, etc. } \tag{2}
\end{equation*}
$$

- Fermions:
$\lambda_{1} \leq 1, \lambda_{2} \leq N \rightarrow \lambda_{2} \approx N$ means BEC!

Off-Diagonal Long-Range Order (ODLRO)

Idea corresponds to long-range correlation in (classical) solids!

- Definition of ODLRO:

$$
\begin{equation*}
\langle\mathbf{x}| \rho_{1}|\mathbf{y}\rangle>0 \text { for }|\mathbf{x}-\mathbf{y}| \rightarrow \infty \Longleftrightarrow \lambda_{1}=\mathscr{O}(N) \equiv \alpha N \tag{4}
\end{equation*}
$$

- For fermions no ODLRO in ρ_{1}, but in ρ_{2} :

$$
\begin{align*}
& \left\langle\mathbf{x}_{1} \mathbf{x}_{2}\right| \rho_{2}\left|\mathbf{y}_{1} \mathbf{y}_{2}\right\rangle \approx \text { o execpt region around } \mathbf{x}:=\mathbf{x}_{1}=\mathbf{x}_{2} \text { and } \mathbf{y}:=\mathbf{y}_{1}=\mathbf{y}_{2} \forall \mathbf{x}, \mathbf{y} \tag{5}\\
& \Longleftrightarrow \lambda_{2}=\mathscr{O}(N) \equiv \alpha N
\end{align*}
$$

$\rightarrow B E C$ is simply a form of ODLRO!

Basics of interacting fermi gas and ground

 state
Cooper pairs

Consider two fermions on top of a filled, non-interacting fermi sphere:

- Scattering takes place in narrow band (blue)
■ Binding energy depends on number of possible scattering states
■ Largest binding energy for opposite momentum pairs
\rightarrow Only consider ($k,-k$) pairs
taken from [1]

Many body state

- Many body state of fermionic pairs:

$$
\begin{align*}
& |\Psi\rangle=\int \prod_{i} d^{3} r_{i} \phi\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \Psi_{\uparrow}^{\dagger}\left(\mathbf{r}_{1}\right) \Psi_{\downarrow}^{\dagger}\left(\mathbf{r}_{2}\right) \ldots \phi\left(\mathbf{r}_{N-1}-\mathbf{r}_{N}\right) \Psi_{\uparrow}^{\dagger}\left(\mathbf{r}_{N-1}\right) \Psi_{\downarrow}^{\dagger}\left(\mathbf{r}_{N}\right)|0\rangle \tag{6}\\
& \Psi_{\sigma}^{\dagger}(\mathbf{r})=\sum_{\mathbf{k}} c_{\mathbf{k} \sigma}^{\dagger} \frac{e^{-i \mathbf{k} \cdot \mathbf{r}}}{\sqrt{V}} \quad \text { and } \phi\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)=\sum_{\mathbf{k}} \phi_{\mathbf{k}} \frac{e^{-i \mathbf{k} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)}}{\sqrt{V}} \tag{7}
\end{align*}
$$

- Introduce pair creation operator:

$$
\begin{equation*}
b^{\dagger}=\sum_{\mathbf{k}} \phi_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger} \tag{8}
\end{equation*}
$$

- $|\Psi\rangle$ becomes formally identical to Gross-Pitaevskii ground state of a condensate of bosons:
$|\Psi\rangle=\left(b^{\dagger}\right)^{\frac{N}{2}}|0\rangle$

State ket

More convinient: grand canonical ensemble $\rightarrow \mathrm{N}$ not fixed, but μ !
■ In BEC limit, this corresponds to coherent state of bosons:

$$
\begin{equation*}
|\Psi\rangle=C \exp \left(\lambda b^{\dagger}\right)|0\rangle=C \prod_{\mathbf{k}} \exp \left(\lambda \phi_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}\right)|0\rangle=C \prod_{\mathbf{k}}\left(1+\lambda \phi_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}\right)|0\rangle \tag{10}
\end{equation*}
$$

Note:

$$
\begin{aligned}
\exp \left(\lambda \phi_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}\right)|0\rangle & =\left[1+\lambda \phi_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}-\left(\lambda \phi_{\mathbf{k}}\right)^{2}\left(c_{\mathbf{k} \uparrow}^{\dagger}\right)^{2}\left(c_{-\mathbf{k} \downarrow}^{\dagger}\right)^{2}+\mathscr{O}\left(\left(\lambda \phi_{\mathbf{k}}\right)^{3}\right)\right]|0\rangle \\
& =\left[1+\lambda \phi_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}\right]|0\rangle, \text { because }
\end{aligned}
$$

$$
\left\{c_{\mathbf{k} \sigma}^{\dagger}, c_{\mathbf{k} \sigma}^{\dagger}\right\}|0\rangle=0 \Longleftrightarrow c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}^{\dagger}|0\rangle=-c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}^{\dagger}|0\rangle \Longrightarrow\left(c_{\mathbf{k} \sigma}^{\dagger}\right)^{n}|0\rangle=0 \forall n \geq 2
$$

State ket so far: $|\Psi\rangle=C \prod_{\mathbf{k}}\left(1+\lambda \phi_{\mathbf{k}} \mathbf{C}_{\mathbf{k} \mid}^{\dagger} \mathrm{C}_{-\mathbf{k} \downarrow}^{\dagger}\right)|0\rangle$

- Choose normalisation $C=\prod_{\mathbf{k}} u_{\mathbf{k}}, \lambda \phi_{\mathbf{k}}=v_{\mathbf{k}} / u_{\mathbf{k}}$ and $u_{\mathbf{k}}{ }^{2}+v_{\mathbf{k}}{ }^{2}=1$:

$$
\begin{equation*}
\left|\Psi_{B C S}\right\rangle=\prod_{\mathbf{k}}\left(u_{\mathbf{k}}+v_{\mathbf{k}} c_{\mathbf{k} \mid}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}\right)|0\rangle \tag{11}
\end{equation*}
$$

- Remarkable: started with coherent state of bosons in BEC, but ended up with BCS wave function!
\rightarrow same kind of wave function for both limits!
■ Next step: determine $u_{\mathbf{k}}$ and $v_{\mathbf{k}}$

Hamiltonian

We will only cosider s-wave scattering! Should be sufficient for cold dilute gases.

- Hamiltonian with contact interaction U:

$$
\begin{equation*}
H-\mu N=\sum_{\mathbf{k}}\left(\epsilon_{\mathbf{k}}-\mu\right) c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}+\frac{U}{V} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} c_{\mathbf{k} \uparrow \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger} c_{\mathbf{k}^{\prime} \downarrow} c_{-\mathbf{k}^{\prime} \uparrow} \quad ; \epsilon_{\mathbf{k}}=\frac{\hbar^{2} \mathbf{k}^{2}}{2 m} \tag{12}
\end{equation*}
$$

- Contact interaction U characterized by scattering lenght a_{s} :

$$
\begin{equation*}
\frac{1}{U}=\frac{m}{4 \pi \hbar^{2} a_{s}}-\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{2 \epsilon_{\mathbf{k}}} \tag{13}
\end{equation*}
$$

$\rightarrow \frac{1}{k_{f} a_{s}}$ defines three regions of the interacting fermi gas:
BCS: $\frac{1}{\mathrm{k}_{\mathrm{F}} a_{\mathrm{S}}} \ll-1, \quad$ BEC: $\frac{1}{\mathrm{k}_{F} a_{\mathrm{S}}} \gg 1, \quad$ BCS-BEC crossover: $-1<\frac{1}{\mathrm{k}_{F} a_{\mathrm{S}}}<1$

Intuitive picture: Interparticle spacing

Deriving u and v

In order to derive equations for $u_{\mathbf{k}}$ and $v_{\mathbf{k}}$, we will minimize the free energy $F=\langle H-\mu N\rangle=\langle\Psi| H-\mu N|\Psi\rangle$:
$F=\langle\Psi| H-\mu N|\Psi\rangle=2 \sum_{\mathbf{k}}\left(\epsilon_{\mathbf{k}}-\mu\right)\left|v_{\mathbf{k}}\right|^{2}+\frac{U}{V} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} u_{\mathbf{k}} v_{\mathbf{k}} u_{\mathbf{k}^{\prime}} v_{\mathbf{k}^{\prime}}$

■ $u_{\mathbf{k}}{ }^{2}+v_{\mathbf{k}}{ }^{2}=1$ allows parametrisation:

$$
u_{\mathbf{k}}=\cos \left(\theta_{\mathbf{k}}\right), v_{\mathbf{k}}=\sin \left(\theta_{\mathbf{k}}\right)
$$

■ Minimize F by $\frac{\partial F}{\partial \theta_{\mathbf{k}}}=0$

$$
\begin{equation*}
\Longleftrightarrow 2\left(\epsilon_{\mathbf{k}}-\mu\right) u_{\mathbf{k}} v_{\mathbf{k}}+\frac{U}{V}\left(u_{\mathbf{k}}^{2}-v_{\mathbf{k}}^{2}\right) \sum_{\mathbf{k}^{\prime}} u_{\mathbf{k}^{\prime}} v_{\mathbf{k}^{\prime}}=0 \tag{16}
\end{equation*}
$$

Introducing gap equation

Minimizing F yields equation for $u_{\mathbf{k}}$ and $v_{\mathbf{k}}$:
$2\left(\epsilon_{\mathbf{k}}-\mu\right) u_{\mathbf{k}} v_{\mathbf{k}}-\left(u_{\mathbf{k}}^{2}-v_{\mathbf{k}}^{2}\right) \Delta=0, \quad \Delta:=-\frac{U}{V} \sum_{\mathbf{K}^{\prime}} u_{\mathbf{k}^{\prime}} v_{\mathbf{k}^{\prime}}=\sum_{\mathbf{k}}\left\langle c_{\mathbf{k} \uparrow} c_{-\mathbf{k}}\right\rangle \leftarrow$ gap equation (17)

- Defining $E_{\mathbf{k}}=\sqrt{\left(\epsilon_{\mathbf{k}}-\mu\right)^{2}+\Delta^{2}}, u_{\mathbf{k}}$ and $v_{\mathbf{k}}$ are then solved by:

$$
\begin{equation*}
u_{\mathbf{k}}=\frac{1}{2}\left(1+\frac{\epsilon_{\mathbf{k}}-\mu}{E_{\mathbf{k}}}\right), v_{\mathbf{k}}=\frac{1}{2}\left(1-\frac{\epsilon_{\mathbf{k}}-\mu}{E_{\mathbf{k}}}\right) \tag{18}
\end{equation*}
$$

■ Inserting $u_{\mathbf{k}}$ and $v_{\mathbf{k}}$ into gap equation yields:

$$
\begin{equation*}
\Delta=-\frac{U}{V} \sum_{\mathbf{k}} \frac{\Delta}{2 E_{\mathbf{k}}} \quad \Longleftrightarrow \quad-\frac{1}{U}=\frac{1}{V} \sum_{\mathbf{k}} \frac{1}{2 E_{\mathbf{k}}} \equiv \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{k}}} \tag{19}
\end{equation*}
$$

- Inserting relation for scattering length leads to:

$$
\begin{equation*}
-\frac{1}{U}=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{k}}} \Longleftrightarrow-\frac{m}{4 \pi \hbar^{2} a_{s}}=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left(\frac{1}{2 E_{\mathbf{k}}}-\frac{1}{2 \epsilon_{\mathbf{k}}}\right) \tag{20}
\end{equation*}
$$

- Additional constrain by number equation:

$$
\begin{equation*}
n=2 \int \frac{d^{3} \mathrm{k}}{(2 \pi)^{3}} v_{\mathbf{k}}^{2} \tag{21}
\end{equation*}
$$

- Use standard integrals and ...

$$
\begin{equation*}
I_{1}=\int_{0}^{\infty} d x x^{2}\left(\frac{1}{\sqrt{\left(x^{2}-z\right)^{2}+1}}-\frac{1}{x^{2}}\right) \text { and } I_{2}=\int_{0}^{\infty} d x x^{2}\left(1-\frac{x^{2}-z}{\sqrt{\left(x^{2}-z\right)^{2}+1}}\right) \tag{22}
\end{equation*}
$$

Dimensionless form of gap and number equations

$I_{1}=\int_{0}^{\infty} d x x^{2}\left(\frac{1}{\sqrt{\left(x^{2}-z\right)^{2}+1}}-\frac{1}{x^{2}}\right)$ and $I_{2}=\int_{0}^{\infty} d x x^{2}\left(1-\frac{x^{2}-z}{\sqrt{\left(x^{2}-z\right)^{2}+1}}\right)$

- ... and $E_{F}=\frac{\hbar^{2} \mathrm{k}_{F}^{2}}{2 m}, \mathrm{k}_{F}=\left(3 \pi^{2} n\right)^{\frac{1}{3}}$ to write:

$$
\begin{equation*}
-\frac{1}{\mathrm{k}_{F} a_{\mathrm{S}}}=\frac{2}{\pi} \sqrt{\frac{\Delta}{E_{F}}} I_{1}\left(\frac{\mu}{\Delta}\right), \quad 1=\frac{3}{2}\left(\frac{\Delta}{E_{F}}\right)^{\frac{3}{2}} I_{2}\left(\frac{\mu}{\Delta}\right) \tag{24}
\end{equation*}
$$

■ Or inserting the second eqn into first:

$$
\begin{equation*}
-\frac{1}{\mathrm{k}_{F} a_{s}}=\frac{2}{\pi}\left(\frac{2}{3 I_{2}\left(\frac{\mu}{\Delta}\right)}\right)^{\frac{1}{3}} I_{1}\left(\frac{\mu}{\Delta}\right), \quad \frac{\Delta}{E_{F}}=\left(\frac{2}{3 I_{2}\left(\frac{\mu}{\Delta}\right)}\right)^{\frac{2}{3}} \tag{25}
\end{equation*}
$$

\rightarrow by solving first eqn for $\frac{\mu}{\Delta}$ as function of $\frac{1}{k_{F} a_{S}}$ and inserting into second eqn gives us the gap Δ !

Gap as function of inverse scattering length

gap given by red line
taken from [1]

Solution of number equation for different regimes

After having obtained Δ, we can insert it into $n_{\mathbf{k}}=v_{\mathbf{k}}^{2}=\left[\frac{1}{2}\left(1-\frac{\epsilon_{\mathbf{k}}-\mu}{\sqrt{\left(\epsilon_{\mathbf{k}}-\mu\right)^{2}+\Delta^{2}}}\right)\right]^{1 / 2}$

taken from [1]

Low excitations

Alternativ approach: Mean field and Bogoliubov transformation

■ Bogoliubov transformation of operators leaves the anti-commutation relation unchanged:

$$
\binom{\gamma_{\mathbf{k} \uparrow}}{\gamma_{-\mathbf{k} \downarrow}^{\dagger}}=\left(\begin{array}{cc}
u_{\mathbf{k}} & -v_{\mathbf{k}} \tag{26}\\
v_{\mathbf{k}} & u_{\mathbf{k}}
\end{array}\right)\binom{c_{\mathbf{k} \uparrow}}{c_{-\mathbf{k} \downarrow}^{\dagger}} \Longrightarrow\left\{\gamma_{\mathbf{k} \sigma}, \gamma_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger}\right\}=\left\{c_{\mathbf{k} \sigma}, c_{\mathbf{k}^{\prime} \sigma^{\prime}}^{\dagger}\right\}=\delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \delta_{\sigma \sigma^{\prime}}
$$

■ Mean field + Bogoliubov transformation gives Hamiltonian in terms of quasi-particles states:
$H-\mu N=-V \frac{\Delta^{2}}{U}+\sum_{\mathbf{k}}\left(\epsilon_{\mathbf{k}}-\mu-E_{\mathbf{k}}\right)+\sum_{\mathbf{k}} E_{\mathbf{k}}\left(\gamma_{\mathbf{k} \uparrow}^{\dagger} \gamma_{\mathbf{k} \uparrow}+\gamma_{\mathbf{k} \downarrow}^{\dagger} \gamma_{\mathbf{k} \downarrow}\right)$
\rightarrow At finite temperatures there will be excitations of quasi-particle states which modify the gap equation

Low excitations

Recall gap equation: $\Delta=\sum_{\mathbf{k}}\left\langle c_{\mathbf{k} \uparrow} c_{-\mathbf{k} \downarrow}\right\rangle$

- In terms of quasi-particles, the so-called paring field becomes:

$$
\begin{equation*}
\left\langle c_{\mathbf{k} \uparrow} c_{-\mathbf{k} \downarrow}\right\rangle=-u_{\mathbf{k}} v_{\mathbf{k}}\left(1-\left\langle\gamma_{\mathbf{k} \uparrow}^{\dagger} \gamma_{\mathbf{k} \uparrow}\right\rangle-\left\langle\gamma_{\mathbf{k} \downarrow}^{\dagger} \gamma_{\mathbf{k} \downarrow}\right\rangle\right) \tag{28}
\end{equation*}
$$

■ Since quasi-particles follow Fermi-Dirac statistics $\left\langle\gamma_{\mathbf{k} \uparrow}^{\dagger} \gamma_{\mathbf{k} \uparrow}\right\rangle=\frac{1}{1+e^{\beta E_{\mathbf{k}}}}$, the gap equation becomes
$-\frac{m}{4 \pi \hbar^{2} a_{s}}=\int \frac{d^{3} k}{(2 \pi)^{3}}\left(\frac{1}{2 E_{\mathbf{k}}} \tanh \left(\frac{\beta E_{\mathbf{k}}}{2}\right)-\frac{1}{2 \epsilon_{\mathbf{k}}}\right)$
recall: $E_{\mathbf{k}}=\sqrt{\left(\epsilon_{\mathbf{k}}-\mu\right)^{2}+\Delta^{2}}$

Solution for $\Delta(T)$ in the BCS regime

Solving temperature dependent gap equation yields with $\Delta_{0}:=\frac{8}{e^{2}} \exp \left(-\frac{\pi}{2 k_{F}}\right)$:
$\Delta(T) \approx \begin{cases}\Delta_{0}-\sqrt{2 \pi \Delta_{0} k_{B} T} \exp \left(-\frac{\Delta_{0}}{k_{B} T}\right) & \text { for } T \ll T_{C} \\ \sqrt{\frac{8 \pi^{2}}{7 \zeta(3)} k_{B} T_{C} \sqrt{1-\frac{T}{T_{C}}}} & \text { for } T_{C}-T \gg T_{C}\end{cases}$

taken from [1]

Pair formation and condensation temperature

Temperature of pair formation T^{*}

We want to know at which temperature T^{*} fermionic pairs start to form:
■ This happens, when the gap vanishes, i.e. $\Delta=0$, which yields

$$
\begin{equation*}
-\frac{m}{4 \pi \hbar^{2} a_{s}}=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}}\left(\frac{1}{2\left(\epsilon_{\mathbf{k}}-\mu\right)} \tanh \left(\frac{\beta^{*}\left(\epsilon_{\mathbf{k}}-\mu\right)}{2}\right)-\frac{1}{2 \epsilon_{\mathbf{k}}}\right) \tag{31}
\end{equation*}
$$

■ Solve this while keeping the constraint for the number density above T^{*} given by Fermi-Dirac statistics:

$$
\begin{equation*}
n=2 \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{1+\exp \left(\beta *\left(\epsilon_{\mathbf{k}}-\mu\right)\right.} \tag{32}
\end{equation*}
$$

\rightarrow These equations allow us to calculate T^{*}

(Pair formation and critical) temperature

■ In BCS regime $\mu \gg \mathrm{k}_{B} T^{*} \rightarrow \mu \approx E_{F}$:

$$
\begin{equation*}
T_{B C S}^{*}=T_{C, B C S}=\frac{e^{\gamma}}{\pi} \frac{8}{e^{2}} \exp \left(-\frac{\pi}{2 \mathrm{k}_{F}\left|a_{S}\right|}\right) ; e^{\gamma} \approx 1.78 \tag{33}
\end{equation*}
$$

- $T_{B E C}^{*}$ involves so-called Lambert W-function \rightarrow basically $T_{B C S}^{*}$ continues to increase very steeply into BEC regime
- Deeply in BEC regime $T_{C, B E C}$ is simply given by the well known T_{C} for bosons with molecular density $n_{M}=n / 2$ and mass $m_{M}=2 m$:

$$
T_{C, B E C}=\frac{2 \pi \hbar^{2}}{m_{M}}\left(\frac{n_{M}}{\zeta\left(\frac{3}{2}\right)}\right)^{2 / 3}=0.22 E_{F}
$$

■ Small corrections if we go into crossover towards BCS:

$$
\begin{equation*}
T_{C} \approx T_{C, B E C}\left(1+1.31 n_{M}^{1 / 3} \cdot 0.6 a_{s}\right) \tag{35}
\end{equation*}
$$

\rightarrow There should be a smooth crossover in T_{C} from BCS to BEC, hence a maximum between them

Pair formation and superfluid/condensation temperature

■ We see $\propto \exp \left(-\frac{\pi}{2 k_{F}\left|a_{S}\right|}\right)$ for T^{*}, T_{C} in BCS
\square and $T_{C, B E C}=0.22 E_{F}$ with positive corrections towards BCS
taken from [5]

Condensate fraction

■ Following ODLRO by Yang:

$$
\begin{align*}
n_{\mathrm{O}} & =\frac{1}{V} \sum_{\mathbf{k}}\left|\left\langle c_{\mathbf{k} \uparrow} c_{-\mathbf{k} \downarrow}\right\rangle\right|^{2} \\
& =\sum_{\mathbf{k}} u_{\mathbf{k}}^{2} v_{\mathbf{k}}^{2} \tanh ^{2}\left(\frac{\beta E_{\mathbf{k}}}{2}\right) \tag{36}
\end{align*}
$$

■ In BEC regime: In experiment condensate decays due to heating
taken from [1]
[1] Ketterle et. al., http://arXiv.org/abs/0801.2500v1 (2008)
[2] Zwierlein et. al., https://arxiv.org/abs/cond-mat/0311617v2 (2003)
[3] Salasnich, J. Phys.: Conf. Ser. 497012026 (2014)
[4] Salasnich, Phys. Rev. A 72, 023621 (2005)
[5] Sa de Malo, Physics Today 61(10), 45 (2008)
[6] Yang, Rev. Mod. Phys. 34694 (1962)
[7] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 108 (1957)
[8] Parish, arXiv: 1402.5171v1 [cond-mat.quant-gas] (2014)

