
Fermionic Pairs
and the BCS-BEC Crossover

Summary for the Statistical Physics Seminar
at Heidelberg University in Summer Term 2020

Lecturer: Prof. G. Wolschin

Jörg Holsten

July 24, 2020

1



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Historic Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Off-Diagonal Long-Range Order . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Reduced Density Matrices and Large Eigenvalues . . . . . . . . . . . . . 4
2.2 Definition and Relation to Large Eigenvalues . . . . . . . . . . . . . . . . 4
2.3 Condensate Fraction from Off-Diagonal Long-Range Order . . . . . . . . 5

3 The Interacting Fermi Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Cooper Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Ground State of the Interacting Fermi Gas . . . . . . . . . . . . . . . . . 6
3.3 Low Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Fermionic Pair Formation and Condensation . . . . . . . . . . . . . . . 12
4.1 Pair Formation Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Critical Temperature for Condensation . . . . . . . . . . . . . . . . . . . 14
4.3 Condensate Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2



1 Introduction

Bose-Einstein Condensation (BEC) is a well known phenomenon for bosons, easily un-
derstood from the ideal Bose gas. In contrast, condensation in an ideal Fermi gas is
not possible due to the Pauli principle which forbids the ground state to be occupied
by more than one fermion. However, BEC is found to occur in an interacting Fermi gas
which can be described by assuming only s-wave scattering in the case of a cold, dilute
gas. But, there is also another phase in the interacting Fermi gas or rather a limit: it
is the so-called BCS limit in which the gas becomes a superfluid, i.e. a fluid without
viscosity. The BEC and BCS phases of the interacting Fermi gas can be understood as
two opposite limits in the description of the gas. A smooth crossover from one phase
to the other is possible by tuning the scattering length of the gas, where the BCS limit
is given by an infinite and negative scattering length and the BEC limit by an infinite
and positive one. Changing the scattering length can for example be achieved by a
so-called magnetic Feshbach resonance [1]. The transition from BEC to BCS is rather
a crossover than a phase transition, because it is a smooth transition, i.e. there is no
abrupt change in the order of the physical system when going from one limit to the other.

After listing the most significant developments towards a theory of the BCS-BEC crossover,
off-diagonal long-range order and its main implication will be presented in the next chap-
ter in order to motivate why to consider BEC of fermions at all and to show that fermionic
pairs are required for condensation even from an abstract mathematical point of view.
In the third chapter, it will be shown how to obtain the wave function that describes the
interacting Fermi gas and the crossover. Lastly, two crucial temperatures which each de-
scribe the formation of fermionic pairs and the condensation of such pairs will be derived
and the formula for the condensate fraction density derived from off-diagonal long-range
order will be given.

1.1 Historic Overview

• 1954: Cooper [2] introduced the nowadays so-called Cooper-pairs, which are bound
states of two electrons via phonon interactions on top of a filled Fermi sphere.

• 1957 Barden, Cooper and Schrieffer [3] extended the idea of a single Cooper pair
to a many particle wave function which successfully explained superconductivity at
the time.

• 1962: Yang [4] conjectured that BEC is possible for fermions, if the second reduced
density matrix exhibits off-diagonal long-range order.

• 1980: Leggett [5] assumed fermionic pairs in a Fermi gas with opposite spin and a
contact interaction which was the first theory of the BCS-BEC crossover at T = 0.

• 1985: Nozières and Schmitt-Rink [6] extended Leggett’s theory to temperatures
below the critical temperature of Bose-Einstein Condensation

• 2003: Regal, Ticknor, Bohn and Jin [7] realized the first Bose-Einstein condensate
of fermions using Potassium-40 atoms.
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2 Off-Diagonal Long-Range Order

Off-Diagonal Long-Range Order (ODLRO) is presented here to motivate the possible
condensation of fermions and to give a formula for the condensation fraction density.
It was first discussed for bosons by Penrose and Onsager [8] in 1956 and extended to
fermions by Yang [4] in 1962.

2.1 Reduced Density Matrices and Large Eigenvalues

Starting point is the N-particle density matrix ρ, with normalisation Tr(ρ) = 1. The
components of the corresponding first and second reduced density matrices are defined
by

〈i| ρ1 |j〉 = Tr(aiρa
†
j) ,

〈ij| ρ2 |kl〉 = Tr(aiajρa
†
la
†
k) ,

(1)

where a†i and ai denote the creation and annihilation operators for the state |i〉. Higher
reduced density matrices are defined correspondingly.
Let the largest eigenvalue of ρi be denoted by λi. Generally, they are obviously bounded
by

λ1 ≤ Tr(ρ1) = N ,

λ2 ≤ Tr(ρ2) = N(N − 1) .
(2)

However, in the case of fermions, which obey the Pauli-principle, the above relation
specialise to:

λ1 ≤ 1

λ2 ≤ N .
(3)

Yang also showed that λ2 = N can essentially only be reached in one unique way, where
fermions form pairs such that the second reduced density matrix of these fermions behaves
like the first reduced density matrix of bosons, thus leading to the conjecture that BEC
is possible for pairs of fermions. However, he also showed that λ2 being of order of N
is equivalent to the occurrence of ODLRO in ρ2. Being of order of N can loosely be
understood as λi = O(N) ≡ αN, where α then is the condensate fraction.

2.2 Definition and Relation to Large Eigenvalues

First, consider ODLRO in ρ1. It can be defined by

〈x| ρ1 |y〉 > 0 for |x− y| → ∞ , (4)

which was shown to be equivalent to λ1 = O(N) ≡ αN for bosons. But, according to
equation (3) there can be no ODLRO in ρ1 for fermions. However, it is possible for ρ2,
where ODLRO can be defined by
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〈x1x2| ρ2 |y1y2〉 ≈ 0 execpt region around x := x1 = x2 and y := y1 = y2 ∀ x,y , (5)

which was shown to be the case if and only if λ2 = O(N) ≡ αN.

Thus, the occurrence of ODLRO in the second reduced density matrix of N fermions
is equivalent to the largest eigenvalue of this matrix being of the order of N and showing
BEC of pairs of fermions.

2.3 Condensate Fraction from Off-Diagonal Long-Range Order

The elements of the second reduced density matrix can be calculated following [9]:

〈x1x2| ρ2 |y1y2〉 = 〈Ψ†↑(x1)Ψ†↓(x2)Ψ↓(y2)Ψ↑(y1)〉 , (6)

where Ψ†σ(r) and Ψσ(r) are the fermion creation and annihilation operators respectively.
Further, following [10], the condensate fraction of fermionic pairs, i.e. half the density
of condensed fermions, is given by means of the creation and annihilation operators in
momentum space via

n0 =
N0

V
=

1

V

∑
k

|〈ck↑c−k↓〉|2 (7)

This gives an applicable formula from which the condensate fraction can be calculated, if
one knows how to calculate the so-called pairing field 〈ck↑c−k↓〉, which will be presented
in chapter 3.

3 The Interacting Fermi Gas

3.1 Cooper Pairs

Cooper actually considered bound states in momentum space of two electrons in a degen-
erate Fermi gas in order to explain superconductivity, however this concept is more general
to fermions in general. Cooper pairs can be understood by considering two fermions on
top of a filled, non-interaction Fermi sphere, which describes the occupation of momenta
at zero temperature for the ideal Fermi gas and hence its radius in momentum space is
given by the Fermi momentum kF = (3π2n)

1
3 .

The binding energy of the Cooper pair can be found by assuming a contact interac-
tion for the fermions forming the pair. A contact interaction of strength U corresponds
to hard balls with radius as scattering off each other. In quantum mechanical scattering
theory, this corresponds to s-wave scattering in which only wave functions with zero an-
gular momentum (l=0, hence the name s-wave) are considered to describe the scattered
particles. This should be sufficient for cold, dilute gases, where typical scattering energies
are low. Then, the contact interaction can be related to the scattering length as of s-wave
scattering via
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Figure 1: Two interacting fermions are on top of a non-interacting Fermi sphere. Due to
their low energy compared to the Fermi energy scattering can only take place in a narrow
band above the sphere. a) shows the possible scattered states (blue, the whole sphere)
for a pair with vanishing total momentum given. b) shows the possible scattered states
(circle on the sphere) for non zero total momentum q. Figure taken from [11].

1

U
=

m

4π~2as
−
∫

d3k

(2π)3

1

2εk
, (8)

where εk = ~2k2

2m
is the kinetic energy of the fermions. Note that this expression can be

properly regularized. It has been shown, that the binding energy is the highest for pairs
that have the highest possible number of final scattered states. Following this argument,
figure 1 shows that the binding energy is highest for pairs of opposite momenta, which
has shown to be

EB = − 8

e2
EF e

−π/kF |as| . (9)

This only holds for two interacting fermions on top of a non-interacting Fermi sphere. The
situation changes, when interaction for all fermions is switched on, which was studied by
Bardeen, Cooper and Schrieffer, who also found the corresponding wave function. In the
next section, the relation between fermionic pairs in a BEC and the BCS wave function
will be revealed.

3.2 Ground State of the Interacting Fermi Gas

In order to derive the crossover wave function, one can start with the ground state of a
BEC of fermionic pairs. This ground state must incorporate the creation of pairs with
opposite spin and a function given their relative behaviour. Such a ground state is given
by

|Ψ〉 =

∫ ∏
i

d3riφ(r1 − r2)Ψ†↑(r1)Ψ†↓(r2)...φ(rN−1 − rN)Ψ†↑(rN−1)Ψ†↓(rN) |0〉 , (10)
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with the fermion creation operator

Ψ†σ(r) =
∑
k

c†kσ
e−ik·r√
V

(11)

and the relative function

φ(r1 − r2) =
∑
k

φk
e−ik·(r1−r2)

√
V

. (12)

Of course, the creation and annihilation operators of fermions obey the anti-commutation
relations:

{ckσ, ck′σ′} =
{
c†kσ, c

†
k′σ′

}
= 0{

ckσ, c
†
k′σ′

}
= δ(k− k′)δσσ′ .

(13)

By defining the pair creation operator via

b† =
∑
k

φkc
†
k↑c
†
−k↓ , (14)

|Ψ〉 becomes formally identical to Gross-Pitaevskii ground state of a condensate of bosons:

|Ψ〉 = (b†)
N
2 |0〉 . (15)

The commutation relations of the pair operator b are then given by

[b, b] =
∑
kk′

φkφk′

[
c†k↑c

†
−k↓, c

†
k′↑c

†
−k′↓

]
= 0

[
b†, b†

]
=
∑
kk′

φ∗kφ
∗
k′
[
c−k↑ck↓, c−k′↑ck′↓

]
= 0

[
b, b†

]
=
∑
kk′

φ∗kφk′
[
c−k↓ck↑, ck′↑c−k′↓

]
=
∑
k

|φk|2(1− nk↑ − nk↓)

(16)

This shows that b describes the creation and annihilation of bosons (composed of fermionic
pairs), if the occupation number densities of the momenta of the fermions nkσ are van-
ishing, which means that these occupation number densities have to be distributed very
broadly. This is indeed the case deeply in the BEC limit of the interacting Fermi gas
as will be shown below (cp. fig. 4). Then

[
b, b†

]
= 1 for an according normalization of φk.

However, it is more convenient to consider the grand canonical ensemble in which the
particle number is not conserved but the chemical potential. Starting in the BEC limit,
this corresponds to a coherent state of bosons described by the exponential of the same
creation operator. Together with normalisation factors C and λ this yields:

|Ψ〉 = C exp(λb†) |0〉 = C
∏
k

exp(λφkc
†
k↑c
†
−k↓) |0〉 = C

∏
k

(1 + λφkc
†
k↑c
†
−k↓) |0〉 . (17)
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The second equality is explained by looking at how the exponential acts:

exp(λφkc
†
k↑c
†
−k↓) |0〉 =

[
1 + λφkc

†
k↑c
†
−k↓ − (λφk)2(c†k↑)

2(c†−k↓)
2 +O

(
(λφk)3

)]
|0〉

=
[
1 + λφkc

†
k↑c
†
−k↓
]
|0〉 .

(18)

The minus sign comes from commuting the c† once and all terms with (c†k)n and n ≥ 2
vanish because of:

{
c†kσ, c

†
kσ

}
|0〉 = 0 ⇐⇒ c†kσc

†
kσ |0〉 = −c†kσc

†
kσ |0〉

=⇒ (c†kσ)n |0〉 = 0 ∀ n ≥ 2 .
(19)

When performing the product over the exponentials in equation (17), the c† can always
be anti-commuted (while acquiring a minus sign) so that all terms with (c†k)n and n ≥
2 vanish for any momentum k, leading to the last equality of equation (17).

Choosing the normalisation factors to be C =
∏

k uk and λφk = vk/uk together with the
constrain uk

2 + vk
2 = 1 leads to the same form of wave function as derived by Bardeen,

Cooper and Schrieffer:

|ΨBCS〉 =
∏
k

(uk + vkc
†
k↑c
†
−k↓) |0〉 (20)

This is remarkable: having started with the coherent state of bosons composed of fermionic
pairs in the state of a bosonic condensate, one ends up with the BCS wave function! This
implies that both regimes are described by the same wave function.

In order to fully determine the the wave function, uk and vk have to be determined.
This is done by minimizing the free energy of the system. Therefore, consider the Hamil-
tonian in the grand canonical ensemble with volume V and a contact interaction U:

H − µN =
∑
k

(εk − µ)c†kσckσ +
U

V

∑
k,k′

c†k↑c
†
−k↓ck′↓c−k′↑ ; εk =

~2k2

2m
. (21)

The free energy F of the system is then given by

F = 〈Ψ|H − µN |Ψ〉 = 2
∑
k

(εk − µ)v2
k +

U

V

∑
k,k′

ukvkuk′vk′ . (22)

In order to minimize the free energy one has to take some sort of derivative and set it to
zero. The constraint on uk and vk allows the parametrization uk = cos(θk) , vk = sin(θk).
Using this, minimizing F by ∂F

∂θk
= 0 leads to

2(εk − µ)ukvk +
U

V
(u2

k − v2
k)
∑
k′

uk′vk′ = 0 . (23)

Now, defining the gap parameter ∆ in the so-called gap equation
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∆ = U/V
∑
k

〈ck↑c−k↓〉 = −U/V
∑
k′

uk′vk′ , (24)

equation (23) becomes

2(εk − µ)ukvk − (u2
k − v2

k)∆ = 0 . (25)

The gap ∆ is in fact the order parameter which characterises the transition from the Fermi
gas to the superfluid phase, i.e. the BCS regime of the interacting Fermi gas. The solution
for uk and vk in equation (25) is now given defining the energy Ek =

√
(εk − µ)2 + ∆2:

uk =
1

2
(1 +

εk − µ
Ek

) , vk =
1

2
(1− εk − µ

Ek

) . (26)

Inserting these expressions for uk and vk into the gap equation then yields

∆ = −U
V

∑
k

∆

2Ek

⇐⇒ − 1

U
=

1

V

∑
k

1

2Ek

≡
∫

d3k

(2π)3

1

2Ek

, (27)

where the last equality is understood as a continuous approximation of the sum by an
integration over phase space. As mentioned above, the contact interaction U is related
to the scattering length via equation (8). Replacing U via this relation then relates the
gap to the scattering length:

− 1

U
=

∫
d3k

(2π)3

1

2Ek

⇐⇒ − m

4π~2as
=

∫
d3k

(2π)3
(

1

2Ek

− 1

2εk
) . (28)

It should also be mentioned that an additional constrain on the system is given by number
equation:

n = 2

∫
d3k

(2π)3
v2
k . (29)

Here one can identify nk = v2
k as the occupation number density of momenta. In order to

determine the gap and also the chemical potential of the system, it is useful to rewrite the
gap and number equations in a dimensionless way using the following standard integrals:

I1 =

∫ ∞
0

dx x2

(
1√

(x2 − z)2 + 1
− 1

x2

)
(30)

I2 =

∫ ∞
0

dx x2

(
1− x2 − z√

(x2 − z)2 + 1

)
. (31)

Using the Fermi energy EF =
~2k2

F

2m
and Fermi momentum kF = (3π2n)

1
3 , the gap and

number equation can then be written in a dimensionless form:

− 1

kFas
=

2

π

√
∆

EF
I1(

µ

∆
) (32)

1 =
3

2

(
∆

EF

) 3
2

I2(
µ

∆
) . (33)
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Figure 2: This figure illustrates the size of fermionic pairs in different regimes. In the
BEC limit, the size of pairs is much smaller than the typical distance between pairs. In
the BCS limit, pairs are strongly overlapping, which leads to properties of a superfluid
rather than a condensate. Figure taken from [12].

Further, inserting equation (33) into (32) yields the compact form:

− 1

kFas
=

2

π

(
2

3I2( µ
∆

)

) 1
3

I1(
µ

∆
) (34)

∆

EF
=

(
2

3I2( µ
∆

)

) 2
3

. (35)

The gap ∆ as a function of the scattering parameter 1
kFas

is now obtained by solving gap
equation (34) for µ

∆
and inserting this expression into the number equation (35). Figure

3 shows the result for the gap and the chemical potential as a function of the scattering
parameter and figure 2 gives an intuitive picture of the regimes of the interacting Fermi gas
defined by the interaction parameter. Three regimes can be identified via the interaction
parameter 1/kFas:

BCS:
1

kFas
� −1 , BEC:

1

kFas
� 1 , BCS-BEC crossover: − 1 <

1

kFas
< 1 . (36)

Also, having obtained ∆, it can be inserted into nk = v2
k. Figure 4 shows nk for different

scattering parameters, i.e. regimes of the Fermi gas. In the BCS regime it closely resem-
bles a step function, just like the ideal Fermi gas, and it becomes broader and flatter in
the BCS-BEC crossover region.

3.3 Low Excitations

In order to understand the behaviour of the interacting Fermi gas for low excitations, i.e.
temperatures below the so-called critical temperature, which will be explained later to be
the temperature below which condensation takes place, it is more convenient to change
the physical picture still describing the same physics. Therefore consider the Bogoliubov
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Figure 3: Gap ∆ (red line) and chemical
potential µ (dotted line) as a function of the
scattering parameter. A positive scattering
parameter corresponds to the BEC regime
and a negative to the BCS regime. Figure
taken from [11].

Figure 4: Occupation number density of
momenta nk = v2

k is given for different inter-
action parameters. Figure taken from [11].

transformation of creation and annihilation operators which leaves the anti-commutation
relations unchanged: (

γk↑
γ†−k↓

)
=

(
uk −vk
vk uk

)
︸ ︷︷ ︸

Bogoliubov transformation

(
ck↑
c†−k↓

)
(37)

{
γkσ, γ

†
k′σ′

}
=
{
ckσ, c

†
k′σ′

}
= δ(k− k′)δσσ′ (38)

{γkσ, γk′σ′} =
{
γ†kσ, γ

†
k′σ′

}
= 0 . (39)

It is non-trivial to show that these uk and vk are actually the same as in the previous
derivation of the gap equation. But indeed, the Bogoliubov transformation can be under-
stood as a rotation in a plane and in this case as a rotation in a plane spanned by the c
creation and annihilation operators. The γ operators are then linear combinations of the
c operators describing fictive or quasi particles. This also justifies the earlier approach to
parametrize the uk and vk by cos(θk) and sin(θk) respectively.

Applying this transformation to the previous Hamiltonian yields

H − µN = −V ∆2

U
+
∑
k

(εk − µ− Ek) +
∑
k

Ek(γ†k↑γk↑ + γ†k↓γk↓) . (40)

At finite temperatures, there will be excitations of quasi particle states which modify the
gap equation. In terms of quasi-particles, the so-called paring field becomes:

〈ck↑c−k↓〉 = −ukvk(1− 〈γ†k↑γk↑〉 − 〈γ
†
k↓γk↓〉) . (41)
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Figure 5: Shown is the gap in units of the gap at zero temperature as a function of
temperature in units of the critical temperature below which condensation of fermionic
pairs into a BEC occurs. Figure taken from [11].

Since the quasi-particles follow Fermi-Dirac statistics 〈γ†k↑γk↑〉 = 1
1+eβEk

, the gap equation

∆ =
∑

k〈ck↑c−k↓〉 becomes temperature dependent (β = 1/kBT):

− m

4π~2as
=

∫
d3k

(2π)3

(
1

2Ek

tanh(
βEk

2
)− 1

2εk

)
. (42)

Solving temperature dependent gap equation yields

∆(T ) ≈

{
∆0 −

√
2π∆0kBT exp(− ∆0

kBT
) for T � TC√

8π2

7ζ(3)
kBTC

√
1− T

TC
for TC - T � TC ,

(43)

where

∆0 :=
8

e2
exp(− π

2kF |as|
) (44)

is the gap at zero temperature. Figure 5 shows the temperature dependent gap below
the critical temperature, below which condensation takes place.

4 Fermionic Pair Formation and Condensation

4.1 Pair Formation Temperature

The gap is the order parameter of the Fermi gas characterizing the phase transition from
the phase of unpaired fermions to the phase of paired fermions. The temperature Tpair at
which fermionic pairs start to form is determined by the condition ∆ = 0 which inserted
into the temperature dependent gap equation (42) yields an equation for the pairing
temperature:

− m

4π~2as
=

∫
d3k

(2π)3

(
1

2(εk − µ)
tanh(

βpair(εk − µ)

2
)− 1

2εk

)
. (45)
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Figure 6: The figure shows Tpair and TC (see [13] for calculation) as functions of the
interaction parameter. Figure adopted from [14].

Since the system can be expected to follow the Fermi-Dirac statistic above Tpair, the
number equation is

n = 2

∫
d3k

(2π)3

1

1 + exp(βpair(εk − µ)
. (46)

Solving these two equations now allows to calculate Tpair. In the BCS regime it can be
assumed that µ� kBTpair, hence µ ≈ EF. Solving the above equations with this chemical
potential leads to

TBCSpair = TBCSC =
eγ

π

8

e2
exp(− π

2kF |as|
) =

eγ

π
∆0 (47)

with eγ ≈ 1.78. In the BCS regime, the pair formation and critical temperature are the
same, because in that regime the Fermi fluid constitutes a fluid of strongly overlapping
fermion pairs, whose inter-particle spacing is much larger than the average particle dis-
tance (cp. fig. 2) and which do not form a condensate in the sense of bosons in a BEC.
The overlapping pairs rather exhibit a behaviour similar to superconductivity. In fact,
superconductivity can be seen in a more general picture as so-called charged superfluidity
and the interacting Fermi gas below the critical temperature forms a superfluid, i.e. a
fluid without any viscosity. Experimental evidence for this behaviour was first found in
2005 at MIT by [15] by observing vortices in the superfluid.
In the BEC regime, TBCS

pair is given by the so-called Lambert W-function, which is the
solution to x = WeW and for x > 3 approximated by W(x) ≈ ln(x− ln[ln(x)]):
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TBCSpair =
1

3

|EB|
W [(π

6
)
1
3

EB
2EF

]
. (48)

This leads to a very steep increase of Tpair towards the BEC regime. Overall, Tpair

increases exponentially from zero in the BCS regime (1/kFas → −∞) to very large values
in the BEC limit, i.e. in the limit of 1/kFas →∞. This can intuitively be understood as
follows: deep in the BEC regime, the very large positive scattering length leads to the
formation of very strongly bound fermionic molecules. Hence, the larger the scattering
length the larger has to be the energy, i.e. temperature, to break up these molecules
which defines the temperature of pair formation.

4.2 Critical Temperature for Condensation

Deeply in BEC regime TBEC
C must simply be given by the well known critical temperature

for bosons with molecular density nM = n/2 and mass mM = 2m:

TBECC =
2π~2

mM

(
nM
ζ(3

2
)
)2/3 = 0.22EF . (49)

However, there are small positive corrections to this value, when going into the BCS-BEC
regime [13]. Since there should be a smooth crossover in TC from the BCS to the BEC
regime, there hence must be a maximum in the crossover regime. Indeed, when doing the
complete calculation as in [13], one finds TC as a function of the interaction parameter
as in figure 6. It shows that the maximum for TC is indeed in the crossover region.

4.3 Condensate Fraction

Figure 7: Condensate fraction of fermionic pairs according to equation (50) as a function
of the interaction parameter 1/kFas. Dots and squares give experimental values. The
discrepancy in the BEC regime on the left hand side is due to thermal heating during
the experiment which leads to a decay of the condensate. Figure taken from [11].
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As mentioned in section 2.3, the condensate fraction of fermionic pairs can be calculated
from the pairing field 〈ck↑c−k↓〉 which also occurs in the definition of the gap equation.
Now, taking the temperature dependent gap equation (42), one can see that the pair-
ing field acquires the factor tanh(βEk

2
) and equation (7) for the condensate fraction at

arbitrary, low temperatures becomes [10]:

n0 =
1

V

∑
k

|〈ck↑c−k↓〉|2 =
∑
k

u2
kv

2
ktanh

2(
βEk

2
) . (50)

Recall that the interaction parameter 1/kFas is related to the gap which occurs in Ek.
Figure 7 gives the condensate fraction as a function of the interaction parameter, hence
showing it for the different regimes of the interacting Fermi gas. In the BEC limit, it
approaches unity, while it decreases exponentially in the BCS limit. Note: actually there
is a more subtle difference in the condensates in both limits. In the BEC limit, the
condensate is just a BEC of fermionic pairs. But, towards the BCS limit, there will
be a difference between a condensate in the BEC sense and pairs that ’condense’ in a
superfluid which both occur in the crossover region. Thus, in a more detailed study of
the condensate in the BCS regime and the crossover region, one as to distinguish between
those two types of ’condensate’.
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