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The structure of the large scale structure
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Recap: The observed power spectrum
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Recap

theoretical power spectrum P(k)today = Ak™T?(k; cosmology)
2

bias Pg =b })m

RSD 5g,s = Sg,r(l + ,8.“2)

(almost) final form Py(k,u,z) = b?G?*Pp(k,z = 0)(1 + Bu?)2e Kk wop
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correlation function
across/along LOS
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Alcock-Paczynski effect
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Final form linear spectrum P, (k, p1, 2) = b*G? Py, (k. ) (1 + B



Recap

Pnp = PLIN + Py

what we expect from
non-linear corrections 2 |
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Roadmap for today

 Simplified non-linearity
 Zel'dovich approximation

* Spherical collapse

* Abundance of virialized halos



Zel’dovich approximation

Water surface Millennium simulation
(Photo by Chris Lawton on Unsplash)

caustics form where many trajectories (of light rays or particles) converge


https://unsplash.com/@chrislawton?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/water?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Zel’dovich approximation

Lagrangian approach
Main idea: follow the trajectories of particles until they develop
a singularity (caustic)

Minsk 8 March 1914 —

position of a particle at instant t x(t) = x0 + g(t)s(xo) Moscow 2 December 1987
initial position of a particle Ansatz: displacement is separable

into time and space

this simply means particle
move towards concentrations
along straight lines!




Zel’dovich approximation

Main idea: follow the trajectories of particles until they develop
a singularity (caustic)

x(t) = xo + g(t)s(xo)

conservation of particle number p(z,t)d>x = po(t)d>zg
ox |
mapping through the Jacobian p(z,t) = po(t) | =—
(9X0
: : 0s;
diagonal deformation tensor 7
Oxg vW\:alues
ox Js(x) /
—|=I t = |d;; — g(t)di;| = (1 — gA1)(1 — gA2)(1 — gA:
| = |+ 00752 = o = g(0)ds | = (1= g1 = o)1~ g2
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Zel’dovich approximation

po(t)
p(:B, t) — (1 > g>\1)(1 — g/\g)(l - g)\s)

expand for small g1 p(z,t) = po(t)(1 + g(t) (A1 + A2+ A3) = po(t)(1 + g(t)Tr(d;ij))
therefor.. s(t) = 2L () 25— —g(0)Vas(ao)

..this should reproduce the linear growth: d(t) = G(t)do,



Zel’dovich approximation

p(z,t) — po(t) Js;
— = —q(t = —glt)V,
3(t) = B 9(0) g = ~9(1)V5(20)
5(t) = G(t)do,
then... g(t) =G(t)
..and —Vzo8(z0) = do
Poisson eq. V20 = 47p,,0 = §a2H2§2 G(t)d mm) o= : VU
s 2 i 3a?H?*Q,,G
we find that the initial displacement s s(zo) = 2 \VAV/

is the gradient of the potential - 3a2H2Q,. G
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Zel’dovich approximation

x(t) = xo + g(t)s(xo) gt) =G(t)

s(zo) = —

2

SaQHQQva\IJ

A

In this way, one can run a very cheap /N-body simulation: first, take the linear power spectrum at some early
epoch for the model you want to simulate; second, convert the power spectrum for ¢ into/a power sectrum for ¥
using Poisson equation in Fourier space; third, create a real space realization of this spectrum by overimposing
the spectrum and random phases; fourth, put particles on a
regular grid; fifth, evaluate the displacement field by evaluating at every grid point (4.1.12); finally, move the

sinusoidal oscillations with amplitude given

particles out of their initial grid point by using

4.1.1).

po(?)

: : .
until you reach a singularity! p(z,t) = :

1— %Al)(l — gA2)(1 — gA3)

growing!

—
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Pancakes and filaments

_ po(t)
pla ) = (1 —gA1)(1—gA2)(1 — gA3)

5 A 0 0
;R B, = (0 Az 0)
Oz, 0 0 A,

take the largest eigenvalue:
particles will move preferentially in the direction of
the associated eigenvector
the caustic will therefore form on a plane orthogonal to this direction
(pancakes)

What happens next?
We can expect particle stick to this plane,
then move to the edges (filaments) and
then to the vertices (clusters)
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Pancakes and filaments

particles form
pancakes, filaments and
finally clusters

o=0.5

However
pancakes form around z=30 in N-body simulations: so we can use the ZA
only until then
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ZA describes the initial stages (pancakes)

Spherical collapse the final one (halo formation)
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Spherical collapse

Po
Top-hat distribution
P > Po
. 2R GM(R) 4
Equation for the shell o i e —§7erR,

Question: if initially the shell expands, what will happen?
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Constant mass in every shell

Density of a pressureless
component

Evolution of density contrast

Spherical collapse

2R GM(R) 4
eyl _ S
a2 72 - G

M(R) = 4wpR3/3

po = (3M(Rp)/47)(Roa(t)) >
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Spherical collapse

d2R  GM(R 4 P a(t)Ro\ "’
dt? R? 3 PO '
Replace R with é: . e
: : ; 1 ol - J— N -
non-linear equation 4 B Mot Y oNRGEY @ B —0..5°
APh +(+H) T I i
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Spherical collapse

2R GM(R) 4
a2 - R i

Cycloid equation

(dR)2 _2GM

dt R 2

Multiply by 2dR/dt

Expansion and collapse
R = GAI(]. — COS T)/C B H reos(t))e (rssapsi

. R(t) .
Parametric solution

t = GM(r —sint)/C3/?



Spherical collapse

R=GM(1 —cosT)/C

t = GM(7 —sinT)/C3/?

g =il (“(f)RO)B _q

R

In EdS (Q,, = 1)

We obtain

Linear part

a(t) = ao(t/to)?/®

9 (1T —sinT)?

2(1—cosT)3

3[3
5, = ==
& 5[4

._]_,

2/3
(T — sin'r)] :
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Spherical collapse
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F. Pace, Jean-Claude Waizmann, M. Bartelmann 2010

0 = Ocon = (3/5)(37/2)%/3 ~ 1.686,



https://www.semanticscholar.org/author/F.-Pace/23303542
https://www.semanticscholar.org/author/Jean-Claude-Waizmann/46214207
https://www.semanticscholar.org/author/M.-Bartelmann/7274411
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Virialization
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However, we assumed exact spherical symmetry and
M(R)=const in the shell, valid up to shell crossing

In practice, the collapse will start deviating from spherical symmetry

We can find that at
Ry = Rt /2.
The system virializes

U =l Ky il 2

which means all components of velocity should be equal:
no longer radial symmetry!
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Quiz time

Do we really observe pancakes and filaments?

What happens if the initial distribution is non-Gaussian?

What is the density contrast at virialization?

We assumed that the shell mass is constant. Is this realistic?
How can the spherical collapse model be generalized/improved?



Spherical collapse: why is it useful?

Because it tells us at which value of the linear evolution o _—
. . . 5L — 5(:01' ~ 1686w
objects becomes strongly non-linear, i.e. collapse and form structures

That is, we can use linear theory to predict a non-linear event!

Standard normal distribution

0.4

We discussed how & evolves in time

and what is its variance £(r) or P(k)...
But what is its full distribution?

0.3

0.2

Probability density

Fraction of

collapsed objects
unphysical

-3 -2 -1 0 1 2 3

0.1

0.0

(broadening with time)
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Spherical collapse: why is it useful?

Standard normal distribution

0.4

0.3

0.2

Probability density

Fraction of
collapsed objects

0.1

o unphysical
We can therefore . )
. . . @ Variance of the counts in cells of mass M
estimate at any given time .
what fraction of cells of size R ‘ U%I (z)
(containing mass M) J :
contains a virialized object! ®
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Spherical collapse: why is it useful?

0.4

0.3

0.2

Probability density

0.1

0.0

Standard normal distribution

unphysical

Fraction of
collapsed objects

-2

Fraction of collapsed object of mass M (inside R) at time z

p(AI‘ Z) |5>5coll

Finally (see script) we get N

in the mass range dM

1

= = exp (— J ) déy = lerfc (ﬁ)
oM(2)V2T Jsean 2034(2) J E V2om(2))

d Ino M

. N T —_— _ dp e p Bp(‘h[’ z)|6>‘5coll
the number density of virialized halos dn = v e i ‘

{2 P bcon
= \/;M 2 om

oM d InM

o921/ (2930) M .
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number density of virialized halos
in the mass range dM

Spherical collapse: why is it not SO useful?

d Ino M
d InM

C_N_dp _ p |9p(M,2) 555 | gap _ \F p_dcon
Lop T _M‘ TR el = v e

Because:
* |t assumes isolated radial collapse

* |tis analytical only for EdS
* |t does not predict the correlation of the halos

Next: higher-order perturbation theory

e—%eon/(293) dM .
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