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1 Markovian Master equation

In this section we are going to define Markovian processes or stochastic processes, fulfilling
the Markovian assumption. Looking at the probability densities we will derive the Chapman-
Kolmogorov equation. We can then expand the probability density in time and look at the short
time behaviour, to derive the classical, Markovian Master equation. This part of the talk mainly
follows the treatment in pp.156-196 of Honerkamp [3]]

1.1 Markovian Processes and Chapman-Kolmogorov Equation

We will start by considering a stochastic process defined by states z;,t;,i =1,2,...;
The probability of the system beeing in z; at time t; ist defined by: p;(z;,¢;) and the conditional
probabilities of beeing in z;, t,, after beeing in Z, t; or of beeing in z,,, t, after z, 1,t,,_1;2,_2,t,_2,.
by:
P2(22, talz1, 1);
and
On(Zw talzn1, tno13 202, tu2s-5 21, t1);

A Markovian process is one, without memory, or in other words a process in which the probabil-
ity of jumping into a certain state only depends on the last state. Thus we can formulate the

..,Zl,tl



Markovian assumption by:

pn(znr tn|Zn—1’ tn-152n-2,tn-25--321, tl) = pZ(an tnlzn—l’ ty-1 );

The Chapman-Kolmogorov equation can now be derived by using the Markovian assumption:

p3(z3,t3;21,t1) = JP3(23, t3;22,12;21,t)dzy = JPz(Z3,t3|Zz, ty)p2(22, talz1, t1)p1 (21, t1)dzy

Thus we get the Chapman-Kolmogorov equation:

p2(z3,t3lz1, 1) = Jpz(zy t3lz2,t2)p2(22, tal21, t1 )d 25

Multiplying by p; and integrating over z; we get the C-K equation for p;:

p1(z3,t3) = Jpz(%, t3lz2,12)p1(22, t2)dz2;

1.2 Master Equation

Now we have the background to derive the Master equation which describes the time evolution
of the probability density. To get its time derivative we look at the short time behaviour by
making the expansion:

pa(z,t+ iz, t) = (1 —a(z,1)7)d(z - 2") + w(z, 2", t)T + O(T?);

Using the normalisation of the density we can relate the a to w by:

Jpz(z, t+tlz”,t)dz=1=a(z',t) = fw(z,z', t)dz;

Inserting the expansion into the Chapman-Kolmogorov equation we get:
p2(z t+7l|2, 1) = fpz(z, t+t|z”, t)po (27, 8|2, t')dz" = (1-a(z, t)T)pa(z, t|Z, t')+TJw(z, 2, )pa(2,t2, t')dz"+O (>

Now we can use the a —w— relation and take the limit 7 — 0 to get the Master equation:

a g t /, t/
p2(za—t|2) = Jw(z, 2’ t)pa(2”, t2', t')dz - Jw(z', z,1)pa(z, t|2,t')dz’;

We can finally multiply by p;(z’,t’) and integrate over z’ to get the Master equation for p;:

8{33(:: t) = J-”UJ(Z, Z’, t)pl (z’, t)dz’ _ J-w(z/, z, t)pl (Z, t)dZ,;

Analogously we can look at a system with discrete states. We can easily redifine all the given
quantities to describe discrete states, by:

2> m;01(2,1) = pu(thw(z,2,t) > wyw(t);

Then we get the discrete Master equation:

0epu(t) =) (W (D (£) =Wy (V1))
—
The Master equation in this form is very easy to interpret. The change of the probability density
in time is equal to the over all gain terms, or in other words, terms, adding to the state of interest,
minus the loss terms. For convenience we can also write this as a Matrix equation, by ordering
all transition rates w,, ,/(t) into the matrix V,, ,» and ordering the densities for different states in
a vector. Then we get:

atpa(t) = Zva,a’(t)pa’(t)3



1.3 Examples
1.3.1 Liouville Equation and deterministic processes

As the first physical example and to show, how fundamental a method the Master equation is,
were goint to formulate the Master equation for a deterministic system, or to be more specific, a
Hamiltonian system. If a system is defined by a differential equation:

x' = f(x),xeR"
We can then define the density:
P2(z, tlxo, to) = 6(z — x(t)), x(tg) = Xo;
To check the short-time behaviour again we can expand the density to first order by:
pa(z t+l2,t') = 8(z— (2~ f(x))) = 8(z~2) ~ f(2))d,6(z ~ 2)T + O(¢?);
=—f(2)d:6(z—2);

jf )0:6(z—2")

With all this we can define the Master equation for deterministic systems:

—w(z,z

dip1(2t) = J-(—f(Z')azé(Z -2))p1(2,1)d"2" = =9,(f (2)p1(21));
We can now look specifically at a Hamiltonian system, defined by:

z=(p,q),z' =(-9,H,d,H);

= azp(p’q!t) = 8_q$ _a_pa_q'

This is the Liouville equation, in the form known from Analytical Mechanics.

1.3.2 A simple Fokker-Planck equation

We can also use the Master equation to get the Focker-Planck equation. As the subject is very
broad and a lengthy discussion of the Fokker-Planck equation would require much more space
and time, we’re going to restrict ourselves to a very simple, one-dimensional example.

Let’s start with a Master equation for a one-dimensional system:

d1pn(t) = app1 (t) + Bpu-1(t) — (a + B)pn(t);

a is here defined as the rate for states to fall one one state to the next lower and thus the term
a *p,.1 the number of states falling into n, from the upper ones. Analogously f is the rate of
climbing into the next upper state. To get a more convenient form of the Fokker-Planck equation
we rescale the system, by defining;:

x= %,H(x,t) =pu(t)-L<n<L1<L
Thus we can rewrite the Master equation as:

dI1(x,t) = all(x + %, t)+ BIT(x — %, t)—(a+ B)I(x,t);



And expanding in orders of %:

2

o I1(x,t) = (a — ﬁ)%%ﬂ(x, t)— @%%
Looking at each order in the expansion we can give some interpretation: The first term is the
first derivative of the density times the difference of "falling" and "climbing" rates. Depending
on whether a or f is bigger, we will have some kind of drift into the direction of the upper or
lower states. In the following were going to consider the static, or non-drifting case, by setting
both rates equal. The second oder term describes a diffusion, which has to be proportional to
both a and p. If we rescale again 7 = é and set a = 8 er get the Fokker-Planck equation in its
simplest form:

(o) + O( )

d d
=I1(x,t) = =TI(x,t);
510 t) = = 5110 1)
This equation, though being of very simple structure already describes some phenomena, like
Random Walk and is one of the very few versions of the Fokker-Planck equation, that can be

solved by a Gaussian.

2 Quantum Master equation

Now that we have looked at the classical Master equation, describing Markovian processes,
we will consider quantum processes, or in particular a perturbed quantum system and and
derive a more general form of the Master equation, that also describes Non-Markovian processes.
So processes, where transition probabilities depend on not only the last, but possibly also
previous states. In the end we will also see how bringing in the Markovian assumption into the
Non-Markovian Master equation will again yield the previously derived form. We will also see
that the Master equation for a perturbed quantum system yields the Fermi Golden Rule, when
the system is restricted to be Markovian. Some mathmatical details are skipped in this part and
can be read in [1.

2.1 Pauli Equation

Before getting to the Non-Markovian Master equation we start with the Pauli equation, which
was the first quantum Master equation to be drived. First of all we start with the von Neumann
equation with [.,.] defining the commutator and by defining the Liouville operator L:

s
15 =[H,p]=Lp;

This can formally be solved by: p(t) = e"H(t_t,)pA(to); The time evolution in Heisenberg picture is

given by: p(t+ 1) = e‘iTHp(t)eiTH; Using the bracket notation we can now look at the diagonal

elements:

Pum(t+7) = (ml e (1) ™ fmy = )~ ol = ) (] (1) 1) (1 " ) ;
n,l

If we now neglect off-diagonal elements and consider that the diagonal elements of the density
matrix are probabilities p,,,, = P, we get the Pauli equation:

Polt+7) =) (mle™™ ny(nl 6(t) )l ™ fmy =[Gl e H 1) Py (1)

SPy(t+1)= ) QualT)P(1);

The problem with this equation is, that it is only valid for probabilities, constant in time, as can
easily be seen, by plugging in —7 instead of 7, as both yield the same result.



2.2 The Van Hove method

To get the Van Hove equation, which is more general and seeks to get rid of the error of the
Pauli equation. The derivation is completely analogous, but this time we start with a perturbed
Hamiltonian: H = Hy + A(t)W, with lamba being a small coupling, W the interaction term and
H, the unperturbed Hamiltonian, that we know the solution for. We can also assume that the
density operator is initially diagonal, which can be done, as the basis can always be chosen such
that it is diagonal at a certain time. But we can’t guarantee its remaining diagonal. With all
these considerations we get the Van Hove equation:

}:@m ”“mxmp<nwa|“ﬂm>—§ium|ﬂHﬁ* 1) pn(0)
-§:um|ﬂH“* IR A

2.3 Zwanzig and Nakajimas Solution

Now we are going to look at an Ansatz by Robert Zwanzig and Sadao Nakajima, for the Master
equation, which will yield a formal solution and a very general form of the Master equation,
for Non-Markovian processes. This will be achieved by starting from a perturbed Hamiltonian
system, splitting p into diagonal and off-diagonal elements to get two coupled equations. Then
a Greens function can be used to uncouple them and get one equation.

2.3.1
We can split the density matrix by defining the diagonalization operator D:
f=pa+poa=Dp+(1-D)p;

By applying D and (1 — D) to the Von Neumann equation we get:

2.3.2 Green s function and uncoupling the equations

To simplify the equations we got for the diagonal and off-diagonal parts we shall look at a
Green “s function, solving equation of the type the off-diagonal equation has. A differential
equation of the type:

dix+ax = f(x)

Is solved by the function:

t

x(t) = x(0)e™ " + J e () dr

0

Applying this method to the off-diagonal equation we get:

AL a t . Al A , n

mﬂwzf“$mmam+fe“kmw4w4u—Dumuwme
0

We can plug this into the equation for the diagonal part to uncouple the equations:

t A\ T ’ AL A
9104 :—iDﬁﬁd—lﬁﬁj e MI=DILE=) (1 _DYLp,(¢))dt;
0



2.3.3 Memory Kernel and the Non-Markovian Master Equation

As we have uncoupled the equations to the time development of the diagonal part of the density
operator, we can now further investigate the structure of the equation. Looking at the integral
we can see that it is an integral over p; and a term containing some time development. It
contains information from the initial time ty = 0 to the time t. It is the so called memory kernel
K(t-t'):
K(t—t") = D(Lo+ ALy )e 0D Lo ALw)(=2)f oy A1)

Considering that A is very small we can simplify this term by dropping terms of higher than
second order:

K(t—=1t') = D(Lo + ALy )e 0PIl (E 04 AL 1y) = A2 Ly e b0t 5
We can further simplify the equation by taking a closer look at the first term:
Dip;=0

This can easily be checked by looking at the exact components of this term. As L is the
commutator of a symmetric (Hamiltonian) and a diagonal operator, it vanishes. To get closer to
the previous form of the Master equation we define: M = e~/ (*=*)Ho[ 1/, p;1e/(*=*/Ho and use the
fact that the unperturbed Hamiltonian Hj is solved by: Hy|m) = €, |m): Using that we can look
at the matrix element of M:

My = €700 (M By = Py My )10,

We can now calculate the diagonal elements of the Master equation:

t
(m| dypalm) ——A2<mlj [W,e =V, 6 ]1d ¢ ) ——/\ZL (¢l WM |m) — (m| MW |m))dt

—_/\ZJ Z mn nm mn nm __2/\2J. lemnl P -P ]COS((t_t)(e 6))dt

We can finally define the new memory kernel Q,,,,(t —t') = |W,,,|*cos((t — t’)(e — €’)) to get the
final form the Non-Markovian Master equation:

94D JZ (= )Py = Q£ ~ )P, a1

We can see that the basic structure is the same as that of the discrete Non-Markovian Master
equation we have described in the previous section. The striking difference is, that instead of
"simple" transition amplitudes we have memory kernels, that do not only depend on the current
time t but also on the "past" of the system, which we have to integrate over. In the next section
we are going to see how this reduces to the Non-Markovian Master equation when we bring in
the Markovian assumption.

2.4 Connection to the Markovian Master equation and the Fermi Golden Rule

Now that we have a very general form of the Master equation, we need to consider how
the Markovian assumption. It can be formulated by corr(t,t’) = 0, for t # t" meaning that
probabilities at different times are not correlated or by defining away the "memory" of the
memory kernel, by: Q,,,,(t) = 6(1‘)J0t Q,.,(7)dt; To apply this we will need to rewrite the Master
equation in the interaction picture:

t
B == f Y [(Wane W, (B, = B) = (7 (Wi Py = By W) 1)t =
0 n



= f[ (£ = YW (0) (P — o) — Wi (£ — /)WL, (0)(P, — Py ]d 1

We can now bring in the Markovian assumption by:

J W= YWL(0)(Py(t) = Py(t))dt’ = (Pyy(t) = Py(t)) lim tw,fm< —t")W,p,,(0)dt’;

t—o0

Plugging this into the Master equation we can integrate over the exponential to get:

ath(t) — _Az Z(Pm(t) _Pn(t/)) lim |Wmn| ( —itwy, _ eitwmn)) —

t—o00 la)
n nm

] t
=202 Y (B = P Wi f? im (Snl)

n

)=

T(wﬂll/l
Taking the limit we get a delta function and the final result:
91 Py(t) = 21A? Z(Pn - Pm)lwmnlzé(em —€n) = Z[anpn = QumPul;
n m

We have finally arrived back at the discrete Non-Markovian Master equation. The omega matrix
elements are the transition amplitudes. The element Q,,,, is the amplitude for transitions from
the state n to m. We can further look at the exact expression it:

an = 2n|Wmn|26(€nl - en);

We see that this is exactly the Fermi Golden Rule. The delta function can be interpreted as
the energy conservation condition. Only same-energy transitions are allowed. This is quite
beautiful a result, as we have only used the von Von Neumann equation for a very general,
perturbed quantum system and the Markovian assumption.
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