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Microscopic description

I Generalized coordinates and conjugate momenta:
q i ,pi , i = 1, ...,N. In total: 6N variables.

I Hamiltonian of the system H({q}, {p}).
I Equations of motion: q̇ i = ∂H

∂pi
and ṗi = − ∂H

∂qi
for i = 1, ...,N.

Postulate of both equilibrium and nonequilibrium statistical
mechanics
All intensive macroscopic properties of a given system can be
described in terms of the microscopic state of that system.
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Density function

I Number of points in the phase space goes to infinity.
I The distribution of points throughout the phase space

becomes continuous.
I Describe this with a density function FN({q}, {p}, t). FN

should be symmetric in the q i and the pi (similarity of
molecules).

I Normalisation:
∫ N∏

i=1
dq i dpi FN({q}, {p}, t) = 1.

An ensemble average of a macroscopic property G({q}, {p}) can
be defined as:

〈G(t)〉 :=
∫ N∏

i=1
dq i dpi G({q}, {p})FN({q}, {p}, t) (1)
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Liouville equation

I How does FN change with time?

dFN
dt = ∂FN

∂t +
N∑

i=1

[
∂FN
∂q i
· q̇ i + ∂FN

∂pi
· ṗi

]
= 0. (2)

Idea of the proof: Use uniqueness of the solutions of the
Hamilton equations.

I If FN - constant along a trajectory in the phase space, it’s also
every function of FN . Of specific interest will be the function
H(t) :=

∫
Γ dxFN ln FN = const.
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Reduced distribution functions

I We define the R-particle distribution function as follows:

FR(x1, ..., xR , t) :=
∫

dxR+1...dxNFN(x1, ..., xR , ..., xN , t)
(3)

I We also define the mass density as f (x1, t) := NmF1(x1, t),
where m is the mass of a single particle.

I How do the evolution equations for the reduced distribution
functions look like?

7 / 37



I We start with the case R = N, where we have the Louiville
equation from above:

∂FN
∂t +

N∑
i=1

[
∂FN
∂q i
· pi

m + ∂FN
∂pi
· F i

]
= 0, (4)

where F i = ṗi is the force, acting on the i-th particle.
I For an arbitrary R we can integrate Eq.4 over the phases

xR+1, ..., xN . We have:∫
dxR+1...dxN

∂FN
∂t = ∂

∂t

∫
dxR+1...dxNFN = ∂FR

∂t (5)

∫
dxR+1...dxN

N∑
i=1

pi
m ·

∂FN
∂q i

=
R∑

i=1

pi
m ·

∂

∂q i

∫
dxR+1...dxNFN

+
∫

dxR+1...dxN

N∑
i=R+1

pi
m ·

∂FN
∂q i
(6)

8 / 37



The second term on the R.H.S. in Eq.6 can be made vanish, even
if the volume of the system is finite, for example, when there are
only elastic collisions of particles with the walls of the container. In
that case, we have:

FN(q1, ...,qN ,p1, ...,pi , ..., pi ,x , pi ,y , pi ,z , t)
=FN(q1, ...,qN ,p1, ...,pi , ...,−pi ,x , pi ,y , pi ,z , t), ∀i : q i ∈ dS ⊥ x

(7)
and thus, when integrated over pi ,x , the second term on the R.H.S.
of Eq.6 becomes zero. We have:

∫
dxR+1...dxN

N∑
i=1

pi
m ·

∂FN
∂q i

=
R∑

i=1

pi
m ·

∂FR
∂q i

(8)

9 / 37



For conservative central intermolecular forces, we have:

F i = −
N∑

j=1 6=i

∂φij
∂q i

(9)

and the last term on the R.H.S. of the Liouville equation for FN ,
when integrated as above, becomes:

−
∫

dxR+1...dxN

N∑
i ,j=1

∂φij
∂q i
· ∂FN
∂pi

=
R∑

i ,j=1

∂φij
∂q i
· ∂
∂pi

∫
dxR+1...dxNFN

−
∫

dxR+1...dxN

N∑
1≤i≤R

R+1≤j≤N

∂φij
∂q i
· ∂FN
∂pi

−
∫

dxR+1...dxN

N∑
R+1≤i≤N

1≤j≤N

∂φij
∂q i
· ∂FN
∂pi

(10)
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The last term on the R.H.S. vanishes. The second term can be
written as:

−(N − R)
∫

dxR+1

R∑
i=1

∂φiR+1
∂q i

· ∂FR+1
∂pi

(x1, ..., xR+1, t) (11)

When we combine all of the results, we get the equation for FR :

∂FR
∂t +

R∑
i=1

pi
m ·

∂FR
∂q i
−

R∑
i ,j=1

∂φij
∂q i
· ∂FR

pi

=(N − R)
∫

dxR+1

R∑
i=1

∂φiR+1
∂q i

· ∂FR+1
∂pi

.

(12)

Equation 12 is called the BBGKY (Bogoliubov, Born, H.S. Green,
Kirkwood and Yvon) hierarchy of equations.
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Boltzmann gas limit

The Boltzmann equation is exact in the so called Boltzmann gas
limit (BGL). This is described by three conditions:
I the density is sufficiently low so that only binary collisions

need to be considered
I the spatial dependence of gas properties is sufficiently slow so

that collisions can be thought of as being localised in the
physical space

I the interparticle potential is of sufficiently short range so that
the first statement is meaningful.
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Conditions on the parameters of the gas

This means, for the particle number N, the mass of each particle
m and for a parameter σ which characterises the range of the
interparticle forces (σ2 would be then the cross section):

N −→∞
m −→ 0
σ −→ 0

Nσ2 = const
Nm = const

(13)

Note that this limit also describes ideal gas, because the total
volume of the particles Nσ3 → 0.
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Grad’s derivation
Consider the truncated distributions:

Fσ
1 :=

∫
D1

dy2...dyNFN

Fσ
2 :=

∫
D2

dy3...dyNFN ,
(14)

where Di is the part of the physical space where |qj − q1| ≥ σ for
j = i , ...,N is fulfilled.
In the BGL we can replace F1,F2 by Fσ

1 ,Fσ
2 in the Liouville

equation and we get:

∂Fσ
1

∂t + v1 ·
∂Fσ

1
∂q1

+(N − 1)
∮

S2
dv2dS2 · (v1 − v2)Fσ

2

−(N − 1) ∂

∂v1
·
∫
|q2−q1|>σ

dy2φ′12Fσ
2 = 0,

(15)

where S2 is the surface of the sphere |q2 − q1| = σ and
φ′12 := ∂φ12

∂q1
.
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If V = v2 − v1 is the relative velocity, one can introduce a plane
perpendicular to it with origin q1 so that the two half-spheres S+

2
and S−2 are projected onto a disc with area element dω = rdrdϕ.
We exchange the integration over the sphere in Eq.15 for
integration over the disc:
∂F1
∂t +v1 ·

∂F1
∂q1

= N
∫

dωdv2V [F2(y1, y+
2 , t)−F2(y1, y−2 , t)] (16)
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Now, we use the Stoßzahlansatz (collision number assumption),
due to Boltzmann, which states that:

F2(y1, y2, t) = F1(y1, t)F1(y2, t) (17)

to get the final Boltzmann equation:

∂f
∂t + v1 ·

∂f
∂q1

= 1
m

∫
dωdv2V [f (q1, v̄1, t)f (q1, v̄2, t)− f (q1, v1, t)f (q1, v2, t)],

(18)
where we denoted with v̄1, v̄2 the velocities after the collision.
Eq.18 is called the Boltzmann equation. The R.H.S. is a functional
of f , which is called the collision term:

J [f ] := 1
m

∫
dωdv2V [f̄1f̄2 − f1f2]. (19)
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A motivation for the assumptions
The total number of molecules, which can target the surface
element dS, is:

σ2dω|V · e|∆t · f (q1, v2, t)dv2. (20)
There are f (q1)dq1dv1 particles with velocity v1. The total
number of binary collisions per given time interval and per dx1 ,
are:

∼ σ2
∫
|V · e|f (q, v1, t)f (q1, v2, t)dωdv2. (21)

This consideration gives us a motivation for the loss term. The
gain term is motivated analogously.
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Binary collisions
Now we want to investigate the collision term. In classical binary
collisions there is momentum and energy conservation:

v1 + v2 = v̄1 + v̄2

v2
1 + v2

2 = v̄2
1 + v̄2

2 .
(22)

One can easily show that the modulus of the relative velocity
doesn’t change. We have V = V̄ . We can also establish an explicit
relation between the old and the new velocities. If α := v̄1−v1

|v̄1−v1| , we
have:

v̄1 = v1 + α(α · V )
v̄2 = v2 −α(α · V ).

(23)

The inverse transformation is:

v1 = v̄1 + α(α · V̄ )
v2 = v̄2 −α(α · V̄ ).

(24)

so the Jacobian is unity and we have: dv1dv2 = d v̄1d v̄2.
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We can define the angle between V and α to be θ. This is:

α · V = V cos θ. (25)

If there is a one-to-one correspondence between the distance of the
(centres of the) two particles r and the angle θ (This is the case,
for example, for repulsive potentials), we can rewrite the
integration over the disc area as follows:

dω = rdrdϕ = r(θ,V ) | ∂r(θ,V )
∂θ

| dθdϕ

=: 1
V B(θ,V )dθdϕ.

(26)

Thus, the Boltzmann collision term becomes:

J [f ] = 1
m

∫
dv2dθdϕB(θ,V )[f̄1f̄2 − f1f2]. (27)

20 / 37



Hard sphere molecules

If we consider hard sphere mo-
lecules of radius r0, the ob-
vious geometrical relation r =
2r0 sin θ allows us to calculate
the function B(θ,V ):

⇒ B(θ,V ) = Vr | ∂r
∂θ
|= 4r 2

0 V sin θ cos θ. (28)
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The collision cross section
We note that the collision term can be also expressed through the
cross section of the collision, which is quite obvious from the
following consideration:

σ(V , χ) sin(χ)dχdϕ = σ(V , χ)dΩ = rdrdϕ

⇒σ(V , χ) = r
sin(χ)

dr
dχ.

(29)

We can directly insert that in the Boltzmann equation and get:

J [f ] = 1
m

∫
dv2dΩσ(V , χ)V [f̄1f̄2 − f1f2] (30)

expressed by the differential cross section.
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Symmetry properties of J(f )

If ψ(v1) is a function of v1, we have:∫
dv1J(f )ψ(v1) = 1

m

∫
dv1dv2dθdϕB(θ,V )[f̄1f̄2 − f1f2]ψ(v1)

= 1
m

∫
dv1dv2dθdϕB(θ,V )[f̄1f̄2 − f1f2]ψ(v2)

= − 1
m

∫
dv1dv2dθdϕB(θ,V )[f̄1f̄2 − f1f2]ψ(v̄1)

= − 1
m

∫
dv1dv2dθdϕB(θ,V )[f̄1f̄2 − f1f2]ψ(v̄2).

(31)
Thus, we can write the L.H.S. of Eq.31 as:∫

dv1J(f )ψ(v1) = 1
4

∫
dv1J(f )(ψ(v1) + ψ(v2)− ψ(v̄1)− ψ(v̄2)).

(32)
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We can directly see that for every quantity, for which:

ψ(v1) + ψ(v2) = ψ(v̄1) + ψ(v̄2), (33)

the collision term is already zero. This is true for the number of
particles (ψ(v1) = 1), the momentum (ψ(v1) = v1) and the
energy (ψ(v1) = v2

1 ) due to number, momentum and energy
conservation in a binary collision. Functions, which satisfy Eq.33
are called summational invatiants.
Actually, one can show that an arbitrary summational invariant can
be written as:

ψ(v1) = A1
2mv2

1 + B ·mv1 + C . (34)
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From microscopic to macroscopic physics
We recover some macroscopic quantities of a system from it’s
mass density function f (q1, v1, t):

The density: ρ(q, t) =
∫

dv1f (q1, v1, t)

The fluid velocity: u(q, t) = 1
ρ

∫
dv1v1f (q1, v1, t).

(35)

We introduce the peculiar velocity v0 := v1 − u, this is the particle
velocity w.r.t. the fluid flow velocity. The latter helps us define the
temperature of the system as:

3
2RT = ξ = 1

2ρ

∫
dv1v2

0 f (q1, v1, t). (36)

and the pressure tensor:

P ij =
∫

dv1v0,i v0,j f (q1, v1, t). (37)
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The hydrostatic pressure is given by:

p = 1
3

∫
dv1v2

0 f (q1, v1, t) (38)

because the diagonal components of P ij are equal.
We recover the equation of state of an ideal gas:

p = 2
3ρξ = ρRT . (39)

We also introduce the heat flux in the system as:

Q =
∫

dv1
v2

0
2 v0f (q1, v1, t). (40)
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The hydrodynamic equations

Multiplying the Boltzmann equation successively by 1, v1 and 1
2 v2

1
and integrating over v1, because the collision term doesn’t
contribute to the result, we get:

∂ρ

∂t + ∂

∂q · (ρu) = 0

∂

∂t (ρui ) + ∂

∂qj
(ρui uj + Pji ) = 0

∂

∂t [ρ(ξ + 1
2u2)] + ∂

∂qi
[ρui (ξ + 1

2u2) + ujPji + Qi ] = 0.

(41)

These are the hydrodynamic equations.
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H-Theorem

Let us investigate how the system approaches equilibrium!
We introduce:

H[f ] = H(q, t) :=
∫

dv1f1 ln f1

H̄[f ] = H̄(t) :=
∫

dqdv1f1 ln f1.
(42)

First, consider spatially homogeneous system, that is,
f (q, v , t) = ρf (v , t). In equilibrium, we would have ∂f

∂t = 0 and
thus ∂H

∂t = 0.
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The H-Theorem states that the quantity H can only decrease with
increasing time. We consider the time derivative of H:

∂H
∂t = ∂

∂t

∫
dv1f1 ln f1 =

∫
dv1

∂f1
∂t ln f1 +

∫
dv1f1

1
f1

∂f1
∂t

=
∫

dv1J(f ) ln f1 +
∫

dv1J(f ) =
∫

dv1J(f ) ln f1.

(43)

Using a previous result, we can rewrite the latter as:

∂H
∂t = 1

4

∫
dv1J(f )[ln f1 + ln f2 − ln f̄1 − ln f̄2]

= −1
4

∫
dv1dv2dθdϕB(θ,V )[f1f2 − f̄1f̄2] ln f1f2

f̄1f̄2

(44)

so we can conclude that ∂H
∂t ≤ 0. The equality is obtained only if

f1f2 = f̄1f̄2, which is equivalent to the statement that ln f should
be a summational invariant.
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Does the equilibrium have to be rached? The quantity H is bound
from below! The energy of the system must be finite, so:∫

dv1f1v2
1 <∞. (45)

Now, if H would diverge, − ln f1 →∞ faster than v2
1 →∞, so

f1 → 0 faster than e−v2
1 → 0. But if this is the case, H <∞ , since

lim
x→0

e−x2xn = 0 ∀n. So we have contradiction and H must
converge.
This means, together with ∂H

∂t ≤ 0 that an equilibrium state has to
be reached.
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Maxwell distribution

As we saw at last, ln f should be a summational invariant in
equilibrium, so we can write it as:

ln fM(v1) = A + B · v1 + Cv2
1 . (46)

The constants are not arbitrary, but depend on the macroscopic
properties of the system. So one gets for f precisely the Maxwell
distribution:

fM(v1) = ρ

(2πRT ) 3
2

e−
(v1−u)2

2RT . (47)

This is referred to as absolute Maxwellian distribution, because of
the spatial homogeneity.
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Nonuniform system

We briefly mention the results for a spatially inhomogeneous
system without derivations.
In that case, the H-Theorem states that the quantity H̄ should
fulfill ∂H̄

∂t ≤ 0. The equilibrium is, as before, at ∂H̄
∂t = 0 and the

distribution functions takes a local Maxwellian form:

ln fLM(q, v1, t) = A(q, t) + B(q, t) · v1 + C(q, t)v2
1 . (48)

Here, the coefficients as functions of (q, t) are constrained by the
Boltzmann equation:

∂fLM
∂t + v1 ·

∂fLM
∂q = J(fLM) = 0. (49)
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Conclusion
Boltzmann equation:

∂f
∂t + v1 ·

∂f
∂q1

= 1
m

∫
dωdv2V [f (q1, v̄1, t)f (q1, v̄2, t)− f (q1, v1, t)f (q1, v2, t)],

I is suitable for describing systems in nonequilibrium.
I is in accordance with macroscopic results (e.g. hydrodynamic

equations etc.)
H-Theorem: ∂H

∂t ≤ 0 describes how the system approaches
equilibrium.
Further questions:
I Boltzmann eq. in (noneq.) QFT?[Ber15]
I Quantum H-Theorem?[al12]
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