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Figure: Timeline of milestones for the theory of phase transitions.[1][2]

[1] Papon, Leblond, and Meijer, Physics of Phase Transitions, p. 33ff.
[2] Lindley, Degrees Kelvin: A Tale of Genius, Invention, and Tragedy, p. 99f.
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Thermodynamics – The Basics

Recall themodynamic potentials:

Thermodynamic potential fluid system magnetic system

Internal energy U(S, V ) dU = TdS − pdV dU = TdS +HdM

Enthalpy H ′(S, p) dH ′ = TdS + V dp dH ′ = TdS −MdH

Gibbs free energy G(T, p) dG = −SdT + V dp dG = −SdT −MdH

Helmholtz free energy F (T, V ) dF = −SdT − pdV dF = −SdT +HdM

Switching is obtained via a Legendre transform in the state variables.

Of course, additions like
”
+µdN“ are possible but for now we will ignore them.
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Response Functions

From the thermodynamic potentials and the state variables the response functions can be
derived.

Specific heat

Cx ≡
(

dQ
dT

)
x

= T
(
∂S
∂T

)
x

x = p, V,M,H (1)

In the fluid system:

Compressibility

κx ≡ −
1

V

(
∂V
∂p

)
x

x = T, S (2)

Coefficient of thermal expansion

αp ≡
1

V

(
∂V
∂T

)
p

(3)
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Response Functions

From the thermodynamic potentials and the state variables the response functions can be
derived.

Specific heat

Cx ≡
(

dQ
dT

)
x

= T
(
∂S
∂T

)
x

x = p, V,M,H (1)

In a magnetic system:

Susceptibility
χx ≡

(
∂M
∂H

)
x

x = T, S (2)

Coefficient of thermal expansion
αH ≡

(
∂M
∂T

)
H

(3)
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Response Functions as Second Derivatives

Upon further inspection one can identify the previous quantities as second derivatives of
the thermodynamic potentials

CV = −T
(
∂2F
∂T 2

)
V

Cp = −T
(
∂2G
∂T 2

)
p

(4)

κS = − 1

T

(
∂2H′

∂p2

)
S

κT = − 1

T

(
∂2G
∂p2

)
T

(5)

χS = −
(
∂2H′

∂H2

)
S

χT = −
(
∂2G
∂H2

)
T

(6)
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Intrinsic Relations

Due to their relation via the potentials and the equation(s) of state, the response
functions are not linearly independent and obey a variety of relations.

κT (Cp − CV ) = TV α2
p (7)

CP (κT − κS) = TV α2
p (8)

Cp
CV

=
κT
κS

(9)

Taking stability and physicality into account, this implies

Cp ≥ CV (10)

κT ≥ κS (11)

Similar relations hold for the magnetic system
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Convexity Relations

With these relations and response functions at hand, claims on the convexity of the
potentials can be made

G(T, p) is concave in both its arguments,
F (T, V ) is concave with respect to T and convex with respect to V .

For a magnetic system the claims χx, Cx ≥ 0 can not be made to show convexity.

Convexity (concavity) follows nevertheless for systems with Hamiltonian (Griffith 1964)

Ĥ = Ĥ0 −HM̂ (12)

Under this condition

G(T,H) is concave in both its arguments,
F (T,M) is concave with respect to T and convex with respect to M .
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Definition – Phase transitions

Substances of fixed (chemical) composition exist
in homogenous forms.

The properties of those phases are distinguishable
(e. g. solid, liquid, gas).

e. g. Several varieties of ice corresponding to
different crystalline forms.

Phase transitions (abb. PT) are marked by rapid
changes in the properties of the described system.

They are induced by changes of the intensive
thermodynamic variables fueled from the outside.

Schematically, there are PTs with and without

”
latent heat“.

Figure: Phase transitions for (a) a fluid
system (b) a magnetic system.[3]

[3] Stanley and Ahlers, Introduction to phase transitions and critical phenomena, p. 2
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Example – The Phase Diagram of Water

Pre
ss

ure

Temperature

1 Pa

10 Pa

100 Pa

1 kPa

10 kPa

100 kPa

1 MPa

10 MPa

100 MPa

1 GPa

10 GPa

100 GPa

1 TPa

10 µbar

100 µbar

1 mbar

10 mbar

100 mbar

1 bar

10 bar

100 bar

1 kbar

10 kbar

100 kbar

1 Mbar

10 Mbar
0 K 50 K 100 K 150 K 200 K 250 K 300 K 350 K 400 K 450 K 500 K 550 K 600 K 650 K

-250 °C -200 °C -150 °C -100 °C -50 °C 0 °C 50 °C 100 °C 150 °C 200 °C 250 °C 300 °C 350 °C

Freezing point at 1 atm
273.15 K (0 °C), 101.325 kPa

Boiling point at 1 atm
373.15 K (100 °C), 101.325 kPa

STP
273.15 K (0 °C),

100 kPa  

NTP
293.15 K
(20 °C),
101.325 kPa

SATP
298.15 K
(25 °C),
101.325 kPa

Critical point
647.096 K

(373.946 °C),
22.064 MPa  

Solid/Liquid/Vapour triple point
273.16 K (0.01 °C), 611.657 Pa

251.165 K, 209.9 MPa
256.164 K, 350.1 MPa

272.99 K, 632.4 MPa
355.00 K, 2.216 GPa

238.5 K, 212.9 MPa
248.85 K, 344.3 MPa

218 K, 620 MPa

278 K, 2.1 GPa

100 K, 62 GPa

Solid

Ic Ih

XI(hexagonal)

X
VII

VI

VIII

XV
IX

XI
(ortho-

rhombic)

II V

III Liquid

Vapour

Figure: CMG Lee, Phase diagram of water as a log-lin chart with pressure from 1 Pa to 1 TPa and
temperature from 0 K to 650 K.
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Example – The Phase Diagram of a Pure Substance

B
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Figure: Phase diagram of a pure substance.[4]

[4] Papon, Leblond, and Meijer, Physics of Phase Transitions, p. 126.
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Definition – Phase Transitions

Characterised by a critical quantity (mostly Tc)

Classification by latent heat (Ehrenfest 1933)
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Definition – Phase Transitions

Characterised by a critical quantity (mostly Tc)

Classification by latent heat (Ehrenfest 1933)

Phase transitions of first oder

Phase transitions of first order are characterised by a discontinuity in the thermodynamic
quantities of the system, e. g. entropy, volume. These correspond to discontinuous first-order
derivatives of the thermodynamic potential(s).
Schematically speaking, the discontinuity corresponds to the latent heat being released or
absorbed during the transition.
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Definition – Phase Transitions

Figure: First-order phase transition.[5]

[5] Papon, Leblond, and Meijer, Physics of Phase Transitions, p. 16.
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Definition – Phase Transitions

Phase transitions of first oder

Phase transitions of first order are characterised by a discontinuity in the thermodynamic
quantities of the system, e. g. entropy, volume. These correspond to discontinuous first-order
derivatives of the thermodynamic potential(s).
Schematically speaking, the discontinuity corresponds to the latent heat being released or
absorbed during the transition.

Phase transitions of second oder

Phase transitions of second order are characterised by the behaviour of the response functions
of the system. The potentials and their first-order derivatives are continuous, while some of the
second derivatives approach zero or infinity.
PTs of second order correspond to transitions without latent heat. The transition between the
phases is continuously and no real distinction between them can be made.
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Definition – Phase Transitions

Figure: Second-order phase transition.[5]

[5] Papon, Leblond, and Meijer, Physics of Phase Transitions, p. 16.
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Definition – Phase Transitions

Characterised by a critical quantity (mostly Tc)

Classification by latent heat (Ehrenfest 1933)

Classification by symmetry (Landau 1937)

Not limited to thermodynamic view
Occurence of symmetry breaking
Notion of an order parameter, often denoted m (e. g. the magnetisation, or difference to
critical density)
Distinction between ordered and disordered phase
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Definition – Phase Transitions

PTs without order parameter

The symmetry groups of both phases are such that non is strictly included in the other.
Such PTs are always first-order in Ehrenfest’s sense.

PTs with order parameter

An order parameter can be defined for the system and the symmetry group of the least
symmetric phase is a subgroup of the symmetry group of the most symmetric phase. At the
transition the order parameter might be discontinuous.
This continuity distinguishes PTs of first and second order in Ehrenfest’s sense.
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The Ornstein-Zernike Approximation

To account for transitions characterised by different order m the correlation function is of
essential importance.

G(r− r′) = 〈(m(r)− 〈m〉) (m(r′)− 〈m〉)〉 (13)

= 〈m(r)m(r′)〉 − 〈m〉2 (14)

= nδ(r− r′) + n2Γ(r− r′) (15)

From the correlation function the structure function S(q) can be defined as its Fourier
transform.

S(q) = n
(

1 + nΓ̂(q)
)

(16)
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The Ornstein-Zernike Approximation

The direct correlation function is indirectly defined via its Fourier transform

Ĉ(q) =
Γ̂(q)

1 + nΓ̂(q)
(13)

With this at hand, S(q) becomes

S(q) =
n

1− nĈ(q)
(14)

By Taylor expansion up to quadratic order in q the correlation function can be brought in
the asymptotic form for large r

S(q) ∝ 1

κ2 + q2
(15)

By inverse Fourier transform the Ornstein-Zernike form of the correlator is obtained:

G(r) ∝ e−κr

rd−2
(16)



12/22

Introduction
Phase transitions

Critical Phenomena
Outlook

References

Definition and Classifications
Ornstein-Zernike Approximation

The Ornstein-Zernike Approximation

The direct correlation function is indirectly defined via its Fourier transform

Ĉ(q) =
Γ̂(q)

1 + nΓ̂(q)
(13)

With this at hand, S(q) becomes

S(q) =
n

1− nĈ(q)
(14)

By Taylor expansion up to quadratic order in q the correlation function can be brought in
the asymptotic form for large r

S(q) ∝ 1

κ2 + q2
(15)

By inverse Fourier transform the Ornstein-Zernike form of the correlator is obtained:

G(r) ∝ e−r/ξ

rd−2
(16)
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The Ornstein-Zernike Approximation

The Ornstein-Zernike form of the correlator is:

G(r) ∝ e−r/ξ

rd−2
(13)

PTs are characterised by a divergence of the correlation length ξ and thus a loss of any
relevant scale.

This will lead to universal behaviour.

Only scaling dimensions of the thermodynamic quantities in (T − Tc) are needed for
description of the system.
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Critical-point Exponent

Indices describing behaviour near critical point

Define a dimensionless temperature variable (with t −→
T→Tc

0)

t ≡ T

Tc
− 1 (14)

Exponent is defined by

f(t) ∼ tλ ⇔ λ ≡ lim
t→0

ln |f(t)|
ln |t| (15)

Careful! f ∼ tλ ��⇒ f(t) = Atλ, actually f(t) = Atλ (1 +Btx + · · · )
Behaviour from below is denoted by a dash

f(t) ∼ (−t)λ′ ⇔ λ′ = lim
t→0

ln |f(−t)|
ln |t| (16)
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Ambiguities

The case λ = 0 can correspond to three different cases:[6]

A logarithmic divergence a cusp-like divergence no anomalous behaviour
(λs = 0) (λ = z) (up to jump discontinuity)

[6] Stanley and Ahlers, Introduction to phase transitions and critical phenomena, p. 41.



14/22

Introduction
Phase transitions

Critical Phenomena
Outlook

References

Critical Exponents
Universality
Scaling Hypothesis
Relations between critical exponents
Classical Critical Exponents for the Ising model

Ambiguities

The case λ = 0 can correspond to three different cases:

A logarithmic divergence a cusp-like divergence no anomalous behaviour
(λs = 0) (λ = z) (up to jump discontinuity)

Correct for this by modified exponent

λs ≡ j + lim
t→0

ln
∣∣f (j)(t)∣∣
ln t

, j = min
k∈N

{
k :
∣∣∣f (k)(t)∣∣∣ −→

t→0
∞
}

(17)
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Common Exponents

Exponent General Definition

α(′) CV ∼
{

(−t)−α′
t < 0

t−α t > 0
specific heat at Vc, pc

β m ∼ (−t)β scaling of order parameter

γ(′) ∂m
∂J ∼

{
(−t)−γ′

t < 0

t−γ t > 0
response to a source J

ν(′) ξ ∼
{

(−t)−ν′
t < 0

t−ν t > 0
correlation length at pc

δ m ∝ J1/δ t = 0

η G(r) ∼ |r|−(d−2+η) correlation function at t = 0
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Common Exponents

Exponent Definitions for a fluid system Quantity

α(′) CV ∼
{

(−t)−α′
t < 0

t−α t > 0
specific heat at Vc, pc

β ρl − ρg ∼ (−t)β liquid-gas density difference at pc

γ(′) κT ∼
{

(−t)−γ′
t < 0

t−γ t > 0
isothermal compressibility at pc

δ p− pc ∼ sgn(ρl − ρg)|ρl − ρg|δ behaviour of the critical isotherm

ν(′) ξ ∼
{

(−t)−ν′
t < 0

t−ν t > 0
correlation length at pc

η G(r) ∼ |r|−(d−2+η) pair correlation function at t = 0
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Universality

Is a characteristic of second order PTs.

Experiment and theory show that different phenomena obey the same critical behaviour
and thus have the same critical exponents.

This property is called universality and gives rise to universality classes:

A universality class is characterised by a set of critical exponents and contains all physical
systems underlying the critical behaviour corresponding to these exponents.
E. g. the liquid-gas transition of CO2 and Xe as well as the 3D Ising model share a
universality class[7] (Hocken/Moldover 1976)
A Van der Waals-fluid and the mean field Ising model lie in the same class

[7] Baxter, Exactly Solved Models in Statistical Mechanics, p. 8.
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Scaling Hypothesis

Formulated by Domb, Kadanoff, Widom

Near the critical point the thermodynamic quantities obey scaling laws and only the
correlation length characterises the system:

Equation of state is left invariant under rescalings of the form x 7→ λ∆x

The thermodynamic potential can be split in a singular part (denoted by index S) and an
analytical part.

The scaling hypothesis now states

λGS(t,H) = GS(λnt, λmH) (18)

The scaling hypothesis and the concept of universality are not strictly coupled.
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Relations between critical exponents

The critical exponents are not independent. Their relations can be derived from the scaling
laws and the intrinsic relations of the state variables through dimensional analysis.[8]

α′ + 2β + γ′ = 2 (19)

α′ + β (1 + δ) = 2 (20)

β (δ − 1) = γ (21)

ν = ν′ (22)

(2− η) ν = γ (23)

2− α = dν (24)

Only two independent exponents remain to be determined.

Using renormalisation group technics, the critical exponents can be calculated from the
dimensionality of the system d and the degree of isotropy (Wilson 1972, Fisher 1974).

[8] Rushbrooke 1963, Griffith 1965, Widom 1965, Fisher 1967, Kadanoff 1967
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Classical Critical Exponents for the Ising model in the Mean Field
Approach

Have Hamiltonian
H [Ω] = −µH

∑
i

σi − J
∑
〈i,j〉

σiσj (25)

Expansion of the spins around their mean value σi = m+ δσi leads to:

H = − [zJm+ µ0H]
∑
i

σi (26)

From this the magnetisation can be deduced to be:

m = tanh
µ0H + zJm

kT
−→
H→0

tanh
zJm

kT
(27)

The critical temperatur now is recognised as Tc = zJ/k.
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Classical Critical Exponents for the Ising model in the Mean Field
Approach

The magnetisation in absence of an external field becomes:

m = tanh
zJm

kT
(25)

The critical temperatur now is recognised as Tc = zJ/k.

Near the critical temperature, we can expand[9]

m = (1 + t) artanhm ' (1 + t)

(
m+

1

3
m3

)
(26)

⇒ m = (−3t)
1/2

(1 +O(t)) (27)

From this we conclude β = 1
2 .

[9] Baxter, Exactly Solved Models in Statistical Mechanics, p. 44f.
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Classical Critical Exponents for the Ising model in the Mean Field
Approach

The magnetisation in absence of an external field becomes:

m = tanh
zJm

kT
(25)

The critical temperatur now is recognised as Tc = zJ/k.

From this we conclude β = 1
2 .

From Eq. (25) we can deduce the Curie-Weiss law for the susceptibility near criticality:

χ ∝
(

1− TC
T

)−1
∝ t−1 (26)

leading to γ′ = 1.
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Classical Critical Exponents for the Ising model in the Mean Field
Approach

The magnetisation in absence of an external field becomes:

m = tanh
zJm

kT
(25)

The critical temperatur now is recognised as Tc = zJ/k.

We conclude β = 1
2 and γ′ = 1.

Now from the other equalities we have α′ = 0 and δ = 3.

These values are typical for the mean field approach.

In Onsager’s case, the exponents are α = α′ = 0, β = 1
8 , ν = ν′ = 1, δ = 15 and γ = 7

4
(Abraham 1973).
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Outlook

The treatment of a system near criticality as conformal
field theory is possible

The critical exponents then translate to the scaling
dimensions of the corresponding operators.

The theory of PTs is not restricted to physics and
chemistry.

E. g. models in sociology (player strategies, swing-voting)

There are still unsolved Problems.

Analytical solution to the 3D Ising model
Mystery of the He-λ-transition exponent
α = −0.0127(3).[10]

Figure: Diagram of the
(d, n)-plane with position of
various models.[11]

[10] Lipa et al., “Specific heat of liquid helium in zero gravity very near the lambda point”
[11] Fisher, “The renormalization group in the theory of critical behavior”, Fig. 1



20/22

Introduction
Phase transitions

Critical Phenomena
Outlook

References

Outlook

The treatment of a system near criticality as conformal
field theory is possible

The critical exponents then translate to the scaling
dimensions of the corresponding operators.

The theory of PTs is not restricted to physics and
chemistry.

E. g. models in sociology (player strategies, swing-voting)

There are still unsolved Problems.

Analytical solution to the 3D Ising model
Mystery of the He-λ-transition exponent
α = −0.0127(3).[10]

Figure: Specific heat capacity of
helium.[12]

[10] Lipa et al., “Specific heat of liquid helium in zero gravity very near the lambda point”
[12] Mpfiz, The lambda plot[t] of the specific heat capacity of helium with lambda point
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Bonus Panel - Critical Exponents from Renormalisation Group

Figure: First- to third-order corrections to the critical exponents from the renormalisation group. ε
corresponds to the dimensionality of the system via ε = 4− d.[13]

[13] Fisher, “The renormalization group in the theory of critical behavior”
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