#### Phase transitions and Critical Phenomena

#### Jonah Cedric Strauß

Seminar on Statistical Physics summer term 2020

June 5

### Overview



#### Introduction

- Timeline of Discoveries
- Repetition Thermodynamics

#### 2 Phase transitions

- Definition and Classifications
- Ornstein-Zernike Approximation

#### 3 Critical Phenomena

- Critical Exponents
- Universality
- Scaling Hypothesis
- Relations between critical exponents
- Classical Critical Exponents for the Ising model

#### Outlook



Figure: Timeline of milestones for the theory of phase transitions.<sup>[1][2]</sup>

<sup>&</sup>lt;sup>[1]</sup> Papon, Leblond, and Meijer, *Physics of Phase Transitions*, p. 33ff.

<sup>&</sup>lt;sup>[2]</sup> Lindley, Degrees Kelvin: A Tale of Genius, Invention, and Tragedy, p. 99f.

Introduction hase transitions

Timeline of Discoveries Repetition Thermodynamics

#### Thermodynamics – The Basics

• Recall themodynamic potentials:

| Thermodynamic potential               | fluid system                                 | magnetic system                              |
|---------------------------------------|----------------------------------------------|----------------------------------------------|
| Internal energy $U(S,V)$              | $\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$  | $\mathrm{d}U = T\mathrm{d}S + H\mathrm{d}M$  |
| Enthalpy $H'(S,p)$                    | $\mathrm{d}H' = T\mathrm{d}S + V\mathrm{d}p$ | $\mathrm{d}H' = T\mathrm{d}S - M\mathrm{d}H$ |
| Gibbs free energy $G(T,p)$            | $\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p$ | $\mathrm{d}G = -S\mathrm{d}T - M\mathrm{d}H$ |
| Helmholtz free energy ${\cal F}(T,V)$ | $\mathrm{d}F = -S\mathrm{d}T - p\mathrm{d}V$ | $\mathrm{d}F = -S\mathrm{d}T + H\mathrm{d}M$ |

- Switching is obtained via a *Legendre transform* in the state variables.
- Of course, additions like " $+\mu dN$ " are possible but for now we will ignore them.

Timeline of Discoveries Repetition Thermodynamics

### Response Functions

From the thermodynamic potentials and the state variables the response functions can be derived.

• Specific heat

$$C_x \equiv \left(\frac{\mathrm{d}Q}{\mathrm{d}T}\right)_x = T\left(\frac{\partial S}{\partial T}\right)_x \quad x = p, V, M, H \tag{1}$$

- In the fluid system:
  - Compressibility

$$\kappa_x \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_x \quad x = T, S \tag{2}$$

• Coefficient of thermal expansion

$$\alpha_p \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p \tag{3}$$

Timeline of Discoveries Repetition Thermodynamics

#### **Response Functions**

From the thermodynamic potentials and the state variables the response functions can be derived.

• Specific heat

$$C_x \equiv \left(\frac{\mathrm{d}Q}{\mathrm{d}T}\right)_x = T\left(\frac{\partial S}{\partial T}\right)_x \quad x = p, V, M, H \tag{1}$$

- In a magnetic system:
  - Susceptibility

$$\chi_x \equiv \left(\frac{\partial M}{\partial H}\right)_x \quad x = T, S \tag{2}$$

• Coefficient of thermal expansion

$$\alpha_H \equiv \left(\frac{\partial M}{\partial T}\right)_H \tag{3}$$

Timeline of Discoveries Repetition Thermodynamics

#### Response Functions as Second Derivatives

• Upon further inspection one can identify the previous quantities as second derivatives of the thermodynamic potentials

$$C_{V} = -T \left(\frac{\partial^{2} F}{\partial T^{2}}\right)_{V} \qquad C_{p} = -T \left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{p} \qquad (4)$$
  

$$\kappa_{S} = -\frac{1}{T} \left(\frac{\partial^{2} H'}{\partial p^{2}}\right)_{S} \qquad \kappa_{T} = -\frac{1}{T} \left(\frac{\partial^{2} G}{\partial p^{2}}\right)_{T} \qquad (5)$$
  

$$\chi_{S} = -\left(\frac{\partial^{2} H'}{\partial H^{2}}\right)_{S} \qquad \chi_{T} = -\left(\frac{\partial^{2} G}{\partial H^{2}}\right)_{T} \qquad (6)$$

Timeline of Discoveries Repetition Thermodynamics

## Intrinsic Relations

• Due to their relation via the potentials and the equation(s) of state, the response functions are not linearly independent and obey a variety of relations.

$$\kappa_T \left( C_p - C_V \right) = T V \alpha_p^2 \tag{7}$$

$$C_P \left(\kappa_T - \kappa_S\right) = T V \alpha_p^2 \tag{8}$$

$$\frac{C_p}{C_V} = \frac{\kappa_T}{\kappa_S} \tag{9}$$

• Taking stability and physicality into account, this implies

$$C_p \ge C_V$$
 (10)

$$\kappa_T \ge \kappa_S$$
 (11)

• Similar relations hold for the magnetic system

Timeline of Discoveries Repetition Thermodynamics

# Convexity Relations

- With these relations and response functions at hand, claims on the convexity of the potentials can be made
  - G(T,p) is concave in both its arguments,
  - F(T, V) is concave with respect to T and convex with respect to V.
- For a magnetic system the claims  $\chi_x, C_x \geq 0$  can not be made to show convexity.
- Convexity (concavity) follows nevertheless for systems with Hamiltonian (GRIFFITH 1964)

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_0 - H\hat{M} \tag{12}$$

- Under this condition
  - G(T, H) is concave in both its arguments,
  - F(T, M) is concave with respect to T and convex with respect to M.

Definition and Classifications Ornstein-Zernike Approximation

## Definition – Phase transitions

- Substances of fixed (chemical) composition exist in homogenous forms.
- The properties of those phases are distinguishable (e. g. solid, liquid, gas).
  - e. g. Several varieties of ice corresponding to different crystalline forms.
- Phase transitions (abb. PT) are marked by rapid changes in the properties of the described system.
- They are induced by changes of the intensive Figure: P thermodynamic variables fueled from the outside. system (b)
- Schematically, there are PTs with and without "latent heat".





Figure: Phase transitions for (a) a fluid system (b) a magnetic system.  $^{[3]}$ 

Definition and Classifications Ornstein-Zernike Approximation

#### Example – The Phase Diagram of Water



Figure: CMG Lee, Phase diagram of water as a log-lin chart with pressure from 1 Pa to 1 TPa and temperature from 0 K to 650 K.

Definition and Classifications Ornstein-Zernike Approximation

### Example – The Phase Diagram of a Pure Substance



Figure: Phase diagram of a pure substance.<sup>[4]</sup>

<sup>[4]</sup> Papon, Leblond, and Meijer, *Physics of Phase Transitions*, p. 126.

Definition and Classifications Ornstein-Zernike Approximation

#### Definition – Phase Transitions

- Characterised by a critical quantity (mostly  $T_{\rm c}$ )
- Classification by latent heat (EHRENFEST 1933)

Definition and Classifications Ornstein-Zernike Approximation

### **Definition – Phase Transitions**

- Characterised by a critical quantity (mostly  $T_{\rm c}$ )
- Classification by latent heat (EHRENFEST 1933)

#### Phase transitions of first oder

Phase transitions of first order are characterised by a discontinuity in the thermodynamic quantities of the system, e. g. entropy, volume. These correspond to discontinuous first-order derivatives of the thermodynamic potential(s).

Schematically speaking, the discontinuity corresponds to the latent heat being released or absorbed during the transition.

Definition and Classifications Ornstein-Zernike Approximation

### Definition – Phase Transitions



(a)

Figure: First-order phase transition.<sup>[5]</sup>

<sup>[5]</sup> Papon, Leblond, and Meijer, *Physics of Phase Transitions*, p. 16.

11/22

Definition and Classifications Ornstein-Zernike Approximation

#### **Definition – Phase Transitions**

#### Phase transitions of first oder

Phase transitions of first order are characterised by a discontinuity in the thermodynamic quantities of the system, e. g. entropy, volume. These correspond to discontinuous first-order derivatives of the thermodynamic potential(s).

Schematically speaking, the discontinuity corresponds to the latent heat being released or absorbed during the transition.

#### Phase transitions of second oder

Phase transitions of second order are characterised by the behaviour of the response functions of the system. The potentials and their first-order derivatives are continuous, while some of the second derivatives approach zero or infinity.

PTs of second order correspond to transitions without latent heat. The transition between the phases is continuously and no real distinction between them can be made.

Definition and Classifications Ornstein-Zernike Approximation

#### Definition – Phase Transitions



Figure: Second-order phase transition.<sup>[5]</sup>

<sup>[5]</sup> Papon, Leblond, and Meijer, *Physics of Phase Transitions*, p. 16.

Definition and Classifications Ornstein-Zernike Approximation

### **Definition – Phase Transitions**

- Characterised by a critical quantity (mostly  $T_{\rm c}$ )
- Classification by latent heat (EHRENFEST 1933)
- Classification by symmetry (LANDAU 1937)
  - Not limited to thermodynamic view
  - Occurence of symmetry breaking
  - Notion of an *order parameter*, often denoted *m* (e. g. the magnetisation, or difference to critical density)
  - Distinction between ordered and disordered phase

Definition and Classifications Ornstein-Zernike Approximation

#### **Definition – Phase Transitions**

#### PTs without order parameter

The symmetry groups of both phases are such that non is strictly included in the other. Such PTs are always first-order in Ehrenfest's sense.

#### PTs with order parameter

An order parameter can be defined for the system and the symmetry group of the least symmetric phase is a subgroup of the symmetry group of the most symmetric phase. At the transition the order parameter might be *discontinuous*. This continuity distinguishes PTs of first and second order in Ehrenfest's sense.

Definition and Classifications Ornstein-Zernike Approximation

## The Ornstein-Zernike Approximation

• To account for transitions characterised by different order *m* the *correlation function* is of essential importance.

$$G(\mathbf{r} - \mathbf{r}') = \langle (m(\mathbf{r}) - \langle m \rangle) (m(\mathbf{r}') - \langle m \rangle) \rangle$$
(13)

$$= \langle m(\mathbf{r})m(\mathbf{r}')\rangle - \langle m\rangle^2 \tag{14}$$

$$= n\delta(\mathbf{r} - \mathbf{r}') + n^2\Gamma(\mathbf{r} - \mathbf{r}')$$
(15)

• From the correlation function the *structure function*  $S(\mathbf{q})$  can be defined as its Fourier transform.

$$S(\mathbf{q}) = n\left(1 + n\hat{\Gamma}(\mathbf{q})\right) \tag{16}$$

Definition and Classifications Ornstein-Zernike Approximation

# The Ornstein-Zernike Approximation

• The direct correlation function is indirectly defined via its Fourier transform

$$\hat{C}(\mathbf{q}) = \frac{\hat{\Gamma}(\mathbf{q})}{1 + n\hat{\Gamma}(\mathbf{q})}$$
(13)

• With this at hand,  $S(\mathbf{q})$  becomes

$$S(\mathbf{q}) = \frac{n}{1 - n\hat{C}(\mathbf{q})} \tag{14}$$

• By Taylor expansion up to quadratic order in  ${f q}$  the correlation function can be brought in the asymptotic form for large r

$$S(q) \propto \frac{1}{\kappa^2 + q^2} \tag{15}$$

• By inverse Fourier transform the **ORNSTEIN-ZERNIKE** form of the correlator is obtained:

$$G(r) \propto \frac{\mathrm{e}^{-\kappa r}}{r^{d-2}} \tag{16}$$

Definition and Classifications Ornstein-Zernike Approximation

# The Ornstein-Zernike Approximation

• The direct correlation function is indirectly defined via its Fourier transform

$$\hat{C}(\mathbf{q}) = \frac{\hat{\Gamma}(\mathbf{q})}{1 + n\hat{\Gamma}(\mathbf{q})}$$
(13)

• With this at hand,  $S(\mathbf{q})$  becomes

$$S(\mathbf{q}) = \frac{n}{1 - n\hat{C}(\mathbf{q})} \tag{14}$$

• By Taylor expansion up to quadratic order in  ${f q}$  the correlation function can be brought in the asymptotic form for large r

$$S(q) \propto \frac{1}{\kappa^2 + q^2} \tag{15}$$

• By inverse Fourier transform the **ORNSTEIN-ZERNIKE** form of the correlator is obtained:

$$G(r) \propto \frac{\mathrm{e}^{-r/\xi}}{r^{d-2}} \tag{16}$$

Definition and Classifications Ornstein-Zernike Approximation

# The Ornstein-Zernike Approximation

• The ORNSTEIN-ZERNIKE form of the correlator is:

$$G(r) \propto \frac{\mathrm{e}^{-r/\xi}}{r^{d-2}} \tag{13}$$

• PTs are characterised by a divergence of the *correlation length*  $\xi$  and thus a loss of any relevant scale.

1

- This will lead to universal behaviour.
- $\bullet$  Only scaling dimensions of the thermodynamic quantities in  $(T-T_{\rm c})$  are needed for description of the system.

Critical Exponents Universality Scaling Hypothesis Relations between critical exponents Classical Critical Exponents for the Ising model

## Critical-point Exponent

- Indices describing behaviour near critical point
- Define a dimensionless temperature variable (with  $t \xrightarrow[T \to T_c]{} 0$ )

$$t \equiv \frac{T}{T_{\rm c}} - 1 \tag{14}$$

• Exponent is defined by

$$f(t) \sim t^{\lambda} \quad \Leftrightarrow \quad \lambda \equiv \lim_{t \to 0} \frac{\ln |f(t)|}{\ln |t|}$$
 (15)

- Careful!  $f \sim t^{\lambda} \not\Rightarrow f(t) = At^{\lambda}$ , actually  $f(t) = At^{\lambda} (1 + Bt^{x} + \cdots)$
- Behaviour from below is denoted by a dash

$$f(t) \sim (-t)^{\lambda'} \quad \Leftrightarrow \quad \lambda' = \lim_{t \to 0} \frac{\ln |f(-t)|}{\ln |t|}$$
 (16)

Critical Exponents Universality Scaling Hypothesis Relations between critical exponents Classical Critical Exponents for the Ising model

## Ambiguities

• The case  $\lambda = 0$  can correspond to three different cases:<sup>[6]</sup>



<sup>[6]</sup> Stanley and Ahlers, Introduction to phase transitions and critical phenomena, p. 41.

Critical Exponents Universality Scaling Hypothesis Relations between critical exponents Classical Critical Exponents for the Ising model

### Ambiguities

• The case  $\lambda = 0$  can correspond to three different cases:



• Correct for this by modified exponent

$$\lambda_s \equiv j + \lim_{t \to 0} \frac{\ln \left| f^{(j)}(t) \right|}{\ln t}, \quad j = \min_{k \in \mathbb{N}} \left\{ k : \left| f^{(k)}(t) \right| \xrightarrow[t \to 0]{} \infty \right\}$$
(17)

Critical Exponents Universality Scaling Hypothesis Relations between critical exponents Classical Critical Exponents for the Ising model

# Common Exponents

| Exponent            | General Definition                                                                     |                                          |
|---------------------|----------------------------------------------------------------------------------------|------------------------------------------|
|                     | $( ( ) = \alpha' + \beta )$                                                            |                                          |
| $\alpha^{(\prime)}$ | $C_V \sim \begin{cases} (-t) & \alpha & t < 0 \\ t^{-\alpha} & t > 0 \end{cases}$      | specific heat at $V_{ m c}$ , $p_{ m c}$ |
| $\beta$             | $m \sim (-t)^{\beta}$                                                                  | scaling of order parameter               |
| $\gamma^{(\prime)}$ | $\frac{\partial m}{\partial t} \sim \begin{cases} (-t)^{-\gamma'} & t < 0 \end{cases}$ | response to a source $J$                 |
| 1                   | $\begin{bmatrix} \partial J \\ c \end{bmatrix} t^{-\gamma} \qquad t > 0$               |                                          |
| $ u^{(\prime)}$     | $\xi \sim \begin{cases} (-t)^{-\nu'} & t < 0 \\ t = \nu' & t < 0 \end{cases}$          | correlation length at $p_{ m c}$         |
| S                   | $\int t^{-\nu} t > 0$ $m \propto t^{1/\delta}$                                         | t = 0                                    |
| 0                   | $m \propto J^{-1}$                                                                     | t = 0                                    |
| $\eta$              | $ G(r) \sim  r ^{-(\alpha - 2 + \eta)}$                                                | correlation function at $t = 0$          |

Critical Exponents Universality Scaling Hypothesis Relations between critical exponents Classical Critical Exponents for the Ising model

## Common Exponents

| Exponent            | Definitions for a fluid system                                                           | Quantity                                    |
|---------------------|------------------------------------------------------------------------------------------|---------------------------------------------|
|                     |                                                                                          |                                             |
| $\alpha^{(\prime)}$ | $C_V \sim \begin{cases} (-t)^{-\alpha} & t < 0\\ t^{-\alpha} & t > 0 \end{cases}$        | specific heat at $V_{ m c}$ , $p_{ m c}$    |
| $\beta$             | $ ho_{ m l}- ho_{ m g}\sim (-t)^{eta}$                                                   | liquid-gas density difference at $p_{ m c}$ |
| $\gamma^{(\prime)}$ | $\kappa_T \sim egin{cases} (-t)^{-\gamma'} & t < 0 \ t^{-\gamma} & t > 0 \end{cases}$    | isothermal compressibility at $p_{ m c}$    |
| $\delta$            | $p - p_{ m c} \sim { m sgn}( ho_{ m l} -  ho_{ m g})   ho_{ m l} -  ho_{ m g} ^{\delta}$ | behaviour of the critical isotherm          |
| $ u^{(\prime)}$     | $\xi \sim egin{cases} (-t)^{- u'} & t < 0 \ t^{- u} & t > 0 \end{cases}$                 | correlation length at $p_{ m c}$            |
| $\eta$              | $G(r) \sim  r ^{-(d-2+\eta)}$                                                            | pair correlation function at $t = 0$        |

Critical Exponents Universality Scaling Hypothesis Relations between critical exponents Classical Critical Exponents for the Ising model



- Is a characteristic of second order PTs.
- Experiment and theory show that different phenomena obey the same critical behaviour and thus have the same critical exponents.
- This property is called *universality* and gives rise to *universality classes*:
  - A universality class is characterised by a set of critical exponents and contains all physical systems underlying the critical behaviour corresponding to these exponents.
  - E. g. the liquid-gas transition of CO<sub>2</sub> and Xe as well as the 3D Ising model share a universality class<sup>[7]</sup> (HOCKEN/MOLDOVER 1976)
  - $\bullet~A~\mathrm{VAN}~\mathrm{DER}$  WAALS-fluid and the mean field Ising model lie in the same class

<sup>&</sup>lt;sup>[7]</sup> Baxter, Exactly Solved Models in Statistical Mechanics, p. 8.

Critical Exponents Universality Scaling Hypothesis Relations between critical exponents Classical Critical Exponents for the Ising model

# Scaling Hypothesis

- $\bullet$  Formulated by DOMB, KADANOFF, WIDOM
- Near the critical point the thermodynamic quantities obey *scaling laws* and only the correlation length characterises the system:
  - Equation of state is left invariant under rescalings of the form  $x\mapsto\lambda^{\Delta}x$
- The thermodynamic potential can be split in a singular part (denoted by index S) and an analytical part.
- The scaling hypothesis now states

$$\lambda G_{\rm S}(t,H) = G_{\rm S}(\lambda^n t, \lambda^m H) \tag{18}$$

• The scaling hypothesis and the concept of universality are not strictly coupled.

Critical Exponents Universality Scaling Hypothesis **Relations between critical exponents** Classical Critical Exponents for the Ising model

# Relations between critical exponents

• The critical exponents are not independent. Their relations can be derived from the scaling laws and the intrinsic relations of the state variables through dimensional analysis.<sup>[8]</sup>

$$\alpha' + 2\beta + \gamma' = 2 \tag{19}$$

$$\alpha' + \beta \left( 1 + \delta \right) = 2 \tag{20}$$

$$\beta \left( \delta - 1 \right) = \gamma \tag{21}$$

$$\nu = \nu' \tag{22}$$

$$(2-\eta)\,\nu = \gamma \tag{23}$$

$$2 - \alpha = d\nu \tag{24}$$

- Only two independent exponents remain to be determined.
- Using renormalisation group technics, the critical exponents can be calculated from the dimensionality of the system *d* and the *degree of isotropy* (WILSON 1972, FISHER 1974).
- <sup>[8]</sup> Rushbrooke 1963, Griffith 1965, Widom 1965, Fisher 1967, Kadanoff 1967

Critical Exponents Universality Scaling Hypothesis Relations between critical exponents Classical Critical Exponents for the Ising model

Classical Critical Exponents for the Ising model in the Mean Field Approach

• Have Hamiltonian

$$\mathcal{H}[\Omega] = -\mu H \sum_{i} \sigma_{i} - J \sum_{\langle i,j \rangle} \sigma_{i} \sigma_{j}$$
<sup>(25)</sup>

• Expansion of the spins around their mean value  $\sigma_i=m+\delta\sigma_i$  leads to:

$$\mathcal{H} = -\left[zJm + \mu_0 H\right] \sum_i \sigma_i \tag{26}$$

• From this the magnetisation can be deduced to be:

$$m = \tanh \frac{\mu_0 H + zJm}{kT} \underset{H \to 0}{\longrightarrow} \tanh \frac{zJm}{kT}$$

• The critical temperatur now is recognised as  $T_c = zJ/k$ .

(27)

Critical Exponents Universality Scaling Hypothesis Relations between critical exponents Classical Critical Exponents for the Ising model

# Classical Critical Exponents for the Ising model in the Mean Field Approach

• The magnetisation in absence of an external field becomes:

$$m = \tanh \frac{zJm}{kT}$$
(25)

- The critical temperatur now is recognised as  $T_{\rm c}=zJ/k.$
- Near the critical temperature, we can expand<sup>[9]</sup>

$$m = (1+t)\operatorname{artanh} m \simeq (1+t)\left(m + \frac{1}{3}m^3\right)$$
(26)

$$\Rightarrow \quad m = (-3t)^{1/2} \left( 1 + \mathcal{O}(t) \right) \tag{27}$$

• From this we conclude  $\beta = \frac{1}{2}$ .

<sup>[9]</sup> Baxter, Exactly Solved Models in Statistical Mechanics, p. 44f.

Critical Exponents Universality Scaling Hypothesis Relations between critical exponents Classical Critical Exponents for the Ising model

# Classical Critical Exponents for the Ising model in the Mean Field Approach

• The magnetisation in absence of an external field becomes:

$$m = \tanh \frac{zJm}{kT}$$
(25)

- The critical temperatur now is recognised as  $T_{\rm c}=zJ/k.$
- From this we conclude  $\beta = \frac{1}{2}$ .
- From Eq. (25) we can deduce the CURIE-WEISS law for the susceptibility near criticality:

$$\chi \propto \left(1 - \frac{T_C}{T}\right)^{-1} \propto t^{-1} \tag{26}$$

• leading to  $\gamma' = 1$ .

Critical Exponents Universality Scaling Hypothesis Relations between critical exponents Classical Critical Exponents for the Ising model

# Classical Critical Exponents for the Ising model in the Mean Field Approach

• The magnetisation in absence of an external field becomes:

$$m = \tanh \frac{zJm}{kT} \tag{25}$$

- The critical temperatur now is recognised as  $T_{\rm c}=zJ/k.$
- We conclude  $\beta = \frac{1}{2}$  and  $\gamma' = 1$ .
- Now from the other equalities we have  $\alpha' = 0$  and  $\delta = 3$ .
- These values are typical for the mean field approach.
- In ONSAGER's case, the exponents are  $\alpha = \alpha' = 0$ ,  $\beta = \frac{1}{8}$ ,  $\nu = \nu' = 1$ ,  $\delta = 15$  and  $\gamma = \frac{7}{4}$  (ABRAHAM 1973).

# Outlook

- The treatment of a system near criticality as *conformal field theory* is possible
  - The critical exponents then translate to the scaling dimensions of the corresponding operators.
- The theory of PTs is not restricted to physics and chemistry.
  - E. g. models in sociology (player strategies, swing-voting)
- There are still unsolved Problems.
  - Analytical solution to the 3D Ising model
  - Mystery of the He- $\lambda$ -transition exponent  $\alpha = -0.0127(3).^{[10]}$



Figure: Diagram of the (d, n)-plane with position of various models.<sup>[11]</sup>

<sup>[10]</sup> Lipa et al., "Specific heat of liquid helium in zero gravity very near the lambda point"

 $^{[11]}$  Fisher, "The renormalization group in the theory of critical behavior", Fig. 1

# Outlook

- The treatment of a system near criticality as *conformal field theory* is possible
  - The critical exponents then translate to the scaling dimensions of the corresponding operators.
- The theory of PTs is not restricted to physics and chemistry.
  - E. g. models in sociology (player strategies, swing-voting)
- There are still unsolved Problems.
  - Analytical solution to the 3D Ising model
  - Mystery of the He- $\lambda$ -transition exponent  $\alpha = -0.0127(3).^{[10]}$



Figure: Specific heat capacity of helium.<sup>[12]</sup>

[10] Lipa et al., "Specific heat of liquid helium in zero gravity very near the lambda point"
 [12] Mpfiz, The lambda plot[t] of the specific heat capacity of helium with lambda point

#### References I

- Stanley, H Eugene and Guenter Ahlers. Introduction to phase transitions and critical phenomena. Vol. 26. 1973, p. 71.
- Fisher, Michael E. "The renormalization group in the theory of critical behavior". In: *Reviews* of Modern Physics 46.4 (1974), p. 597.
- Baxter, R.J. *Exactly Solved Models in Statistical Mechanics*. Academic Press, 1982. ISBN: 9780120831821. URL: https://books.google.de/books?id=u%5C\_JkQgAACAAJ.
- Papon, Pierre, Jacques Leblond, and Paul HE Meijer. *Physics of Phase Transitions*. Springer, 2002.
- Lipa, J. A. et al. "Specific heat of liquid helium in zero gravity very near the lambda point". In: *Physical Review B* 68.17 (Nov. 2003). ISSN: 1095-3795. DOI: 10.1103/physrevb.68.174518. URL: http://dx.doi.org/10.1103/PhysRevB.68.174518.

#### References II

Lindley, David, ed. Degrees Kelvin: A Tale of Genius, Invention, and Tragedy, Washington, DC: The National Academies Press, 2004. ISBN: 978-0-309-53095-8. DOI: 10.17226/10736. Mpfiz. The lambda plot[t] of the specific heat capacity of helium with lambda point. 2011. URL: https://upload.wikimedia.org/wikipedia/commons/7/7b/Lambda\_transition.svg. CMG Lee. Phase diagram of water as a log-lin chart with pressure from 1 Pa to 1 TPa and temperature from 0 K to 650 K. compiled from data in http://www.lsbu.ac.uk/water/phase.html and http://ergodic.ugr.es/termo/lecciones/water1.html by CMG Lee. Note that the phases of Ice X and XI (hexagonal) differ from the diagram in https://chem331001fall09.pbworks.com/w/page/15647320/LECTURE-10.2018. URL: https:

//upload.wikimedia.org/wikipedia/commons/0/08/Phase\_diagram\_of\_water.svg.

#### Bonus Panel - Critical Exponents from Renormalisation Group

| TABLE I. Third order $\epsilon$ expansion <sup>a</sup> for the exponent $\gamma$ .               | TABLE II. Fourth order expansion <sup>a</sup> for the exponent $\eta$ .                                   |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $\gamma = 1 + \frac{(n+2)}{2(n+8)} \epsilon + \frac{(n+2)(n^2 + 22n + 52)}{4(n+8)^3} \epsilon^3$ | $\eta = \frac{n+2}{2(n+3)^2} e^3 + \frac{n+2}{8(n+3)^2} \left[ \frac{24(3n+14)}{(n+3)^2} - 1 \right] e^3$ |
| $+\frac{(n+2)}{8(n+8)^3}\left[(n+2)^2\right]$                                                    | $+\frac{n+2}{2(n+8)^2}\left[\frac{-5n^2+234n+1076}{16(n+8)^2}\right]$                                     |
| $+ 24 \frac{(n+2)(n+3) - (10n+44)\zeta(3)}{(n+8)}$                                               | $-8\frac{3n^2+53n+160+3(5n+22)\zeta(3)}{(n+8)^3}$                                                         |
| $+ 4 \frac{55n^2 + 268n + 424}{(n+8)^2} \bigg] \epsilon^3 + O(\epsilon^4).$                      | $+ 45 \frac{(3n+14)^2}{(n+8)^4} \bigg] \epsilon^4 + O(\epsilon^6).$                                       |
|                                                                                                  |                                                                                                           |

<sup>a</sup> From E. Brézin, J. C. LeGuillou, J. Zinn-Justin, and B. G. Nickel (1973).

<sup>a</sup> From E. Brézin, J. C. LeGuillou, J. Zinn-Justin, and Nickel (1973).

Figure: First- to third-order corrections to the critical exponents from the renormalisation group.  $\epsilon$  corresponds to the dimensionality of the system via  $\epsilon = 4 - d$ .<sup>[13]</sup>

<sup>&</sup>lt;sup>[13]</sup> Fisher, "The renormalization group in the theory of critical behavior"