Thermalization of Gluons IN Relativistic Collisions

Mathieu Kaltschmidt

ITP Heidelberg

Statistical Physics Seminar
supervised by
Prof. Georg Wolschin
Heidelberg, July 3rd 2020

Outline

1. Introduction
2. Experimental and Theoretical Setup
3. Thermalization: The Elastic Case
4. The Importance of Inelastic Collisions
5. Thermalization via a Nonlinear Boson Diffusion Equation (NBDE)
6. Conclusion

Outline

(1) Introduction
(2) Experimental and Theoretical Setup
(3) Thermalization: The Elastic Case
(4) The Importance of Inelastic Collisions
(5) Thermalization via a Nonlinear Boson Diffusion Equation (NBDE)
(6) Conclusion

Relativistic Heavy-Ion Collisions

Why do we study high-energy nuclear physics?

- We want to resolve the nuclear structure.
- The Quark-Gluon Plasma (QGP) provides insights into the physical processes relevant shortly after the Big Bang.
- Particle colliders such as the LHC or the RHIC are built to reach high energies.
- Collision events offer a fruitful playground for testing QCD and statistical models (focus of this talk/seminar).

Figure: Visualization of a $\mathrm{Pb}-\mathrm{Pb}$ collision event in the ALICE detector at the LHC. ${ }^{1}$

[^0]
The different Phases of RHICs

Figure: Visualization of the spacetime evolution of the system created in RHICs. ${ }^{2}$ In this talk, we will have a closer look at the pre-equilibrirum phase (gray area).

[^1]
Outline

(1) Introduction

(2) Experimental and Theoretical Setup
(3) Thermalization: The Elastic Case
(4) The Importance of Inelastic Collisions
(5) Thermalization via a Nonlinear Boson Diffusion Equation (NBDE)
(6) Conclusion

The ALICE Experiment at the LHC

Figure: Schematic picture of the ALICE detector at the LHC at CERN in Geneva. ${ }^{3}$ The experiment is specialized on heavy-ion collisions (mostly $\mathrm{Pb}-\mathrm{Pb}$) and reaches center-of-mass energies of $\sqrt{s}=5.02 \mathrm{TeV}$.

[^2]
The RHIC at the Brookhaven National Lab

Figure: The RHIC at the Brookhaven National Lab. ${ }^{4}$
The different experiments (STAR, sPHENIX ${ }^{5}$) study different aspects of the QGP and the spin structure of the proton. Center-of-mass energies of $\sqrt{s}=500 \mathrm{GeV}$ are reached.

[^3]
The Situation immediately after the Collision I

Question: How do the partons freed by a RHIC thermalize?

- The thermalization process provides a starting point for hydrodynamical evolution in terms of the energy-momentum tensor $T^{\mu \nu}$.
- The dominant parton contribution is dominated by gluon saturation and occupation numbers $\sim 1 / \alpha_{s}$.
- Theoretical model: Color-Glass condensate effective field theory (CQC).

Figure: Visualization of the Color-Glass Condensate model. ${ }^{6}$

The Situation immediately after the Collision II

- Problem: The initial situation $T_{\text {Glasma }}^{\mu \nu}=\operatorname{diag}(\varepsilon, \varepsilon, \varepsilon,-\varepsilon)$, does not serve as starting point!
- Expectation: Situation changes rapidly on a time scale $\sim 1 / Q_{\mathrm{s}}$.

But does the phase-space distribution function relax towards the expected equilibrium Bose-Einstein distribution?

- Bottom-Up approach: Relaxation as a result of hard elastic and inelastic collisions.

The overpopulated Quark-Gluon-Plasma

The following discussion is based on the publications [1] and [2].

- Typical gluon energy densities: $\varepsilon_{0}=\varepsilon\left(\tau=Q_{\mathrm{s}}^{-1}\right) \sim \frac{Q_{\mathrm{s}}^{4}}{\alpha_{\mathrm{s}}}$
- Gluons produced per unit volume: $n_{0}=n\left(\tau=Q_{\mathrm{s}}^{-1}\right) \sim \frac{Q_{\mathrm{s}}^{3}}{\alpha_{\mathrm{s}}}$
- This implies that the average energy per gluon is $\varepsilon_{0} / n_{0} \sim Q_{\mathrm{S}}$.

Comparison with the equilibrated system at temperature T leaves a mismatch:

- Assume an initial distribution of the form $n_{0} \cdot \varepsilon_{0}^{-3 / 4} \sim 1 / \alpha_{\mathrm{s}}^{1 / 4}$.
- In equilibrium we know $\varepsilon_{\mathrm{eq}} \sim T^{4}, n_{\mathrm{eq}} \sim T^{3}$ and $n_{\mathrm{eq}} \cdot \varepsilon_{\mathrm{eq}}^{-3 / 4} \sim 1$.

Mismatch by a large factor of $\alpha_{\mathrm{s}}^{-1 / 4}$ corresponding to an overpopulation of the initial distribution. ($\alpha_{\mathrm{s}} \ll 1$ in weak coupling asymptotics)

Outline

(1) Introduction

(2) Experimental and Theoretical Setup
(3) Thermalization: The Elastic Case
(4) The Importance of Inelastic Collisions
(5) Thermalization via a Nonlinear Boson Diffusion Equation (NBDE)
(6) Conclusion

Kinetic Evolution dominated by Elastic Collisions I

Elastic collisions conserve particle number \longrightarrow Introduce chemical potential μ

- Phase space distribution function given by Bose-Einstein distribution:

$$
\begin{equation*}
f_{\mathrm{eq}}(\mathbf{k})=\frac{1}{\exp \left(\frac{\omega_{\mathbf{k}}-\mu}{T}\right)-1} \tag{1}
\end{equation*}
$$

- The energy density and the number density then read

$$
\begin{align*}
& \varepsilon_{\mathrm{eq}}=\int_{\mathbf{p}} \omega_{\mathbf{p}} \cdot f_{\mathrm{eq}}(\mathbf{p}) \tag{2}\\
& n_{\mathrm{eq}}=\int_{\mathbf{p}} f_{\mathrm{eq}}(\mathbf{p}) \tag{3}
\end{align*}
$$

- Remark: Due to many-body interactions, the gluons can develop an effective medium dependent mass with

$$
\begin{equation*}
m_{0}^{2} \sim \alpha_{\mathrm{s}} \int_{\mathbf{p}} \frac{\mathrm{d} f_{0}}{\mathrm{~d} \omega_{\mathbf{p}}} \sim Q_{\mathrm{s}}^{2} \quad\left(\text { cf. } m_{\mathrm{eq}} \sim \alpha_{\mathrm{s}}^{1 / 2} T \sim \alpha_{\mathrm{s}}^{1 / 4} Q_{\mathrm{s}}\right) \tag{4}
\end{equation*}
$$

Kinetic Evolution dominated by Elastic Collisions II

- The mass m defines an upper bound on the number density:

$$
\begin{equation*}
n_{\max }=\int \frac{\mathrm{d}^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\exp \left(\frac{\omega_{\mathbf{k}}-m_{0}}{T}\right)-1} \sim T^{3} \quad(m \ll T) \tag{5}
\end{equation*}
$$

- This observation yields the statement, that $n_{\max } \sim Q_{\mathrm{s}}^{3} / \alpha_{\mathrm{s}}^{3 / 4}$ is smaller than the initial density $n_{0} \sim Q_{\mathrm{s}}^{3} / \alpha_{\mathrm{s}}$.
- Interpretation: When we consider only elastic collisions, the gluons form a Bose-Einstein condensate (BEC) with distribution function

$$
\begin{equation*}
f_{\mathrm{eq}}(\mathbf{k})=n_{c} \cdot \delta(\mathbf{k})+\frac{1}{\exp \left(\frac{\omega_{\mathbf{k}}-m_{0}}{T}\right)-1} \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
n_{c} \sim \frac{Q_{\mathrm{s}}^{3}}{\alpha_{\mathrm{s}}}\left(1-\alpha_{\mathrm{s}}^{1 / 4}\right) \quad\left(\text { note } n_{c} \cdot m \sim \alpha_{\mathrm{s}}^{1 / 4} T^{4} \ll \varepsilon_{0}\right) \tag{7}
\end{equation*}
$$

BEC: A short Reminder (and Teaser)

What is a Bose-Einstein Condensate?

- Bosons are allowed to share the same quantum state.
- At very low temperatures the occupation of the lowest quantum state rises extremely fast.
- New "state of matter" has extremely interesting properties.

Figure: Velocity distribution for a gas of rubidium atoms. ${ }^{8}$
This demonstrates the formation of a BEC in great detail.

[^4]
Implications

- In order to reach the expected B-E equilibrium distribution, particle-number decreasing inelastic processes must occur.
- Two possible equilibrium states: Either a system with a condensate (only elastic collisions) or a system with fewer particles (affected by inelastic collisions).
- Dynamical issue depending on many factors, e.g. production/annihilation rates.

Kinetic Evolution dominated by Elastic Collisions III

- Consider the transport eqn.

$$
\begin{equation*}
\partial_{t} f(\mathbf{k}, X)=C_{\mathbf{k}}[f], \tag{8}
\end{equation*}
$$

a simplified version of the Boltzmann eqn. (cf. Pavel's talk) without drift terms and the collision integral $C_{\mathbf{k}}[f]$ which reads

$$
\begin{equation*}
\left.\partial_{t} f\right|_{\mathrm{coll}} \sim \frac{\Lambda_{\mathrm{s}} \Lambda}{p^{2}} \partial_{p}\left\{p^{2}\left[\frac{\partial f}{\partial p}+\frac{\alpha_{\mathrm{s}}}{\Lambda_{\mathrm{s}}} f(p)(1+f(p))\right]\right\} \tag{9}
\end{equation*}
$$

in the small-angle approximation.

- The two relevant scales Λ_{s} and Λ are used to compute the thermalization time defined by the relation $\Lambda_{\mathrm{s}} / \Lambda \sim \alpha_{\mathrm{s}}$.
- Taking moments of the collision integral one finds:

$$
\begin{equation*}
t_{\mathrm{scat}}=\frac{\Lambda}{\Lambda_{\mathrm{s}}^{2}} \sim t \tag{10}
\end{equation*}
$$

Kinetic Evolution dominated by Elastic Collisions IV

- The integrals are dominated by the largest momenta $\sim \Lambda$. This allows us to approximate the distribution function $f(p) \sim \Lambda_{\mathrm{s}} /\left(\alpha_{\mathrm{s}} p\right)$ up to a cutoff Λ.
- This leaves us with:

$$
\begin{align*}
n_{\mathrm{g}} & \sim \frac{1}{\alpha_{\mathrm{s}}} \Lambda^{2} \Lambda_{\mathrm{s}} \tag{11}\\
\varepsilon_{\mathrm{g}} & \sim \frac{1}{\alpha_{\mathrm{s}}} \Lambda^{3} \Lambda_{\mathrm{s}} \tag{12}\\
\varepsilon_{\mathrm{c}} & \sim n_{\mathrm{c}} \cdot m \sim n_{\mathrm{c}} \cdot \sqrt{\Lambda_{\mathrm{s}} \Lambda} \tag{13}
\end{align*}
$$

with the total number density $n=n_{\mathrm{g}}+n_{\mathrm{c}}$.

- Assuming energy conservation, i.e. $\Lambda_{\mathrm{s}} \Lambda^{3} \sim$ const. we can compute the time-dependence of the two scales and therefore the thermalization time.

Kinetic Evolution dominated by Elastic Collisions V

From the considerations made before, we determine the time evolution of the scales:

$$
\begin{align*}
\Lambda_{\mathrm{s}} & \sim Q_{\mathrm{s}}\left(\frac{t_{0}}{t}\right)^{\frac{3}{7}} \tag{14}\\
\Lambda & \sim Q_{\mathrm{s}}\left(\frac{t}{t_{0}}\right)^{\frac{1}{7}} \tag{15}
\end{align*}
$$

and we can confirm that the energy carried by the condensate remains negligible:

$$
\begin{equation*}
\frac{\varepsilon_{\mathrm{c}}}{\varepsilon_{\mathrm{g}}} \sim\left(\frac{t_{0}}{t}\right)^{\frac{1}{7}} \tag{16}
\end{equation*}
$$

Now, we have computed all dependencies to find the estimated thermalization time for $\Lambda_{\mathrm{s}} \sim \alpha_{\mathrm{s}} \Lambda$:

$$
\begin{equation*}
t_{\mathrm{th}} \sim \frac{1}{Q_{\mathrm{s}}}\left(\frac{1}{\alpha_{\mathrm{s}}}\right)^{\frac{7}{4}} \tag{17}
\end{equation*}
$$

Outline

1) Introduction

(2) Experimental and Theoretical Setup
(3) Thermalization: The Elastic Case
(4) The Importance of Inelastic Collisions
(5) Thermalization via a Nonlinear Boson Diffusion Equation (NBDE)
(6) Conclusion

The Importance of Inelastic Processes

- Interesting: The modification of the collision integral on the RHS due to inleastic effects, leaves the time evolution of the scales invariant!
- Implications on the condensate formation can be obtained from numerical analysis of the modified transport equation.
- The inelastic contribution to the collision integral gives a sink term.
- Balancing source (elastic) und sink (inelastic) contributions may result in a condensate surviving during most of the thermalization process.

Further insights can be gained by considering e.g. the effect of longitudinal expansion (cf. [1]) or studying in more detail the effects of radiation (cf. [2])

Outline

(1) Introduction

(2) Experimental and Theoretical Setup

(3) Thermalization: The Elastic Case

(4) The Importance of Inelastic Collisions
(5) Thermalization via a Nonlinear Boson Diffusion Equation (NBDE)
(6) Conclusion

Deriving the Nonlinear Boson Diffusion Equation I

The following derivation follows reference [5].

- The starting point for our investigation is the Boltzmann eqn. (cf. Pavel's talk).
- For spatial homogeneity of the the boson distribution function $f(\mathbf{x}, \mathbf{p}, t)$ and a spherically symmetric momentum dependence the equation for the single-particle occupation numbers $n_{j} \equiv n_{\text {th }}\left(\varepsilon_{j}, t\right)$ reads:

$$
\begin{align*}
\frac{\partial n_{1}}{\partial t} & =\sum_{\varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}}\left\langle V^{2}\right\rangle G\left(\varepsilon_{1}+\varepsilon_{2}, \varepsilon_{3}+\varepsilon_{4}\right) \tag{18}\\
& \times\left[\left(1+n_{1}\right)\left(1+n_{2}\right) n_{3} n_{4}-\left(1+n_{3}\right)\left(1+n_{4}\right) n_{1} n_{2}\right]
\end{align*}
$$

- The collision term can be written in the form of a Master eqn.:

$$
\begin{equation*}
\frac{\partial n_{1}}{\partial_{t}}=\left(1+n_{1}\right) \sum_{\varepsilon_{4}} W_{4 \rightarrow 1} n_{4}-\sum_{\varepsilon_{4}} W_{1 \rightarrow 4}\left(1+n_{4}\right) \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
W_{4 \rightarrow 1}=W_{41} g_{1}=\sum_{\varepsilon_{2}, \varepsilon_{3}}\left\langle V^{2}\right\rangle G\left(\varepsilon_{1}+\varepsilon_{2}, \varepsilon_{3}+\varepsilon_{4}\right)\left(1+n_{2}\right) n_{3} \tag{20}
\end{equation*}
$$

Deriving the Nonlinear Boson Diffusion Equation II

- In continuum $\sum \rightarrow \int$ and introduce density of states $g_{j} \equiv g\left(\varepsilon_{j}\right)$.
- If G acquires a width in a finite system:

$$
\begin{equation*}
W_{14}=W_{41}=W[\frac{1}{2}\left(\varepsilon_{4}+\varepsilon_{1}\right), \underbrace{\left|\varepsilon_{4}-\varepsilon_{1}\right|}_{=: x}] \tag{21}
\end{equation*}
$$

- Perform a gradient expansion of n_{4} and $g_{4} n_{4}$ around $x \approx 0$.
- Introduce transport coefficients via moments of the transition probability:

$$
\begin{align*}
D & =\frac{g_{1}}{2} \int_{0}^{\infty} \mathrm{d} x W\left(\varepsilon_{1}, x\right) x^{2} \tag{22}\\
v & =g_{1}^{-1} \frac{d}{d \varepsilon_{1}}\left(g_{1} D\right) \tag{23}
\end{align*}
$$

Deriving the Nonlinear Boson Diffusion Equation III

- Nonlinear partial differential equation for $n \equiv n\left(\varepsilon_{1}, t\right)=n(\varepsilon, t)$:

$$
\begin{equation*}
\frac{\partial n}{\partial t}=-\frac{\partial}{\partial \varepsilon}\left[v \cdot n(1+n)+n \frac{\partial D}{\partial \varepsilon}\right]+\frac{\partial^{2}}{\partial \varepsilon^{2}}[D n] \tag{24}
\end{equation*}
$$

- Consider the limit of constant transport coefficients:

$$
\begin{equation*}
\frac{\partial n}{\partial t}=-v \frac{\partial}{\partial \varepsilon}[n(1+n)]+D \frac{\partial^{2} n}{\partial \varepsilon^{2}} \tag{25}
\end{equation*}
$$

- Thermal Bose-Einstein distribution provides stationary solution:

$$
\begin{equation*}
n_{\mathrm{eq}}(\varepsilon)=\frac{1}{\exp \left(\frac{\varepsilon-\mu}{T}\right)-1} \tag{26}
\end{equation*}
$$

Some Remarks

- The present model does not resolve the 2 nd-order phase transition.
- The effects of condensation are included (cf. the following figures).
- A treatment resolving the singularity at $\epsilon=\mu$ is presented later.

Linear Relaxation-Time Approximation (RTA)

- Given some initial distribution $n_{\mathrm{i}}(\varepsilon)$ we find an approximated solution for the thermalization process via the RTA:

$$
\begin{equation*}
\frac{\partial n_{\mathrm{rel}}}{\partial t}=\frac{\left(n_{\mathrm{eq}}-n_{\mathrm{rel}}\right)}{\tau_{\mathrm{eq}}} \tag{27}
\end{equation*}
$$

with solution:

$$
\begin{equation*}
n_{\mathrm{rel}}(\varepsilon, t)=n_{\mathrm{i}}(\varepsilon) \cdot \exp \left(-\frac{t}{\tau_{\mathrm{eq}}}\right)+n_{\mathrm{eq}}(\varepsilon)\left(1-\exp \left(-\frac{t}{\tau_{\mathrm{eq}}}\right)\right) \tag{28}
\end{equation*}
$$

where $\tau_{\text {eq }}=4 D /\left(9 v^{2}\right)$.

- Motivated by the study of early stages of RHICs, the initial distribution is chosen such that:

$$
\begin{equation*}
n_{\mathrm{i}}(\varepsilon)=N_{\mathrm{i}} \cdot \theta\left(1-\varepsilon / Q_{\mathrm{s}}\right) \cdot \theta(\varepsilon) \tag{29}
\end{equation*}
$$

with limiting momentum $Q_{\mathrm{s}} \sim \tau_{0}^{-1} \approx 1 \mathrm{GeV}$.

Results for the RTA

Figure: Relaxation of a finite Bose system towards the equilibrium. [5] Here $T=-D / v \simeq 0.4 \mathrm{GeV}, \tau_{\text {eq }}=4 D /\left(9 v^{2}\right)=0.33 \cdot 10^{-23} \mathrm{~s} \simeq 1 \mathrm{fm} / \mathrm{c}$ and the timesteps are $\{0.1,0.25,0.5, \infty\}$ (in units of $10^{-23} s$) from top to bottom.

Exact Solution of the Nonlinear Boson Diffusion Equation

- To solve eqn. (24) analytically, we perform the following nonlinear transformation:

$$
\begin{equation*}
n(\varepsilon, t)=-\frac{D}{v} \frac{\partial \ln \mathcal{Z}(\varepsilon, t)}{\partial \varepsilon} \tag{30}
\end{equation*}
$$

which reduces our problem to a linear diffusion eqn. for $\mathcal{Z}(\varepsilon, t)$:

$$
\begin{equation*}
\frac{\partial \mathcal{Z}}{\partial t}=-v \frac{\partial \mathcal{Z}}{\partial \varepsilon}+D \frac{\partial^{2} \mathcal{Z}}{\partial \varepsilon^{2}} \tag{31}
\end{equation*}
$$

- Solutions to this equation can be written as:

$$
\begin{equation*}
n(\varepsilon, t)=\frac{1}{2 v} \frac{\int_{-\infty}^{+\infty} \frac{\varepsilon-x}{t} F(x) \cdot G_{\text {free }}(\varepsilon-x, t) \mathrm{d} x}{\int_{-\infty}^{+\infty} F(x) \cdot G_{\text {free }}(\varepsilon-x, t) \mathrm{d} x}-\frac{1}{2} \tag{32}
\end{equation*}
$$

Additional Definitions

- The quantities appearing in the solution are the free Green's function

$$
\begin{equation*}
G_{\text {free }}(\varepsilon-x, t)=\exp \left[-\frac{(\varepsilon-x)^{2}}{4 D t}\right], \tag{33}
\end{equation*}
$$

and the implementation of the initial conditions

$$
\begin{equation*}
F(x)=\exp \left[-\frac{1}{2 D}\left(v x+2 v \int_{0}^{x} n_{\mathrm{i}}(y) \mathrm{d} y\right)\right] . \tag{35}
\end{equation*}
$$

- They define the free partition function via:

$$
\begin{equation*}
\mathcal{Z}(\varepsilon, t)=a(t) \cdot \int_{\infty}^{\infty} G_{\text {free }}(\varepsilon, x, t) \cdot F(x) \mathrm{d} x \tag{36}
\end{equation*}
$$

Results for the Solution of the NBDE I

Figure: Equilibration of a finite Bose system from the NBDE. [5]
The integration range is restricted to $x \geq 0$. Here $T \simeq 0.4 \mathrm{GeV}, \tau_{\text {eq }}=0.33 \cdot 10^{-23} \mathrm{~s}$ and the timesteps are $\{0.005,0.05,0.15,0.5\}$ (in units of $10^{-23} s$) from top to bottom.

Results for the Solution of the NBDE II

Figure: Equilibration of a finite Bose system from the NBDE. [5]
The integration range is extended to $-\infty \leq x \leq \infty$. Here $T \simeq 0.4 \mathrm{GeV}$, $\tau_{\text {eq }}=0.33 \cdot 10^{-23}$ s and the timesteps are $\{0.005,0.05,0.15,0.5\}$ (in units of $10^{-23} s$) from top to bottom.

Results for the Solution of the NBDE III

Figure: Equilibration of a finite Bose system from the NBDE for Gaussian initial conditions $n_{\mathrm{i}}(\varepsilon)=N_{\mathrm{i}}(\sqrt{2 \pi} \sigma)^{-1} \exp \left((\varepsilon-\langle\varepsilon\rangle) /\left(2 \sigma^{2}\right)\right)$ with $\sigma=0.04 \mathrm{GeV}$. [5] Here $T \simeq 0.4 \mathrm{GeV}, \tau_{\text {eq }}=0.33 \cdot 10^{-23} \mathrm{~s}$ and the timesteps are $\{0.002,0.006,0.02,0.2\}$ (in units of $10^{-23} s$) from top to bottom.

Treating the Singularity

This part is based on the publication [6] which provides an extension of [5] and was published just recently.

- To account for the singularity at $\varepsilon=\mu<0$ we have to modify the initial distribution given before (eqn. (29)) as follows:

$$
\begin{equation*}
\tilde{n}_{\mathrm{i}}(\varepsilon)=n_{\mathrm{i}}(\varepsilon)+\frac{1}{\exp \left(\frac{\varepsilon-\mu}{T}\right)-1} \tag{37}
\end{equation*}
$$

- The chemical potential μ has to be treated as a fixed parameter.
- Considering the limit $\lim _{\varepsilon \rightarrow \mu^{+}} n(\varepsilon, t)=\infty \forall t$ yields $\mathcal{Z}(\mu, t)=0$.
- This results in a modified expression for the Green's function

$$
\begin{equation*}
G(\varepsilon, x, t)=G_{\text {free }}(\varepsilon-\mu, x, t)-G_{\text {free }}(\varepsilon-\mu,-x, t) \tag{38}
\end{equation*}
$$

Results for the RTA for the modified Initial Conditions

Figure: Local thermalization of gluons in the linear RTA for $\mu<0$. [6] Here $T \simeq 513 \mathrm{MeV}$ and the timesteps are $\{0.02,0.08,0.15,0.3,0.6\}$ (in units of fm / c) from top to bottom.

Results for the full Solution of the NBDE

Figure: Local thermalization of gluons from the time-dependent solutions of the NBDE for $\mu<0$. [6] Here $T \simeq 513 \mathrm{MeV}$ and the timesteps are $\left\{6 \cdot 10^{-5}, 6 \cdot 10^{-4}, 6 \cdot 10^{-3}, 0.12,0.36\right\}$ (in units of fm / c) from top to bottom.

Outline

(1) Introduction
(2) Experimental and Theoretical Setup
(3) Thermalization: The Elastic Case
(4) The Importance of Inelastic Collisions
(5) Thermalization via a Nonlinear Boson Diffusion Equation (NBDE)
(6) Conclusion

Conclusion

- The understanding of the thermalization process of gluons is key to find an appropriate description of the complex physical processes during RHICs.
- Using kinetic theory and statistical transport equations we can estimate important quantities such as the equilibration time and understand the importance and differences of elastic and inelastic collisions.
- The role of Bose-Einstein condensation during the thermalization process
- It is possible to find analytic solutions for a Nonlinear Boson Diffusion equation providing further insights into the thermalization process.

References

[1] Jean-Paul Blaizot, Francois Gelis, Jinfeng Liao, Larry McLerran, and Raju Venugopalan.
Bose-Einstein condensation and thermalization of the quark-gluon plasma.
Nucl. Phys. A 873 (2012), pp. 68-80 (cit. on pp. 9, 19).
[2] Jean-Paul Blaizot, Jinfeng Liao, and Yacine Mehtar-Tani.
The subtle interplay of elastic and inelastic collisions in the thermalization of the quark-gluon plasma.
Nucl. Phys. A 956 (2016), pp. 561-564 (cit. on pp. 9, 19).
[3] Alfred H. Mueller.
The Boltzmann equation for gluons at early times after a heavy ion collision.
Phys. Lett. B 475 (2000), pp. 220-224. arXiv: hep-ph/9909388 (cit. on p. 25).
[4] Georg Wolschin.
Aspects of relativistic heavy-ion collisions.
Universe 6.5 (2020), p. 61. arXiv: 2005.00237 [hep-ph].
[5] Georg Wolschin.
Equilibration in finite Bose systems.
Physica A499 (2018), pp. 1-10 (cit. on pp. 21, 26, 29, 30, 31, 32).
[6] Georg Wolschin.
Local Thermalization of Gluons in a Nonlinear Model.
Nonlin. Phenom. Complex Syst. 23.1 (2020), pp. 72-78 (cit. on pp. 32, 33, 34).

[^0]: ${ }^{1}$ Source: https://www.physi.uni-heidelberg.de/~reygers/lectures/2019/qgp/qgp_lecture_ss2019.html (23.06.2020)

[^1]: ${ }^{2}$ Figure taken from B. Hippolyte's slides: http://www.nupecc.org/presentations/hippo_mar17.pdf (23.06.2020)

[^2]: ${ }^{3}$ Figure taken from ALICEinfo: http://aliiceinfo.cern.ch/Public/en/Chapter2/Chap2Experiment-en.html (26.06.2020)

[^3]: ${ }^{2}$ Figure taken from CernCourier: https://cerncourier.com/a/rhics-new-gold-record/ (26.06.2020)
 ${ }^{5}$ Replaces PHENIX (operated until 2016). Preliminary starts operating in 2023.

[^4]: ${ }^{8}$ Source: https://www.jp1.nasa.gov/spaceimages/details.php?id=PIA22561 (23.06.2020)

