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Historic Overview



Historic Overview

1954: Cooper-pairs (in momentum space). Bound state of two electrons via
phonon interaction on top of filled fermi sphere.
1957 Barden, Cooper and Schrie�er extended single Cooper pair to many
particle wave function. Succesfully explained superconductivity at the time.
1962: Yang conjectures that BEC is possible for fermions if density matrix
exhibits o�-diagonal long-range order
1970’s: 3He-superfluidity discovered. Apparantly fermionic pairs without
phonons. BCS more general?
1980: Leggett assumed pairs of oppotsite spin and contact interaction→ first
theory of BCS-BEC at T = 0
1985: Nozières and Schmitt-Rink extended Leggett’s theory to T ≈ Tc
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Historic Overview

1986: Discovery of high-temperature superconductors. Engelbrecht, Randeria
and Sa de Melo extended low temperature theory.
2003: first BEC of fermionic pairs at MIT and Innsbrück:

6Li atoms form a condensate at T ≈ 600 nK. Condensate fraction: 0.75.
Taken from [2]

3 / 24



O�-Diagonal Long-Range Order



Properties of reduced density matrices

N-particle density matrix ρ , Tr(ρ) = 1.

Define reduced density matrices:



i
�

�ρ1
�

�j
�

= Tr(aiρa†
j ) ,




ij
�

�ρ2 |kl〉= Tr(aiajρa†
l a

†
k) , etc. (1)

Generally, largest eigenvalue λi of ρi bounded by:

λ1 ≤ Tr(ρ1) =N , λ2 ≤ Tr(ρ2) =N(N− 1) , etc. (2)

Fermions:

λ1 ≤ 1 , λ2 ≤N→λ2 ≈N means BEC! (3)
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O�-Diagonal Long-Range Order (ODLRO)

Idea corresponds to long-range correlation in (classical) solids!

Definition of ODLRO:

〈x|ρ1
�

�y
�

>0 for |x−y| →∞ ⇐⇒ λ1 =O (N)≡αN (4)

For fermions no ODLRO in ρ1 , but in ρ2:

〈x1x2|ρ2
�

�y1y2
�

≈0 execpt region around x := x1 = x2 and y := y1 = y2 ∀ x,y
⇐⇒ λ2 =O (N)≡αN

(5)

→ BEC is simply a form of ODLRO!
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Basics of interacting fermi gas and ground
state



Cooper pairs

Consider two fermions on top of a filled,
non-interacting fermi sphere:

taken from [1]

Scattering takes place in
narrow band (blue)
Binding energy depends
on number of possible
scattering states
Largest binding energy
for opposite momentum
pairs

→ Only consider (k, -k) pairs
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Many body state

Many body state of fermionic pairs:

|Ψ〉=
∫

∏

i
d3riφ(r1− r2)Ψ

†
↑ (r1)Ψ

†
↓ (r2)...φ(rN−1− rN)Ψ†

↑ (rN−1)Ψ
†
↓ (rN) |0〉 (6)

Ψ†
σ(r) =

∑

k
c†

kσ
e−ik·r
p
V

and φ(r1− r2) =
∑

k
φk
e−ik·(r1−r2)

p
V

(7)

Introduce pair creation operator:

b† =
∑

k
φkc†

k↑c
†
−k↓ (8)

|Ψ〉 becomes formally identical to Gross-Pitaevskii ground state of a
condensate of bosons:

|Ψ〉= (b†)
N
2 |0〉 (9)
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State ket

More convinient: grand canonical ensemble→ N not fixed, but µ!

In BEC limit, this corresponds to coherent state of bosons:

|Ψ〉= C exp(λb†) |0〉= C
∏

k
exp(λφkc†

k↑c
†
−k↓) |0〉= C

∏

k
(1+λφkc†

k↑c
†
−k↓) |0〉 (10)

Note:

exp(λφkc†
k↑c

†
−k↓) |0〉=

�

1+λφkc†
k↑c

†
−k↓− (λφk)

2(c†
k↑)

2(c†
−k↓)

2 +O
�

(λφk)
3�� |0〉

=
�

1+λφkc†
k↑c

†
−k↓

�

|0〉 , because
�

c†
kσ,c†

kσ
	

|0〉=0 ⇐⇒ c†
kσc

†
kσ |0〉=−c

†
kσc

†
kσ |0〉 =⇒ (c†

kσ)
n |0〉=0 ∀ n≥ 2
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Final form of state ket

State ket so far: |Ψ〉= C
∏

k(1+λφkc†
k↑c

†
−k↓) |0〉

Choose normalisation C=
∏

kuk, λφk = vk/uk and uk
2 +vk

2 = 1:

|ΨBCS〉=
∏

k
(uk +vkc†

k↑c
†
−k↓) |0〉 (11)

Remarkable: started with coherent state of bosons in BEC, but ended up with
BCS wave function!

→ same kind of wave function for both limits!
Next step: determine uk and vk
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Hamiltonian

We will only cosider s-wave scattering! Should be su�cient for cold dilute gases.

Hamiltonian with contact interaction U:

H−µN=
∑

k
(εk−µ)c†

kσckσ+
U
V
∑

k,k′
c†

k↑c
†
−k↓ck′↓c−k′↑ ; εk =

ħh2k2

2m (12)

Contact interaction U characterized by scattering lenght as:

1
U =

m
4πħh2as

−
∫

d3k
(2π)3

1
2εk

(13)

→ 1
kFas defines three regions of the interacting fermi gas:

BCS:
1

kFas
�−1 , BEC:

1
kFas

� 1 , BCS-BEC crossover: − 1<
1

kFas
< 1 (14)
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Intuitive picture: Interparticle spacing

taken from [8]

On BEC side:

Two body bound state of size
as
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Deriving u and v

In order to derive equations for uk and vk, we will minimize the free energy
F= 〈H−µN〉= 〈Ψ|H−µN |Ψ〉:

F= 〈Ψ|H−µN |Ψ〉= 2
∑

k
(εk−µ)|vk|2 +

U
V
∑

k,k′
ukvkuk′vk′ (15)

uk
2 +vk

2 = 1 allows parametrisation:

uk = cos(θk) , vk = sin(θk)

Minimize F by ∂ F
∂ θk

= 0

⇐⇒ 2(εk−µ)ukvk +
U
V (u

2
k−v

2
k)
∑

k′
uk′vk′ =0 (16)
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Introducing gap equation

Minimizing F yields equation for uk and vk:

2(εk−µ)ukvk−(u2
k−v

2
k)∆=0 , ∆ :=−

U
V
∑

k′
uk′vk′ =

∑

k
〈ck↑c−k↓〉 ← gap equation (17)

Defining Ek =
Æ

(εk−µ)2 +∆2 , uk and vk are then solved by:

uk =
1
2(1+

εk−µ
Ek

) , vk =
1
2(1−

εk−µ
Ek

) (18)

Inserting uk and vk into gap equation yields:

∆=−
U
V
∑

k

∆

2Ek
⇐⇒ −

1
U =

1
V
∑

k

1
2Ek
≡
∫

d3k
(2π)3

1
2Ek

(19)

13 / 24



Gap equation

Inserting relation for scattering length leads to:

−
1
U =

∫

d3k
(2π)3

1
2Ek

⇐⇒ −
m

4πħh2as
=

∫

d3k
(2π)3 (

1
2Ek
−

1
2εk

) (20)

Additional constrain by number equation:

n= 2
∫

d3k
(2π)3 v

2
k (21)

Use standard integrals and ...

I1 =
∫ ∞

0
dx x2

�

1
Æ

(x2− z)2 + 1
−

1
x2

�

and I2 =
∫ ∞

0
dx x2

�

1−
x2− z

Æ

(x2− z)2 + 1

�

(22)
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Dimensionless form of gap and number equations

I1 =
∫ ∞

0
dx x2

�

1
Æ

(x2− z)2 + 1
−

1
x2

�

and I2 =
∫ ∞

0
dx x2

�

1−
x2− z

Æ

(x2− z)2 + 1

�

(23)

... and EF =
ħh2k2

F
2m , kF = (3π2n)

1
3 to write:

−
1

kFas
=

2
π

√

√∆

EF
I1(
µ

∆
) , 1=

3
2

�

∆

EF

�
3
2

I2(
µ

∆
) (24)

Or inserting the second eqn into first:

−
1

kFas
=

2
π

�

2
3I2( µ∆)

�
1
3

I1(
µ

∆
) ,

∆

EF
=

�

2
3I2( µ∆)

�
2
3

(25)

→ by solving first eqn for µ
∆ as function of 1

kFas and inserting into second eqn
gives us the gap ∆!
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Gap as function of inverse scattering length

taken from [1]

gap given by red line
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Solution of number equation for di�erent regimes

After having obtained ∆, we can insert it into nk = v2
k = [ 1

2(1−
εk−µp

(εk−µ)2+∆2
)]1/2

taken from [1]
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Low excitations



Alternativ approach: Mean field and Bogoliubov transformation

Bogoliubov transformation of operators leaves the anti-commutation relation
unchanged:
�

γk↑
γ†
−k↓

�

=

�

uk −vk
vk uk

�� ck↑
c†
−k↓

�

=⇒
¦

γkσ,γ†
k′σ′

©

=
¦

ckσ,c†
k′σ′

©

=δ(k−k′)δσσ′ (26)

Mean field + Bogoliubov transformation gives Hamiltonian in terms of
quasi-particles states:

H−µN=−V
∆2

U +
∑

k
(εk−µ−Ek)+

∑

k
Ek(γ

†
k↑γk↑+γ

†
k↓γk↓) (27)

→ At finite temperatures there will be excitations of quasi-particle states which
modify the gap equation
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Low excitations

Recall gap equation: ∆=
∑

k〈ck↑c−k↓〉

In terms of quasi-particles, the so-called paring field becomes:

〈ck↑c−k↓〉=−ukvk(1−〈γ†
k↑γk↑〉− 〈γ

†
k↓γk↓〉) (28)

Since quasi-particles follow Fermi-Dirac statistics 〈γ†
k↑γk↑〉=

1
1+eβEk

, the gap
equation becomes

−
m

4πħh2as
=

∫

d3k
(2π)3

�

1
2Ek

tanh(
βEk

2 )−
1

2εk

�

(29)

recall: Ek =
Æ

(εk−µ)2 +∆2
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Solution for ∆(T) in the BCS regime

Solving temperature dependent gap equation yields with ∆0 :=
8
e2 exp(− π

2kF |as|):

∆(T)≈

(

∆0−
p

2π∆0kBT exp(− ∆0
kBT ) for T � TC

r

8π2

7ζ(3)kBTC
Ç

1− T
TC for TC - T � TC

(30)

taken from [1]
20 / 24



Pair formation and condensation tempera-
ture



Temperature of pair formation T∗

We want to know at which temperature T∗ fermionic pairs start to form:
This happens, when the gap vanishes, i.e. ∆=0, which yields

−
m

4πħh2as
=

∫

d3k
(2π)3

�

1
2(εk−µ)

tanh(
β ∗(εk−µ)

2 )−
1

2εk

�

(31)

Solve this while keeping the constraint for the number density above T∗ given
by Fermi-Dirac statistics:

n= 2
∫

d3k
(2π)3

1
1+exp(β ∗(εk−µ)

(32)

→ These equations allow us to calculate T∗
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(Pair formation and critical) temperature

In BCS regime µ� kBT∗→µ≈ EF:

T∗BCS= TC,BCS=
eγ
π

8
e2 exp(−

π

2kF |as|
) ; eγ ≈ 1.78 (33)

T∗BEC involves so-called Lambert W-function→ basically T∗BCS continues to
increase very steeply into BEC regime
Deeply in BEC regime TC,BEC is simply given by the well known TC for bosons
with molecular density nM= n/2 and mass mM= 2m:

TC,BEC =
2πħh2

mM
(
nM
ζ( 3

2)
)2/3 =0.22EF (34)

Small corrections if we go into crossover towards BCS:
TC ≈ TC,BEC(1+ 1.31n1/3

M ·0.6as) (35)
→ There should be a smooth crossover in TC from BCS to BEC, hence a maximum
between them
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Pair formation and superfluid/condensation temperature

taken from [5]

We see∝ exp(− π
2kF |as|) for

T∗,TC in BCS
and TC,BEC =0.22EF with
positive corrections towards
BCS
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Condensate fraction

taken from [1]

Following ODLRO by Yang:

n0 =
1
V
∑

k

�

�〈ck↑c−k↓〉
�

�

2

=
∑

k
u2

kv
2
ktanh

2(
βEk

2 )
(36)

In BEC regime: In experiment
condensate decays due to
heating
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