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Relativistic Heavy-Ion Collisions
Why do we study high-energy nuclear physics?

• We want to resolve the nuclear structure.
• The Quark-Gluon Plasma (QGP) provides insights into the physical

processes relevant shortly after the Big Bang.
• Particle colliders such as the LHC or the RHIC are built to reach high

energies.
• Collision events offer a fruitful playground for testing QCD and statistical

models (focus of this talk/seminar).

Figure: Visualization of a Pb-Pb collision event in the ALICE detector at the LHC.1

1Source: https://www.physi.uni-heidelberg.de/~reygers/lectures/2019/qgp/qgp_lecture_ss2019.html (23.06.2020) 2 / 36

https://www.physi.uni-heidelberg.de/~reygers/lectures/2019/qgp/qgp_lecture_ss2019.html


The different Phases of RHICs

Figure: Visualization of the spacetime evolution of the system created in RHICs.2
In this talk, we will have a closer look at the pre-equilibrirum phase (gray area).

2Figure taken from B. Hippolyte’s slides: http://www.nupecc.org/presentations/hippo_mar17.pdf (23.06.2020)
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The ALICE Experiment at the LHC

Figure: Schematic picture of the ALICE detector at the LHC at CERN in Geneva.3
The experiment is specialized on heavy-ion collisions (mostly Pb-Pb) and reaches
center-of-mass energies of √s = 5.02 TeV.

3Figure taken from ALICEinfo: http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2Experiment-en.html (26.06.2020)
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The RHIC at the Brookhaven National Lab

Figure: The RHIC at the Brookhaven National Lab.4
The different experiments (STAR, sPHENIX5) study different aspects of the QGP and
the spin structure of the proton. Center-of-mass energies of √s = 500 GeV are
reached.

2Figure taken from CernCourier: https://cerncourier.com/a/rhics-new-gold-record/ (26.06.2020)
5Replaces PHENIX (operated until 2016). Preliminary starts operating in 2023.

6 / 36

https://cerncourier.com/a/rhics-new-gold-record/


The Situation immediately after the Collision I
Question: How do the partons freed by a RHIC thermalize?

• The thermalization process provides a starting point for hydrodynamical
evolution in terms of the energy-momentum tensor Tµν .

• The dominant parton contribution is dominated by gluon saturation and
occupation numbers ∼ 1/αs.

• Theoretical model: Color-Glass condensate effective field theory (CQC).

Figure: Visualization of the Color-Glass Condensate model.6

7
7Source: https://www.uu.nl/en/research/institute-for-subatomic-physics/research/color-glass-condensate (29.06.2020)
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The Situation immediately after the Collision II

• Problem: The initial situation T µν
Glasma = diag(ε, ε, ε,−ε), does not serve

as starting point!
• Expectation: Situation changes rapidly on a time scale ∼ 1/Qs.

But does the phase-space distribution function relax towards the expected
equilibrium Bose-Einstein distribution?

• Bottom-Up approach: Relaxation as a result of hard elastic and inelastic
collisions.

8 / 36



The overpopulated Quark-Gluon-Plasma

The following discussion is based on the publications [1] and [2].

• Typical gluon energy densities: ε0 = ε(τ = Q−1
s ) ∼ Q4

s
αs

• Gluons produced per unit volume: n0 = n(τ = Q−1
s ) ∼ Q3

s
αs

• This implies that the average energy per gluon is ε0/n0 ∼ Qs.

Comparison with the equilibrated system at temperature T leaves a mismatch:

• Assume an initial distribution of the form n0 · ε−3/4
0 ∼ 1/α

1/4
s .

• In equilibrium we know εeq ∼ T 4, neq ∼ T 3 and neq · ε−3/4
eq ∼ 1.

Mismatch by a large factor of α−1/4
s corresponding to an overpopulation of the

initial distribution. (αs ≪ 1 in weak coupling asymptotics)
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Kinetic Evolution dominated by Elastic Collisions I
Elastic collisions conserve particle number −→ Introduce chemical potential µ

• Phase space distribution function given by Bose-Einstein distribution:

feq(k) =
1

exp
(
ωk−µ

T
)
− 1

(1)

• The energy density and the number density then read

εeq =

∫
p
ωp · feq(p) (2)

neq =

∫
p

feq(p) (3)

• Remark: Due to many-body interactions, the gluons can develop an
effective medium dependent mass with

m2
0 ∼ αs

∫
p

df0
dωp

∼ Q2
s (cf. meq ∼ α1/2

s T ∼ α1/4
s Qs) (4)
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Kinetic Evolution dominated by Elastic Collisions II

• The mass m defines an upper bound on the number density:

nmax =

∫ d3k
(2π)3

1

exp
(
ωk−m0

T
)
− 1

∼ T 3 (m ≪ T ) (5)

• This observation yields the statement, that nmax ∼ Q3
s/α

3/4
s is smaller

than the initial density n0 ∼ Q3
s/αs.

• Interpretation: When we consider only elastic collisions, the gluons form a
Bose-Einstein condensate (BEC) with distribution function

feq(k) = nc · δ(k) +
1

exp
(
ωk−m0

T
)
− 1

(6)

with
nc ∼ Q3

s
αs

(
1− α1/4

s

)
(note nc · m ∼ α1/4

s T 4 ≪ ε0) (7)
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BEC: A short Reminder (and Teaser)
What is a Bose-Einstein Condensate?

• Bosons are allowed to share the same quantum state.
• At very low temperatures the occupation of the lowest quantum state rises

extremely fast.
• New “state of matter” has extremely interesting properties.

Figure: Velocity distribution for a gas of rubidium atoms.8
This demonstrates the formation of a BEC in great detail.

8Source: https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA22561 (23.06.2020) 13 / 36

https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA22561


Implications

• In order to reach the expected B-E equilibrium distribution,
particle-number decreasing inelastic processes must occur.

• Two possible equilibrium states: Either a system with a condensate (only
elastic collisions) or a system with fewer particles (affected by inelastic
collisions).

• Dynamical issue depending on many factors, e. g. production/annihilation
rates.

14 / 36



Kinetic Evolution dominated by Elastic Collisions III
• Consider the transport eqn.

∂t f(k,X) = Ck[ f ], (8)

a simplified version of the Boltzmann eqn. (cf. Pavel’s talk) without drift
terms and the collision integral Ck[ f ] which reads

∂t f
∣∣∣∣
coll

∼ ΛsΛ

p2
∂p

{
p2

[
∂f
∂p +

αs
Λs

f(p)(1 + f(p))
]}

(9)

in the small-angle approximation.
• The two relevant scales Λs and Λ are used to compute the thermalization

time defined by the relation Λs/Λ ∼ αs.
• Taking moments of the collision integral one finds:

tscat =
Λ

Λ2
s
∼ t (10)
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Kinetic Evolution dominated by Elastic Collisions IV

• The integrals are dominated by the largest momenta ∼ Λ. This allows us
to approximate the distribution function f(p) ∼ Λs/(αsp) up to a cutoff Λ.

• This leaves us with:

ng ∼ 1

αs
Λ2Λs (11)

εg ∼ 1

αs
Λ3Λs (12)

εc ∼ nc · m ∼ nc ·
√
ΛsΛ (13)

with the total number density n = ng + nc.
• Assuming energy conservation, i. e. ΛsΛ

3 ∼ const. we can compute the
time-dependence of the two scales and therefore the thermalization time.
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Kinetic Evolution dominated by Elastic Collisions V
From the considerations made before, we determine the time evolution of the
scales:

Λs ∼ Qs

(
t0
t

) 3
7

(14)

Λ ∼ Qs

(
t
t0

) 1
7

(15)

and we can confirm that the energy carried by the condensate remains
negligible:

εc
εg

∼
(

t0
t

) 1
7

(16)

Now, we have computed all dependencies to find the estimated thermalization
time for Λs ∼ αsΛ:

tth ∼ 1

Qs

(
1

αs

) 7
4

(17)
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The Importance of Inelastic Processes

• Interesting: The modification of the collision integral on the RHS due to
inleastic effects, leaves the time evolution of the scales invariant!

• Implications on the condensate formation can be obtained from numerical
analysis of the modified transport equation.

• The inelastic contribution to the collision integral gives a sink term.
• Balancing source (elastic) und sink (inelastic) contributions may result in a

condensate surviving during most of the thermalization process.

Further insights can be gained by considering e. g. the effect of longitudinal
expansion (cf. [1]) or studying in more detail the effects of radiation (cf. [2])

19 / 36
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Deriving the Nonlinear Boson Diffusion Equation I
The following derivation follows reference [5].

• The starting point for our investigation is the Boltzmann eqn. (cf. Pavel’s
talk).

• For spatial homogeneity of the the boson distribution function f(x,p, t)
and a spherically symmetric momentum dependence the equation for the
single-particle occupation numbers nj ≡ nth(εj, t) reads:

∂n1

∂t =
∑

ε2,ε3,ε4

⟨V 2⟩G(ε1 + ε2, ε3 + ε4)

× [(1 + n1)(1 + n2)n3n4 − (1 + n3)(1 + n4)n1n2]

(18)

• The collision term can be written in the form of a Master eqn.:
∂n1

∂t
= (1 + n1)

∑
ε4

W4→1n4 −
∑
ε4

W1→4(1 + n4) (19)

with
W4→1 = W41g1 =

∑
ε2,ε3

⟨V 2⟩G(ε1 + ε2, ε3 + ε4)(1 + n2)n3 (20)
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Deriving the Nonlinear Boson Diffusion Equation II
• In continuum

∑
→

∫
and introduce density of states gj ≡ g(εj).

• If G acquires a width in a finite system:

W14 = W41 = W

1

2
(ε4 + ε1), |ε4 − ε1|︸ ︷︷ ︸

=:x

 (21)

• Perform a gradient expansion of n4 and g4n4 around x ≈ 0.
• Introduce transport coefficients via moments of the transition probability:

D =
g1
2

∞∫
0

dx W(ε1, x) x2 (22)

v = g−1
1

d
dε1

(g1D) (23)

22 / 36



Deriving the Nonlinear Boson Diffusion Equation III

• Nonlinear partial differential equation for n ≡ n(ε1, t) = n(ε, t):

∂n
∂t = − ∂

∂ε

[
v · n(1 + n) + n∂D

∂ε

]
+

∂2

∂ε2
[Dn] (24)

• Consider the limit of constant transport coefficients:

∂n
∂t = −v ∂

∂ε
[n(1 + n)] + D∂2n

∂ε2
(25)

• Thermal Bose-Einstein distribution provides stationary solution:

neq(ε) =
1

exp
(
ε−µ

T
)
− 1

(26)
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Some Remarks

• The present model does not resolve the 2nd-order phase transition.
• The effects of condensation are included (cf. the following figures).
• A treatment resolving the singularity at ϵ = µ is presented later.

24 / 36



Linear Relaxation-Time Approximation (RTA)
• Given some initial distribution ni(ε) we find an approximated solution for

the thermalization process via the RTA:

∂nrel
∂t =

(neq − nrel)

τeq
(27)

with solution:

nrel(ε, t) = ni(ε) · exp
(
− t
τeq

)
+ neq(ε)

(
1− exp

(
− t
τeq

))
(28)

where τeq = 4D/(9v2).
• Motivated by the study of early stages of RHICs, the initial distribution is

chosen such that:

ni(ε) = Ni · θ (1− ε/Qs) · θ(ε) (29)

with limiting momentum Qs ∼ τ−1
0 ≈ 1 GeV.

Mueller (2000)
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Results for the RTA
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Figure 1: (color online) Relaxation of a finite Bose system with initial condition ni(ǫ) from

Eq. (10) towards the thermal equilibrium distribution neq(|p|) = neq(p) = neq(ǫ) according

to the linear Eq. (9). The transport coefficients are D = 0.21 × 1023 GeV2 s−1, v =

−0.53 × 1023GeV s−1, the temperature is T = −D/v ≃ 0.4GeV. Times are (in units

of 10−23 s, top to bottom at p < Qs): 0.1, 0.25, 0.5 and ∞. The relaxation time is

τeq = 4D/(9v2) = 0.33× 10−23 s ≃ 1 fm/c.

conserves particle number when integrated over ǫ ≥ 0 and hence, cannot

lead to the formation of a condensate, unless there exists one in the initial

conditions through an additional δ(0)-function. Since Eq. (7) emerges from a

gradient expansion it allows the system to move into the condensate without

an additional δ(0)-function in the initial conditions, and hence, the thermal

solution for ǫ ≥ 0 alone does not conserve particle number.

6

Figure: Relaxation of a finite Bose system towards the equilibrium. [5]
Here T = −D/v ≃ 0.4 GeV, τeq = 4D/(9v2) = 0.33 · 10−23s ≃ 1 fm/c and the
timesteps are {0.1, 0.25, 0.5,∞} (in units of 10−23s) from top to bottom.
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Exact Solution of the Nonlinear Boson Diffusion Equation

• To solve eqn. (24) analytically, we perform the following nonlinear
transformation:

n(ε, t) = −D
v
∂ lnZ(ε, t)

∂ε
(30)

which reduces our problem to a linear diffusion eqn. for Z(ε, t):

∂Z
∂t = −v∂Z

∂ε
+ D∂2Z

∂ε2
(31)

• Solutions to this equation can be written as:

n(ε, t) = 1

2v

∫ +∞
−∞

ε−x
t F(x) · Gfree(ε− x, t) dx∫ +∞

−∞ F(x) · Gfree(ε− x, t) dx
− 1

2
(32)
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Additional Definitions

• The quantities appearing in the solution are the free Green’s function

Gfree(ε− x, t) = exp
[
− (ε− x)2

4Dt

]
, (33)

(34)

and the implementation of the initial conditions

F(x) = exp
[
− 1

2D (vx + 2v
∫ x

0

ni(y)dy)
]
. (35)

• They define the free partition function via:

Z(ε, t) = a(t) ·
∫ ∞

∞
Gfree(ε, x, t) · F(x) dx (36)

28 / 36



Results for the Solution of the NBDE I
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Figure 2: (color online) Equilibration of a finite Bose system based on the nonlinear

evolution according to Eq. (7), but with the x-integration in Eq. (17) restricted to x ≥ 0.

The transport coefficients D, v with the temperature T = 0.4GeV are as in the linear

case in Fig. 1. The initial distribution is ni, box. The solutions n (ǫ, t) of the evolution

equation are shown at four values of time t in units of 10−23 s: 0.005 (solid), 0.05 (dashed),

0.15 (dotted), 0.5 (dash-dotted). The relaxation time is τeq = 0.33 × 10−23 s. In the

infrared, the occupation at very short times rises above the thermal limit but is depleted

with time and redistributed into the BEC ground state, with the thermal occupation

n (0, t) < 1 for times t > τeq.

7

Figure: Equilibration of a finite Bose system from the NBDE. [5]
The integration range is restricted to x ≥ 0. Here T ≃ 0.4 GeV, τeq = 0.33 · 10−23s
and the timesteps are {0.005, 0.05, 0.15, 0.5} (in units of 10−23s) from top to bottom.
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Results for the Solution of the NBDE II
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Figure 3: (color online) Equilibration of a finite Bose system based on the nonlinear

evolution according to Eq. (7) with the x-integration in Eq. (17) extending over the full

space −∞ ≤ x ≤ ∞. The transport coefficients D, v with the temperature T = 0.4GeV

are as in the linear case in Fig. 1. The initial distribution is ni, box. The solutions

n (ǫ, t) of the evolution equation are shown at four values of time t in units of 10−23 s:

0.005 (solid), 0.05 (dashed), 0.15 (dotted), 0.5 (dash-dotted). The equilibration time is

τeq = 0.33×10−23 s. In the infrared, the occupation is depleted with time and redistributed

into the BEC ground state. In the ultraviolet, new a thermal tail develops within τeq.

8

Figure: Equilibration of a finite Bose system from the NBDE. [5]
The integration range is extended to −∞ ≤ x ≤ ∞. Here T ≃ 0.4 GeV,
τeq = 0.33 · 10−23s and the timesteps are {0.005, 0.05, 0.15, 0.5} (in units of 10−23s)
from top to bottom.
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Results for the Solution of the NBDE III
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Figure 7: (color online) Equilibration of a finite Bose system based on the nonlinear

evolution according to Eq. (7) for gaussian initial conditions (peaked curve, dotted) with

standard deviation σ = 0.04 GeV. The transport coefficients D, v, the temperature T =

0.4GeV and the equilibration time τeq = 0.33 × 10−23 s are as in Fig. 3. The solutions

n (ǫ, t) of the evolution equation are shown at four values of time t in units of 10−23 s:

0.002 (dashed), 0.006 (solid), 0.06 (dashed), 0.2 (dotted). In the infrared, the occupation

is redistributed into the BEC ground state. In the UV, a thermal tail develops.

23

Figure: Equilibration of a finite Bose system from the NBDE for Gaussian initial
conditions ni(ε) = Ni

(√
2πσ

)−1 exp
(
(ε− ⟨ε⟩)/(2σ2)

)
with σ = 0.04 GeV. [5]

Here T ≃ 0.4 GeV, τeq = 0.33 · 10−23s and the timesteps are {0.002, 0.006, 0.02, 0.2}
(in units of 10−23s) from top to bottom.
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Treating the Singularity

This part is based on the publication [6] which provides an extension of [5] and
was published just recently.

• To account for the singularity at ε = µ < 0 we have to modify the initial
distribution given before (eqn. (29)) as follows:

ñi(ε) = ni(ε) +
1

exp
(
ε−µ

T
)
− 1

(37)

• The chemical potential µ has to be treated as a fixed parameter.
• Considering the limit limε→µ+ n(ε, t) = ∞ ∀t yields Z(µ, t) = 0.
• This results in a modified expression for the Green’s function

G(ε, x, t) = Gfree(ε− µ, x, t)− Gfree(ε− µ,−x, t) (38)
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Results for the RTA for the modified Initial Conditions 4
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Figure 2. (color online) Local thermalization of gluons in the
linear relaxation-time approximation (RTA) for µ < 0. Start-
ing from schematic initial conditions Eq. (12) in the cold sys-
tem at t = 0 (box distribution with cut at ε = Qs = 1 GeV),
a Bose-Einstein equilibrium distribution with temperature
T ' 513 MeV (solid curve) is approached. Time-dependent
single-particle occupation-number distribution functions are
shown at t = 0.02, 0.08, 0.15, 0.3 and 0.6 fm/c (decreasing
dash lenghts). Thermalization occurs much slower than in
the nonlinear case, see Fig. 3.

gluon distribution functions, which are shown in Fig. 3
at t = 6 × 10−5, 6 × 10−4, 6 × 10−3, 4 × 10−2, 0.12 and
0.36 fm/c, with decreasing dash lenghts. Thermalization
occurs much faster than in the linear RTA case.

The steep cutoff in the UV at ε = Qs is smeared out
at short times – this was the case already in the free
solution without boundary conditions [4]. The diffusion
coefficient is D = 1.17 GeV2c/fm, the drift coefficient
v = −2.28 GeVc/fm. Correspondingly, the equilibrium
temperature in this model calculation is T = −D/v '
513 MeV = 0.513 GeV, as expected for the initial central
temperature in a Pb-Pb collision at the LHC energy of√
sNN = 5 TeV [3].
The bosonic local equilibration time in this calculation

is the same as the one taken for the linear RTA result
in Fig. 2, τeq = 4D/(9v2) ' 0.1 fm/c. This is the time
constant for reaching thermal equilibrium in the UV tail
of the distribution function. It may take somewhat longer
to attain equilibrium in the IR region, as is the case in the
present model calculation. For given local temperature
T and equilibration time τeq, the transport coefficients in
the NBDE are obtained as

D =
4

9 τeq
T 2 , v = − 4

9 τeq
T , (18)

which for τeq = 0.1 fm/c corresponds to the values chosen
above. The value of the gluonic chemical potential µ =
−0.36 GeV has been adapted such that for T = 513 MeV
the initial condition at ε = 0 becomes ni(0) = 1.

From Fig. 3 it is obvious that the inital nonequilibrium
distribution ni(ε) gradually approaches the local thermal

equilibrium neq(ε) at T = 513 MeV through the solutions
of the NBDE. As discussed already in Ref. [4], these solu-
tions are expected to provide a more realistic description
of the thermalization than the relaxation time approxi-
mation (RTA), which enforces a linear approach from ni
to neq, and cannot smoothen the initial discontinuities at
the UV cutoff.

The assumption of a constant negative chemical poten-
tial µ < 0 used in this work is, of course, an idealization
that facilitates analytical solutions of the nonlinear prob-
lem. In general, the chemical potential is defined through
the conservation of particle number, as is strictly fulfilled
e.g. for atomic Bose gases. Driven by particle-number
conservation, cold bosonic atoms can move into the con-
densed phase, thus diminishing the number of particles
in the thermal cloud. The chemical potential in the equi-
librium solution of the NBDE then becomes time depen-
dent, as has been discussed in Ref. [6], albeit without a
full quantum treatment of the condensed phase. It would
become zero only in the limit of an inifinite number of
particles in the condensed phase. Instead, it approaches
a small but finite negative value for a finite number of
particles.

In case of gluons in a relativistic heavy-ion collision,
however, particle-number conservation is definitely not
fulfilled, gluons can be created and destroyed. It is there-
fore unlikely that a condensed phase is actually formed,
as had been proposed in model investigations where only
soft elastic, number-conserving gluon collisions were con-
sidered [10]. Gluon condensate formation in relativistic
collisions is essentially prevented by number-changing in-
elastic processes that correspond to splitting and merging
of gluons, although a transient condensate formation is
still being debated [12].

Hence, since inelastic collisions cannot be neglected,
the gluon equilibrium distribution is expected to have
a nearly vanishing, but still slightly negative chemi-
cal potential, which should be approached by the time-
dependent solutions of the NBDE. It would therefore be
of interest to repeat the present calculation for a time-
dependent chemical potential, with µ(t)→ 0 for t→∞,
as was done in Ref. [6] for the case of cold atoms. This re-
quires, however, numerical work that goes substantially
beyond the analytic approach in the present note. As
a first step, one can consider to repeat the present an-
alytic calculation for the limiting case µ = 0, replacing
the initial condition of Eq. (12) with a box distribution
plus a delta-function at ε = µ = 0, and boundary con-
ditions at the singularity. For this special limiting case
with neq(ε = µ → 0) = ∞, it should still be possible to
obtain closed-form solutions of the NBDE.

V. CONCLUSION

Analytic solutions of the nonlinear boson diffusion
equation have been explored for the thermalization of
gluons in relativistic hadronic collisions. The solutions

Figure: Local thermalization of gluons in the linear RTA for µ < 0. [6]
Here T ≃ 513 MeV and the timesteps are {0.02, 0.08, 0.15, 0.3, 0.6} (in units of
fm/c) from top to bottom.
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Results for the full Solution of the NBDE
5
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Figure 3. (color online) Local thermalization of gluons as represented by time-dependent solutions of the nonlinear boson
diffusion equation (NBDE) for µ < 0. Starting from schematic initial conditions Eq. (12) in the cold system at t = 0 (box
distribution with cut at ε = Qs = 1 GeV), a Bose-Einstein equilibrium distribution with temperature T = 513 MeV (lower solid
curve) is approached. Time-dependent single-particle occupation-number distribution functions are shown at t = 6× 10−5, 6×
10−4, 6× 10−3, 4× 10−2, 0.12 and 0.36 fm/c (decreasing dash lenghts).

take account of a singularity in the initial conditions
at ε = µ < 0 with fixed chemical potential µ, and the
boundary conditions at the singularity.

Different from earlier results that were calculated with
the free Green’s function and converged to the Bose-
Einstein equilibrium solution only in the UV, these so-
lutions converge towards B-E also in the IR and hence,
properly describe thermalization in a finite gluon system.

The bounded solutions of the NBDE are, in partic-
ular, tailored to local thermalization processes that oc-
cur in relativistic heavy-ion collisions at energies reached
at the Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider. In the present example, they
are applied to the local equilibration of gluons in central
Pb-Pb collisions at a center-of-mass energy of 5 TeV per
nucleon pair, leading to rapid thermalization with a local
temperature of T ' 513 MeV.

Since the thermalization occurs very fast – before
anisotropic expansion fully sets in –, the analytic solution

of the problem in 1+1 dimensions appears permissible.
The hot system will subsequently expand anisotropically
and cool rapidly, as is often modeled successfully by rela-
tivistic hydrodynamics [1], until hadronization is reached
at T ' 160 MeV.

In conclusion, my schematic model based on the NBDE
accounts for the fast nonlinear approach to local thermal
equilibrium from an initial nonequilibrium gluon distri-
bution at the start of the collision. It avoids the disconti-
nuities that are inherent in the well-established relaxation
time approximation, which enforces a linear approach to
equilibrium.

Further refinements of the model such as time-
dependent transport coefficients are conceivable, but are
unlikely to allow for analytic solutions. A microscopic
calculation of the transport coefficients with an investi-
gation of their dependencies on energy and time would be
very valuable. Extensions of the NBDE itself to higher
dimensions in order to account for possible anisotropies
should also be investigated.

Figure: Local thermalization of gluons from the time-dependent solutions of the
NBDE for µ < 0. [6]
Here T ≃ 513 MeV and the timesteps are

{
6 · 10−5, 6 · 10−4, 6 · 10−3, 0.12, 0.36

}
(in

units of fm/c) from top to bottom.
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Conclusion

• The understanding of the thermalization process of gluons is key to find an
appropriate description of the complex physical processes during RHICs.

• Using kinetic theory and statistical transport equations we can estimate
important quantities such as the equilibration time and understand the
importance and differences of elastic and inelastic collisions.

• The role of Bose-Einstein condensation during the thermalization process
• It is possible to find analytic solutions for a Nonlinear Boson Diffusion

equation providing further insights into the thermalization process.
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