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@ Introduction



Relativistic Heavy-lon Collisions
Why do we study high-energy nuclear physics?

= We want to resolve the nuclear structure.

= The Quark-Gluon Plasma (QGP) provides insights into the physical
processes relevant shortly after the Big Bang.

= Particle colliders such as the LHC or the RHIC are built to reach high
energies.

= Collision events offer a fruitful playground for testing QCD and statistical
models (focus of this talk/seminar).

ALICE

Figure: Visualization of a Pb-Pb collision event in the ALICE detector at the LHC.?

1 Source: https://www.physi.uni-heidelberg.de/~reygers/lectures/2019/qgp/qgp_lecture_ss2019.html (23.06.2020)
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The different Phases of RHICs
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Figure: Visualization of the spacetime evolution of the system created in RHICs.?
In this talk, we will have a closer look at the pre-equilibrirum phase (gray area).

2Figure taken from B. Hippolyte's slides: http://www.nupecc.org/presentations/hippo_mari7.pdf (23.06.2020)
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@ Experimental and Theoretical Setup



The ALICE Experiment at the LHC

Figure: Schematic picture of the ALICE detector at the LHC at CERN in Geneva.®
The experiment is specialized on heavy-ion collisions (mostly Pb-Pb) and reaches
center-of-mass energies of /s = 5.02 TeV.

3Figure taken from ALICEinfo: http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2Experiment-en.html (26.06.2020)
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The RHIC at the Brookhaven National Lab

Figure: The RHIC at the Brookhaven National Lab.*
The different experiments (STAR, sPHENIX®) study different aspects of the QGP and

the spin structure of the proton. Center-of-mass energies of /s = 500 GeV are

reached.

2Figure taken from CernCourier: nttps://cerncourier.con/a/rhics-neu-gold-record/ (26.06.2020)

5Replaces PHENIX (operated until 2016). Preliminary starts operating in 2023.
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The Situation immediately after the Collision |
Question: How do the partons freed by a RHIC thermalize?

= The thermalization process provides a starting point for hydrodynamical
evolution in terms of the energy-momentum tensor TH”.

= The dominant parton contribution is dominated by gluon saturation and
occupation numbers ~ 1 /.

= Theoretical model: Color-Glass condensate effective field theory (CQC).

Proton Structure energy

low medium high

Figure: Visualization of the Color-Glass Condensate model.®

7

7 Source: https://www.uu.nl/en/research/institute-for-subatomic-physics/research/color-glass-condensate (29.06.2020)
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The Situation immediately after the Collision |l

= Problem: The initial situation T = diag(e,e,e, —¢), does not serve
as starting point!

= Expectation: Situation changes rapidly on a time scale ~ 1/Qk.

But does the phase-space distribution function relax towards the expected
equilibrium Bose-Einstein distribution?

= Bottom-Up approach: Relaxation as a result of hard elastic and inelastic
collisions.
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The overpopulated Quark-Gluon-Plasma

The following discussion is based on the publications [1] and [2].
4

= Typical gluon energy densities: g = (7 = Q;!) ~ g—

; . — Q3

* Gluons produced per unit volume: ng = n(1 = Q') ~ &=

= This implies that the average energy per gluon is £0/ng ~ Q.

Comparison with the equilibrated system at temperature T leaves a mismatch:

= Assume an initial distribution of the form ng ~553/4 ~ 1/0[5/4.

—_ : —3/4
= In equilibrium we know eqq ~ T4, Neq ~ T3 and Neq * seq/ ~ 1.

Mismatch by a large factor of as_1/4 corresponding to an overpopulation of the
initial distribution. (a5 < 1 in weak coupling asymptotics)
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©® Thermalization: The Elastic Case



Kinetic Evolution dominated by Elastic Collisions |

Elastic collisions conserve particle number — Introduce chemical potential

= Phase space distribution function given by Bose-Einstein distribution:

1
ky=—— 1
feq( ) exp(w“T_”) B 1 ( )
= The energy density and the number density then read
€eq = / Wp 'feq(p) (2)
p
Neq = [ Jfea(P) (3)
P
= Remark: Due to many-body interactions, the gluons can develop an
effective medium dependent mass with
d
mg ~ as/ di ~ QS (cf. Meq ~ O‘sl/QTN O‘bl-/4QS) (4)
p 4Wp
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Kinetic Evolution dominated by Elastic Collisions Il

= The mass m defines an upper bound on the number density:

d3k 1
ax — F ~ T3 m<T 5

o / (27)3 exp (7“"‘}”1") -1 ( ) ()
= This observation yields the statement, that 7y, ~ Qg’/ozf/4 is smaller

than the initial density ng ~ Q3/as.

= Interpretation: When we consider only elastic collisions, the gluons form a
Bose-Einstein condensate (BEC) with distribution function

1
k)=n.-0(k)+ 6
Jea(k) = nc - 6(k) exp (20 — 1 (6)
with
3
Ne ~ 2 (1 - ai“) (note ne - m~ oA T* < &) (7)
Qs
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BEC: A short Reminder (and Teaser)

What is a Bose-Einstein Condensate?

= Bosons are allowed to share the same quantum state.

= At very low temperatures the occupation of the lowest quantum state rises
extremely fast.

= New “state of matter” has extremely interesting properties.

8

Figure: Velocity distribution for a gas of rubidium atoms.
This demonstrates the formation of a BEC in great detail.
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https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA22561

Implications

= In order to reach the expected B-E equilibrium distribution,
particle-number decreasing inelastic processes must occur.

= Two possible equilibrium states: Either a system with a condensate (only
elastic collisions) or a system with fewer particles (affected by inelastic
collisions).

= Dynamical issue depending on many factors, e. g. production/annihilation
rates.
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Kinetic Evolution dominated by Elastic Collisions IlI

= Consider the transport eqn.

atf(k7 X) = Ck[f]a (8)

a simplified version of the Boltzmann eqn. (cf. Pavel’s talk) without drift
terms and the collision integral Ck[f] which reads

of| ~ 50, {2 e S+ o]} 9)

0

coll

in the small-angle approximation.

= The two relevant scales Ag and A are used to compute the thermalization
time defined by the relation Ag/A ~ as.

= Taking moments of the collision integral one finds:

A
tscat - P ~ t (10)

S



Kinetic Evolution dominated by Elastic Collisions 1V

= The integrals are dominated by the largest momenta ~ A. This allows us
to approximate the distribution function f(p) ~ Ag/(asp) up to a cutoff A.

= This leaves us with:

1
ng ~ ESA2AS (11)
Lo
Eg ~ ;SA AS (12)
Ec ™~ N M~ Ne - \/AsA (13)

with the total number density n = ng + n..

= Assuming energy conservation, i.e. A;A3 ~ const. we can compute the
time-dependence of the two scales and therefore the thermalization time.
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Kinetic Evolution dominated by Elastic Collisions V

From the considerations made before, we determine the time evolution of the
scales:

~lw

[/
As ~ Qs (?) (14)
i\ 7
o (4) (15)
to
and we can confirm that the energy carried by the condensate remains
negligible:
1
c to\”
e <0) (16)
Eg t
Now, we have computed all dependencies to find the estimated thermalization
time for Ag ~ agA:
7
1 1\¢
o~ — [ — 17
fu Qs <as> (17)
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O The Importance of Inelastic Collisions



The Importance of Inelastic Processes

= Interesting: The modification of the collision integral on the RHS due to
inleastic effects, leaves the time evolution of the scales invariant!

= Implications on the condensate formation can be obtained from numerical
analysis of the modified transport equation.

= The inelastic contribution to the collision integral gives a sink term.

= Balancing source (elastic) und sink (inelastic) contributions may result in a
condensate surviving during most of the thermalization process.

Further insights can be gained by considering e. g. the effect of longitudinal
expansion (cf. [1]) or studying in more detail the effects of radiation (cf. [2])
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@ Thermalization via a Nonlinear Boson Diffusion Equation (NBDE)



Deriving the Nonlinear Boson Diffusion Equation |
The following derivation follows reference [5].

= The starting point for our investigation is the Boltzmann eqn. (cf. Pavel's
talk).

= For spatial homogeneity of the the boson distribution function f(x, p, t)
and a spherically symmetric momentum dependence the equation for the
single-particle occupation numbers n; = n (€5, t) reads:

8711 2

- = (V) G(e1 +€2,63 +€4)

at 52,2;3:,84 (18)
X (T4 n1)(1+ ng)ngng — (1 + n3)(1 + ng)nyng]

= The collision term can be written in the form of a Master eqn.:

on
L (14 ny Z Wyyiny — Z Wisa(l + ng) (19)

at €4 €4
with
W4ﬁ1 = W41g1 = Z<V2>G(E1+82,53+E4)(1+’n2)n3 (20)

€2,€3



Deriving the Nonlinear Boson Diffusion Equation Il

= In continuum " — [ and introduce density of states g; = g(g;).
= If G acquires a width in a finite system:

1
Wiy=Wyp=W 5(54 +51)7 ‘54 —€1 (21)
———

=T

= Perform a gradient expansion of n4 and g4my around z = 0.

= Introduce transport coefficients via moments of the transition probability:

D= % /d:c Wiey,z) 2° (22)
0
d
v= gfla(ng) (23)
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Deriving the Nonlinear Boson Diffusion Equation IlI

= Nonlinear partial differential equation for n = n(e1, t) = n(e, t):

on 0 oD 02
=——|v-n(l+n)+n—|+

9= e ac | T o=z [P

= Consider the limit of constant transport coefficients:

on 0 0’n

= Thermal Bose-Einstein distribution provides stationary solution:

1
o

(24)

(26)
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Some Remarks

= The present model does not resolve the 2nd-order phase transition.
= The effects of condensation are included (cf. the following figures).
= A treatment resolving the singularity at € = p is presented later.
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Linear Relaxation-Time Approximation (RTA)

= Given some initial distribution n;(e) we find an approximated solution for
the thermalization process via the RTA:

8nrel _ (neq - nrel) (27)
ot Teq

with solution:

mra(e, ) = mi(<) - exp (-jq) + feq(e) (1 ~exp (7:)) (28)

where Toq = 4D/(9v?).

= Motivated by the study of early stages of RHICs, the initial distribution is
chosen such that:

m(e) = Ni-0(1—¢/Q.) - 0(e) (29)

with limiting momentum (s ~ 7'0_1 ~ 1 GeV.
Mueller (2000)
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Results for the RTA

3.0

Figure: Relaxation of a finite Bose system towards the equilibrium. [5]
Here T= —D/v~ 0.4 GeV, Teq = 4D/(9v?) = 0.33 - 10~ ?3s ~ 1 fm/c and the
timesteps are {0.1,0.25,0.5, 00} (in units of 1072%s) from top to bottom.
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Exact Solution of the Nonlinear Boson Diffusion Equation

= To solve eqn. (24) analytically, we perform the following nonlinear

transformation:

DOoln Z(e, t)
f)= —=—2~
n(€7 ) v 86
which reduces our problem to a linear diffusion eqn. for Z(e, t):
0Z 0Z . D62Z
o g
ot Oe Oe?

= Solutions to this equation can be written as:

_ ifj_oooo E;tzF(x) ! Gfree(f‘: — Z, t) dzx B 1
2 fj:: F(Z') : Gfree(5 — T, t) dx 2

n(e, t)

(32)
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Additional Definitions

= The quantities appearing in the solution are the free Green's function

(e - x)r‘} 7

Grree(€ — 2, 1) = exp {— 1D

and the implementation of the initial conditions

Flz) = exp [_;D(UH QU/OIni(y)dy)] .

= They define the free partition function via:

oo

Z(e, t) = a(t) - / Giree(e, 7, 1) - F(z) dz

o0
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Results for the Solution of the NBDE |

3.0

2.5/
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1.5¢

n(p.t)

1.0F >
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°%0 o

Figure: Equilibration of a finite Bose system from the NBDE. [5]
The integration range is restricted to z > 0. Here T~ 0.4 GeV, 7Teq = 0.33- 10?3
and the timesteps are {0.005,0.05,0.15,0.5} (in units of 1072%s) from top to bottom.
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Results for the Solution of the NBDE Il
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Figure: Equilibration of a finite Bose system from the NBDE. [5]

The integration range is extended to —oco < z < co. Here T~ 0.4 GeV,

Teq = 0.33 - 107 *s and the timesteps are {0.005,0.05,0.15,0.5} (in units of 107235s)
from top to bottom.
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Results for the Solution of the NBDE IlI
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Figure: Equilibration of a finite Bose system from the NBDE for Gaussian initial
conditions ni(g) = N; ( 27r0)_1 exp ((e — ())/(20%)) with o = 0.04 GeV. [5]

Here T~ 0.4 GeV, 7Teq = 0.33 - 10™%s and the timesteps are {0.002,0.006,0.02,0.2}
(in units of 1072%5) from top to bottom.
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Treating the Singularity

This part is based on the publication [6] which provides an extension of [5] and
was published just recently.

= To account for the singularity at ¢ = . < 0 we have to modify the initial
distribution given before (eqn. (29)) as follows:

1

e—p

A

(37)

= The chemical potential u has to be treated as a fixed parameter.
= Considering the limit lim._, ,+ n(e,t) = oo Vt yields Z(y,t) = 0.

= This results in a modified expression for the Green's function

G(57 Z, t) = Gfree(e - M, T, t) - Gfree(5 - M, —T, t) (38)
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Results for the RTA for the modified Initial Conditions
1.4
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Figure: Local thermalization of gluons in the linear RTA for 1 < 0. [6]

Here T'~ 513 MeV and the timesteps are {0.02,0.08,0.15,0.3,0.6} (in units of
fm/c) from top to bottom.
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Results for the full Solution of the NBDE
2.0
1

-02 00 02 04 06 08 10 12 14

Figure: Local thermalization of gluons from the time-dependent solutions of the
NBDE for i < 0. [6]

Here 7'~ 513 MeV and the timesteps are {6-107°,6-107*,6-107%,0.12,0.36} (in
units of fm/c) from top to bottom.
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Conclusion

= The understanding of the thermalization process of gluons is key to find an
appropriate description of the complex physical processes during RHICs.

= Using kinetic theory and statistical transport equations we can estimate
important quantities such as the equilibration time and understand the
importance and differences of elastic and inelastic collisions.

= The role of Bose-Einstein condensation during the thermalization process

= |t is possible to find analytic solutions for a Nonlinear Boson Diffusion
equation providing further insights into the thermalization process.
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