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Chapter 1

Linear perturbations

Quick summary
• The evolution of linear matter perturbations can be studied in Newtonian gravity in a simplified case

• They coincide with full GR scalar perturbation theory in the sub-horizon, non-relativistic limit

• They can also be derived from the so-called Vlasov-Poisson equation that applies to any collisionless fluid

• After Fourier transformation, the equations can be solved analytically in various regimes: sub- and super-
horizon, matter and radiation epoch

• Fluctuations grow when they are smaller than the horizon but larger than the Jeans length

1.1 The Newtonian equations
Most of the physics of cosmological perturbations is essentially Newtonian, at least as long as we consider
only linear (i.e., small) pressureless perturbations at sub-horizon scales and we assume that the background
evolution has already been obtained by solving the unperturbed Einstein equations. In this section we follow
in part Peacock, Cosmological Physics. Let us consider a density field ρ(x), associated to a pressure p(x) and
a velocity field v(x), under the action of a gravitational potential Φ(x) generated by the fluid itself (where x
denotes the dependence on space-time coordinates). Then we have three relevant equations: a conservation
equation (the fluid moves but neither disappears nor is created), the Euler equation (the fluid is accelerated
under the action of pressure gradient and of gravity), and the Poisson equation (the gravitational potential
depends on the fluid’s density). The conservation equation in one dimension, for instance, says that the number
of particles with velocity v entering in a small region dx at the border 1, equal to (ρdx)1 = (ρvdt)1, minus the
number leaving the region at the border 2, (ρvdt)2, must be equal to the change of the number of particle in
the same region, dρdx, so that dρdx = [(ρv)1 − (ρv)2]dt, or

∂ρ

∂t
= −∂(ρv)

∂ ˛x
(1.1.1)

This generalizes to 3D as

∂ρ

∂t
= −∇(ρv) = −ρ∇ · v − v · ∇ρ (1.1.2)

where ∇ = {∂x, ∂y, ∂z} in Cartesian coordinates. Therefore, the three corresponding equations are (as usual,
G = 1)

ρ̇+ v · ∇ρ = −ρ∇ · v continuity (1.1.3)
ρ(v̇ + v · ∇v) = −∇p− ρ∇Φ Euler (1.1.4)

∇2Φ = 4πρ Poisson (1.1.5)
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CHAPTER 1. LINEAR PERTURBATIONS 4

We now need to do three operations: expand the equations to first order, employ the background cosmological
equations, and adopt comoving coordinates.

Let us expand the continuity equation. We put ρ = ρ0 + δρ, v = v0 + δv, where ρ0 depends only on time (so
∇ρ0 = 0), and v0 = Hx is the cosmological expansion. The perturbed terms δρ, δv are supposed to be much
smaller than the background terms. Then we have from (1.1.3)

ρ̇0 + δ̇ρ+ (v0 + δv) · ∇δρ = −(ρ0 + δρ)∇ · (v0 + δv) (1.1.6)

At zero-th order this gives the expected result for a pressureless fluid

ρ̇0 = −ρ0H∇ · x = −3Hρ0 (1.1.7)

We can use this equation now to simplify the perturbed one,

δ̇ρ+ v0 · ∇δρ = −ρ0∇ · δv − 3Hδρ (1.1.8)

where we also discarded two higher order terms, δv ·∇δρ and δρ∇· δv. Next, we introduce the density contrast

δ ≡ δρ

ρ0
(1.1.9)

and we notice that ρ0δ̇ = δ̇ρ− δρρ̇0/ρ0 = δ̇ρ+ 3Hδρ. Then

δ̇ + v0 · ∇δ = −∇ · δv (1.1.10)

We notice that on the lhs we have a total derivative, dδ/dt ≡ δ̇ + v0 · ∇δ.
The same operations can be applied to the Euler and Poisson equations, and we find

dδv

dt
= ˙δv + v0 · ∇δv = −∇δp

ρ0
−∇δΦ− (δv · ∇)v0 (1.1.11)

∇2δΦ = 4πρ0δ (1.1.12)

The term (δv · ∇)v0 can be written in explicit component form (sum over repeated indexes) as (δv)i∇iv0j =
(δv)iH∇ixj = (δv)jH. We have now a linearized set of equations, but we still want to put them in comoving
coordinates r,

x(t) = a(t)r(t) (1.1.13)

Then we have ∇ = a−1∇r. We now use simply v for δv and φ for δΦ. It follows

a
dδ

dt
= −∇r · v (1.1.14)

dv

dt
= −∇rδp

aρ0
− ∇rφ

a
−Hv (1.1.15)

∇2
rφ = 4πa2ρ0δ (1.1.16)

This set of equations is closed by introducing the sound speed c2s ≡ δp/δρ. Now, with respect to the comoving
observers, the background velocity v0 is zero, and δv is the peculiar velocity, so the total derivative d/dt is
identical to the partial derivative ∂/∂t. More formally, moving from x to ar, one has (let’s consider only the
x = aX coordinate for simplicity) dx = [∂(aX)/∂t]dt + [∂(aX)/∂X]dX = ȧXdt + adX, so for any function
f(t, x)

df(t, x) =

(
∂f

∂t

)
x

dt+

(
∂f

∂x

)
t

dx =

(
∂f

∂t

)
x

dt+

(
∂f

∂x

)
t

(ȧXdt+ adX) (1.1.17)

=

[(
∂f

∂t

)
x

+

(
∂f

∂x

)
t

Hx

]
dt+

(
∂f

∂x

)
t

adX =

(
∂f

∂t

)
X

dt+

(
∂f

∂X

)
t

dX (1.1.18)
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(since ȧX = Hx) from which we see that(
∂

∂t

)
X

=

(
∂

∂t

)
x

+

(
∂

∂x

)
t

Hx (1.1.19)

so we see that the partial derivative wrt t at fixed X is not the same as the partial derivative at fixed x.
Generalizing to 3D and applying it to δ,(

∂δ

∂t

)
r

≡ δ̇ + v0 · ∇δ =

(
dδ

dt

)
x

(1.1.20)

which means that, in comoving coordinates, the total derivative wrt time is actually a partial derivative. Finally,
adopting the conformal time dτ = dt/a we obtain (the dot is now ∂/∂τ)

δ̇ = −∇r · v (1.1.21)

v̇ = −∇rc2sδ −∇rφ−Hav (1.1.22)

∇2
rφ = 4πa2ρ0δ (1.1.23)

These equations can also be obtained as the k � aH limit of the full GR treatment. In GR, for a flat space,
we also can replace ρ0 with the Friedmann relation

H2 =
8π

3
ρ0

From now on we discard the subscript r.
We define now the velocity divergence θ ≡ ∇ivi and define the conformal Hubble parameterH = (da/dτ)/a =

aH. Then, applying ∇ to the continuity and Euler equation, we get

θ̇ = −∇2c2sδ −∇2φ−Hθ (1.1.24)

δ̇ = −θ (1.1.25)

The rotational part of the velocity field, ω ≡ ∇× v can be neglected in a first approximation because taking
the curl of Eq. (1.1.22) one sees that ω decays away. This approximation however breaks down when collisional
matter (i.e. baryons) are considered, and in the non-linear regime.

We go now to Fourier space. This means that all perturbation quantities will be Fourier expanded:

φ =

∫
eikrφkd

3k, (1.1.26)

δ =

∫
eikrδkd

3k, θ =

∫
eikrθkd

3k (1.1.27)

but the subscript k will be dropped in the following (the Fourier normalization factors here play no role, since
the equations are all in Fourier space). In other words, we assume that the perturbation variables δ, θ, φ etc.
are the sum of plane waves δkeikr (I often use the short notation kr ≡ k · r); since the equations are linear,
each plane wave obeys the same equations with a different k. In practice, each perturbation quantity and its
derivatives can be substituted as follows

φ(x, τ) → eikrφk(τ)

∇φ(x, τ) → ieikrkφk(τ)

∇2φ(x, τ) ≡ ∇i∇iφ(x, τ) → −eikrk2φk(τ) (1.1.28)

Furthermore, the Fourier modes eikr can be simply dropped out, since the equations are linear and therefore
decoupled in the modes.

The perturbation equations in the Newtonian limit become then

δ̇ = −θ
θ̇ = −Hθ + c2sk

2δ + k2φ

k2φ = −3

2
H2Ωmδ (1.1.29)
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i.e. the continuity, the Euler and the Poisson equations, which are as expected the Fourier transform of the
equations (1.1.23) already seen in Sect. (1.1). Deriving the first equation we obtain

δ̈ +Hδ̇ +

(
k2c2s −

3

2
H2Ωm

)
δ = 0 (1.1.30)

(In the Minkowski limit, H = 0, this equation reduces to the fluid wave equation δ̈− c2s∇2δ = 0, and shows that
cs is indeed the sound velocity.) This shows at once that the perturbation does not grow if

k2c2s −
3

2
H2Ωm > 0 (1.1.31)

i.e., if the perturbation scale λ = 2πa/k is smaller than the Jeans length,

λJ = cs

√
π

ρ
(1.1.32)

For scales smaller than λJ the perturbations undergo damped oscillations. For the CDM particles the velocity
dispersion is always negligible. For the photons is c/

√
3, so that the physical scale

λJ ' H−1 (1.1.33)

and growth is prevented on all scales smaller than the horizon. For the baryons, finally, the sound velocity is
comparable to the photon velocity before decoupling, so that baryon perturbations are damped out, but drops
rapidly to a comoving scale of less than 1Mpc just after decoupling. Then the baryons are free to fall inside the
dark matter potential wells, and their perturbation spectrum catches the dark matter one.

1.2 Vlasov equation
We now recover Eqs. (1.1.3,1.1.4) from a more general point of view, in order to understand which approxima-
tions have been implicitly made. Here we follow mostly [5], [4]. A general-relativistic derivation of the non-linear
perturbations can be found in [3].

A flow of particles that are neither destroyed nor created (“conserved”) and do not collide against each
other is governed by the collisionless Boltzmann equation. Let the number dN of particles in a space volume
dV = dxdydz and with momenta within the volume dpxdpydpz be

dN = f(t,x,p)dxdydzdpxdpydpz (1.2.1)

where f is the distribution function and the space-momentum volume element is called the phase-space volume.
In absence of collisions, trajectories in the phase-space do not intersect, because otherwise the same initial
conditions in terms of positions and momenta would give rise to two different trajectories, breaking classical
determinism.

Let’s first consider a 1-dimensional example. Since the particle number is conserved, the number of particles
with momentum px entering in a space volume dxdydz in direction x in the time interval dt is ρdxdydz =
ρvxdtdydz (vx is the x-component of the velocity and ρ is the number density of particles), minus the number
exiting from the other side (see Fig. 1.2.1); if the particles move only along x, this has to be equal to the change
in the number of particles inside the volume itself, dρdV . Then we have the continuity equation (the incoming
velocity is taken negative)

dρdxdydz = −d(ρvx)dtdydz (1.2.2)

or

∂ρ

∂t
= −∂(ρvx)

∂x
(1.2.3)

This simple derivation can be extended to all six phase-space coordinates. The demonstration makes use of the
following relations, valid in any number of dimensions and any choice of coordinates w:

∂

∂t

∫
fdV = −

∫
∂V

(fv) · ndA = −
∫
V

∇ · (fv)dV (1.2.4)
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Figure 1.2.1: Flux across a surface A. Particles inside the box (for instance, particles 1,2,3) will cross the surface
in ∆t, particles outside (e.g., 4) will not.

where v = ẇ , ∇ takes derivatives wrt to w, and n is the unit normal to the surface ∂V enclosing V . The first
equality applies when f is a conserved quantity (mass, or number of particles, or number of microstates), the
second is the divergence theorem and is always valid. Since the volume V is arbitrary, the integrands of the
first and third member must be equal. For the phase-space coordinates this gives the generalized version of Eq.
(1.2.3), namely the collisionless Boltzmann equation

∂f

∂t
+

6∑
i=1

∂(fẇi)

∂wi
= 0 (1.2.5)

where w = {x, y, z, px, py, pz} = {q,p} is the phase-space vector of coordinates. Notice that if we allow for
collisions, i.e. instantaneous interactions, f would not be differentiable, and an extra term taking into account
this should be included.

The Boltzmann equation gives the evolution in a phase space q,p (position and momenta) of a set of
collisionless particles whose number density is f(q,p, t). In cosmology, the velocity of a particle at position
x = aq is

v =
∂x

∂t
=
∂a

∂t
q + a

∂q

∂t
= Hx + δv (1.2.6)

where the first term is the Hubble expansion and δv defines the peculiar velocity.
Now since q̇ = ∂H/∂p and ṗ = −∂H/∂q, where H is the Hamiltonian, we have

6∑
i=1

∂(fẇi)

∂wi
=

6∑
i=1

(
f
∂ẇi
∂wi

+ ẇi
∂f

∂wi

)
(1.2.7)

= f

(
∂2H

∂q∂p
− ∂2H

∂p∂q

)
+

6∑
i=1

ẇi
∂f

∂wi
(1.2.8)

=

6∑
i=1

ẇi
∂f

∂wi
(1.2.9)
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Then the Boltzmann equation says that the phase-space density f is conserved

df

dt
=
∂f

∂t
+

6∑
n=1

∂wn
∂t

∂f

∂wn
=
∂f

∂t
+
∂qi
∂t

∂f

∂qi
+
∂pi
∂t

∂f

∂pi
= 0 (1.2.10)

where i = 1, 2, 3. We need now to include the gravitational potential in this equation.
In a self-gravitating system with density ρ(x) the potential Φ is given by

Φ(x) = −G
∫
d3x′

ρ(x′)

|x′ − x|
(1.2.11)

However, this Newtonian potential includes also the potential induced by the homogeneous distribution, which
instead in GR is shown to just source the expansion, without inducing any motion in comoving coordinates. If
we write the Poisson equation as

∆Φ = 4πρ = 4π(ρ0 + δρ)

and write the operator ∆ = x−2∂xx
2∂x in radial coordinates, we see that at the background level the potential

is

φ0 =
2π

3
ρ0x

2 + C(t) = −1

2

ä

a
x2 + C(t) (1.2.12)

where we used the second Friedmann equation for a pressureless component, ä = −4πaρ0/3. The cosmological
potential φ should therefore be defined by subtracting from Φ the background part:

φ = Φ− 2π

3
ρ0x

2 (1.2.13)

Then it follows that φ is indeed sourced by the fluctuations,

∆φ = 4πρ0δ (1.2.14)

where δ is the density contrast. Here, however, we keep using the full potential Φ. Then we can write the
dynamics as

∂pi
∂t

= −m∇iΦ (1.2.15)

∂qi
∂t

=
pi
m

(1.2.16)

Therefore we obtain
∂f

∂t
+

p

m
· ∇f −m∇Φ · ∂f

∂p
= 0 (1.2.17)

This is called the Vlasov-Poisson equation, and is complemented by the Poisson equation in terms of the
cosmological potential

∇2Φ = 4πρ (1.2.18)

Notice that we are still using physical coordinates, not the comoving ones.
Instead of using the full Vlasov-Poisson equation, we can take moments. We define the particle density

ρ(x, t) ≡
∫
f(q,p, t)d3p (1.2.19)

(this is of course the same quantity on the rhs on Eq. 1.2.18) and the moments (all quantities on the lhs depend
on x, τ)

ρvi ≡
∫

pi
m
f(q,p, t)d3p (1.2.20)

σij ≡
∫

(
pi
m
− vi)(

pj
m
− vj)f(q,p, t)d3p (1.2.21)
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where v denotes the peculiar velocity at x averaged over the distribution of momenta, and σij denotes the stress
tensor. Note that∫

pi
m

pj
m
f(q,p, t)d3p = σij + ρvivj (1.2.22)

We can now use these momenta to integrate out the Vlasov equation. Integrating over d3p gives (since Φ
does not depend on p)

∂ρ

∂t
+∇ · ρvi −m∇Φ · ∂

∂p

∫
fd3p = 0 (1.2.23)

The last term vanishes because the momenta are integrated out, so we obtain the same continuity equation
(1.1.3) we have seen in the previous section

∂ρ

∂t
+∇ · ρv = 0 (1.2.24)

The first order moment gives instead

∂

∂t

∫
pi
m
fd3p+

∫
pj
m

pi
m
∇jfd3p−m∇jΦ

∫
pi
m

∂

∂pj
fd3p = (1.2.25)

∂

∂t
ρvi +∇j

∫
pj
m

pi
m
fd3p+∇jΦ

∫
∂pi
∂pj

fd3p = (1.2.26)

∂

∂t
ρvi +∇j(σij + ρvivj) +∇jΦδji

∫
fd3p = (1.2.27)

∂ρ

∂t
vi + ρ

∂

∂t
vi +∇j(σij + ρvivj) + ρ∇iΦ = (1.2.28)

−vi∇jρvj + ρ
∂

∂t
vi +∇j(σij + ρvivj) + ρ∇iΦ = 0 (1.2.29)

We used integration by parts in the last term of the second line and replacement with the continuity equation
in the last line. Now we have

−vi∇jρvj +∇jρvivj = ρvj∇jvi (1.2.30)

and therefore

∂

∂t
vi + vj∇jvi = −∇iΦ−

1

ρ
∇jσij (1.2.31)

The hierarchy of moments if usually truncated at the second order (one can indeed show that for non-relativistic
matter higher orders are suppressed [3]) and, to close the system of equations, some simplified assumption is
taken for σij . The most common is to assume an isotropized fluid in which the stress tensor is identified with
the pressure

σij = pδij (1.2.32)

In this case we recover Eq. (1.1.4)

∂

∂t
vi + vj∇jvi = −∇iΦ−

1

ρ
∇ip (1.2.33)

At the background level, there are no peculiar velocities, so v = Hx, Φ = φ0 = 2π
3 ρ0x

2. Then, since xj∇jxi =

xjδ
j
i = xi, we have (notice that ∂/∂t has to be taken at constant xi)

xi
∂

∂t
H +H2xi = −4π

3
ρ0xi −

1

ρ
∇jσij (1.2.34)



CHAPTER 1. LINEAR PERTURBATIONS 10

For a pressureless perfect fluid σij = 0, and therefore we recover the second Friedmann equation

∂

∂t
H +H2 =

ä

a
= −4π

3
ρ0 (1.2.35)

As promised, eqs. (1.2.24,1.2.33) coincide then with Eqs. (1.1.3,1.1.4). More in general, the stress tensor gets
contributions associated to the so-called shear (coefficient η) and bulk ( coefficient ζ) viscosity :

σij = pδij − η(∇ivj +∇jvi−
2

3
δij∇·v)− ζδij∇·v, (1.2.36)

In our treatment we however refer to CDM particles, which are supposed to have negligible pressure and self-
interactions, so we put σij = 0. This approximation is also called single-stream, meaning that particles in
a given infinitesimal region all move with the same velocity. It is clear from the outset, however, that this
approximation has to break down for baryonic tracers (i.e. galaxies) below a certain scale. This breaking is
often called shell-crossing or multi-stream, and occurs when in the same infinitesimal region there are particles
moving with different velocities. We will come back to the neglected part in Sec. 6.2.

1.3 Evolution of linear perturbations
Let’s now go back to Eq. (1.1.30). For kcs � H the perturbations grow freely: this is the phenomenon of
gravitational instability. We can rewrite the Newtonian equation

δ̈ +Hδ̇ − 3

2
H2Ωmδ = 0 (1.3.1)

Adopting now the time variable α = log a we obtain for Ωm = 1 (Einstein-deSitter model)

δ′′ + (
H′

H
+ 1)δ′ − 3

2
δ = 0 (1.3.2)

Putting (show this as an exercise)

H′

H
= −1

2
− 3

2
w (1.3.3)

we obtain for w = 0

δ′′ +
1

2
δ′ − 3

2
δ = 0 (1.3.4)

which is simply solved by

δ = Aemα = Aam

with the two solutions

m± = 1,−3/2 (1.3.5)

Therefore the growth functions are

δ+ = Aa1, δ− = Ba−3/2

(growing and decaying modes, respectively). The second solution becomes rapidly negligible with respect to the
first one and normally is neglected. With respect to conformal time we have δ+ ∼ τ2. Obviously the constants
A,B must be fixed by the observations.

From δ+ an important consequence follows. From the Poisson equation

k2φ = −3

2
H2δ

we see that during the matter dominated era H2δ+ = a2H2δ+ = a2a−3a = cost. and therefore the gravitational
potential remains constant.
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1.4 Growth rate and growth function in ΛCDM.
In general, a good approximation for the solution of Eq. (1.3.1) is given in terms of the growth rate f , defined
as

f ≡ d log δm
d log a

≈ Ωγm(z) (1.4.1)

with γ ≈ 0.55 (called the growth index ) and for ΛCDM

Ωm(z) =
ρm
ρcrit

=
Ωm0a

−3

Ωm0a−3 + 1− Ωm
(1.4.2)

The growth function (normalized to unity today) is given by

G(z) ≡ δm(z)

δm(0)
= exp

∫ a

1

f(z)d log a ≈ exp

∫ a

1

Ωγm(z)d log a (1.4.3)

In this case is no longer true that H2δ is constant and therefore the gravitational potential is not a constant.



Chapter 2

Correlation function and power spectrum

Quick summary
• Here we define several measures of clustering of a distribution of points

• This chapter deal only with the mathematical properties of these statistical descriptors. In the next one
we study the physical properties.

• The correlation function describes the clustering of a distribution of points in space.

• The power spectrum is the Fourier conjugate of the correlation function

• Correlation function and power spectrum are two-point descriptors. One can generalize them to n-point
descriptors.

• Moments are an integral measure of clustering. The second order moment can be estimated by integrating
the correlation function or the power spectrum.

2.1 Why we need correlation functions, power spectra and all that
All the perturbation variables we have studied so far, δ,Ψ, θ etc, and their Fourier transforms, are random
variables. That is, we cannot know if in a given point in space-time, δ is zero, −0.01 or any other value. All we
have found with GR equations is how this value will evolve in time, e.g. as δ ∼ a as in MDE. If in a location
δ is initially zero, it will remain so. If it is initialy negative (an underdensity) it will become more and more
underdense, until the region is empty. If it is an overdensity, it will grow until it exits the regime of linearity.
The perturbation variables are random fields in space and as such must be studied statistically. In practice,
this means that instead of studying the field δ(x, y, z), we study its moments, in particular mean and variance.
In real space, the variance 〈δ(x)δ(x+ r)〉 as a function of separation r is called correlation function. In Fourier
space, the variance 〈δ2〉 as a function of wavenumber k is called power spectrum. However, the mean is trivial:
〈δ〉 = 0 , since the density contrast is exactly defined as the fractional difference of the density minus its mean.
Since all other perturbation variables are proportional to δ, the same applies to all of them: 〈Ψ〉 = 〈Φ〉 = 〈θ〉 = 0
etc.. It is then clear that only the variance contains useful information. In principle, also higher order moments
can be employed, and often they are. However, a fundamental assumption (based on the initial conditions set
up by inflation) is that the initial fluctuations are Gaussian distributed, and for such a distribution only the
variance is needed, since all higher order moments are either zero (the odd ones) or are function of the variance:
for instance 〈δ4〉 = 3〈δ2〉2. This is why most cosmology needs only to focus on the quadratic statistics, namely
variance, correlation function, and power spectrum. However, when fluctuations grow and start becoming non-
linear, their Gaussian nature will in general be lost. This is obvious if only one realizes that if in a given region
δ is initially negative and keeps growing, it will at some point become a void, δ = −1, and will stop there; but
if it is positive, δ can grow without limit (that is, the region collapses into a structure, e.g. a galaxy, a star or
even a black hole), and the final distribution of underdensities and overdensities will obviously be asymmetric

12
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(skewed) and no longer Gaussian. The exact non-linear distribution is very difficult to obtain and generally has
to be found numerically by N-body simulations.

2.2 Average, variance, moments.
Here we recall a few basic facts about random variables and statistics. If x is a random variable (e.g. δ at a
point r in our case), and if f(x)dx is the probability of finding x in the interval x, x+dx, then (integral extended
in the entire domain of definition of x)∫

f(x)dx = 1 (2.2.1)

〈x〉 =

∫
xf(x)dx (2.2.2)

〈x2〉 =

∫
x2f(x)dx (2.2.3)

and in general 〈g(x)〉 =
∫
g(x)f(x)dx. It follows that, if a, b are constants

〈a〉 = a (2.2.4)
〈ax〉 = a〈x〉 (2.2.5)

〈ag(x) + bp(x)〉 = a〈g(x)〉+ b〈p(x)〉 (2.2.6)

We define n-th order moments and n-th order central moments as, respectively,

M̄n =

∫
xnf(x)dx (2.2.7)

Mn =

∫
(x− 〈x〉)nf(x)dx (2.2.8)

The central moment M2 is called variance. If xi is a vector of several random variables, one defines multivariate
moments, in particular the covariance

cij = 〈xixi〉 (2.2.9)

2.3 Definition of the correlation function
Other common statistical descriptors are the n−point correlation functions. Let 〈n〉 = ρ0dV be the average
number of particles in an infinitesimal volume dV , being ρ0 the average number density. If dNab = 〈nanb〉 is
the average number of pairs in the volumes dVa and dVb (i.e., the product of the number of particles in one
volume with the number in the other volume), separated by rab, then the 2-point correlation function ξ(rab) is
defined as

dNab = 〈nanb〉 = ρ2
0dVadVb(1 + ξ(rab)) (2.3.1)

If the distribution is uniform, then the average number of pairs is exactly equal to the product of the average
number of particles in the two volumes, and the correlation ξ vanishes; if there is correlation among the
volumes, on the other hand, then the correlation is different from zero. The correlation function is also defined,
equivalently, as the spatial average of the product of the density contrast δ(ra) = na/(ρ0dV )− 1 at two different
points

ξ(rab) =
dNab

ρ2
0dVadVb

− 1 =
〈nanb〉
ρ2

0dVadVb
− 1 = 〈(δa + 1)(δb + 1)〉 − 1 = 〈δ(ra)δ(rb)〉 (2.3.2)

because 〈δa,b〉 = 0.
In practice it is easier to derive the correlation function as the average density of particles at a distance r

from another particle. This is a conditional density, that is the density of particles at distance r given that
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there is a particle at r = 0. The number of pairs is then the number of particles in both volumes divided by the
number of particles dNa = ndVa in the volume dVa at r = 0 :

dNb = dNab/dNa = ρ2
0dVadVb(1 + ξ(rab))/dNa = ρ0dVb(1 + ξ(rb)) (2.3.3)

The correlation function can then be defined as

ξ(r) =
dNc(r)

ρ0dV
− 1 =

〈ρc〉
ρ0
− 1 (2.3.4)

(where c stands for conditional) i.e. as the average number of particles at distance r from any given particle (or
number of neighbors), divided by the expected number of particles at the same distance in a uniform distribution,
minus 1, or conditional density contrast. If the correlation is positive, there are then more particles than in a
uniform distribution: the distribution is then said to be positively clustered. This definition is purely radial,
and does not distinguish between isotropic and anisotropic distributions. One could generalize this definition
by introducing the anisotropic correlation function as the number of pairs in volumes at distance r and a given
longitude and latitude. This is useful whenever there is some reason to suspect that the distribution is indeed
anisotropic, as when there is a significant distortion along the line-of-sight due to the redshift.

If the average density of particles is estimated from the sample itself, i.e. ρ0 = N/V , it is clear that the
integral of dNc(r) must converge to the number of particles in the sample :∫ R

0

dNc(r) =

∫
ρ(r)dV = N (2.3.5)

In this case the correlation function is a sample quantity, and it is subject to the integral constraint (Peebles
1980)∫ R

0

ξs(r)dV = N/ρ0 − V = 0 (2.3.6)

Assuming spatial isotropy this is

4π

∫ R

0

ξs(r)r
2dr = 0 (2.3.7)

If the sample density is different from the true density of the whole distribution, we must expect that the ξs(r)
estimated in the sample differs from the true correlation function. From Eq. (2.3.4), we see that g(r) = 1 + ξ(r)
scales as ρ−1

0 . Only if we can identify the sample density ρ0 with the true density the estimate of ξ(r) is correct.
In general, the density is estimated in a survey centered on ourselves, so that what we obtain is in reality a
conditional density.

The conditional density at distance r from a particle, averaged over the particles in the survey, is often
denoted in the statistical literature as Γ(r); we have therefore from Eq. (2.3.4)

Γ(r) ≡ 〈ρc〉 = ρ0(1 + ξ) (2.3.8)

The average in spherical cells of radius R and volume V of this quantity is denoted as

Γ∗(R) ≡ 〈ρc〉sph = ρ0(1 + ξ̂) (2.3.9)

where

ξ̂ = V −1

∫
ξdV (2.3.10)

To evaluate Γ∗(R) one finds the average of the number of neighbors inside a distance R from any particle
contained in the sample.
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2.4 The n-point correlation function and the scaling hierarchy
The correlation function can be generalized to more than two points. The 3-point function for instance is defined
as

ς(ra, rb, rc) = 〈δ(ra)δ(rb)δ(rc)〉 (2.4.1)

In terms of the counts in infinitesimal cells we can write

ς(ra, rb, rc) = 〈
(

na
ρ0dVa

− 1

)(
nb

ρ0dVb
− 1

)(
nc

ρ0dVc
− 1

)
〉

=
〈nanbnc〉

ρ3
0dVadVbdVc

− ξab − ξbc − ξac − 1 (2.4.2)

so that we obtain the useful relation

〈nanbnc〉 = ρ3
0dVadVbdVc(1 + ξab + ξbc + ξac + ςabc) (2.4.3)

In some simple and interesting cases, the moments Mp of the counts obey the following scaling hierarchy
for any box size in a certain range of scales

Sp =
Mp

Mp−1
2

= const (2.4.4)

2.5 The power spectrum
One of the most employed statistical estimator for density fields is the power spectrum. In recent years it
has been used to quantify the clustering properties in many galaxy surveys. The main reason is that almost
all theories of structure formation predict a specific shape of the spectrum, because the plane waves evolve
independently in the linear approximation of the gravitational equations.

Unless otherwise specified, the conventions for the 3D Fourier transforms are

f(x) =
V

(2π)
3

∫
fke

ikxd3k

fk =
1

V

∫
f(x)e−ikxd3x (2.5.1)

and it is always understood that ikx = ik ·x (we’ll use the bold face for vectors when there is risk of confusion).
With this conventions, f(x) and fk have the same dimensions. Since f(x) is real, f∗k = f−k. The factor of V
is unnecessary but is convenient to keep f, fk with the same dimensions. In every calculation one can however
take V = 1 without any harm.

If we consider the Fourier transform of f(x) ≡ 1 we have

1 =
V

(2π)3

∫
fke

ikxd3k (2.5.2)

with

fk =
1

V

∫
e−ikxd3x (2.5.3)

This shows that in the limit V →∞ we can take as a representation of the Dirac delta the function

δD(k) =
1

(2π)3

∫
e−ikxd3x (2.5.4)

(and similarly for k ↔ x) since indeed the oscillations cancel each other in an infinite volume and therefore
δD(k) = 0 for every k 6= 0, while δD(k) diverges for k = 0 and, since (V/(2π)3)fk = δD(k),∫

δD(k)d3k = V
(2π)3

∫
fkd

3k = f(x = 0) = 1 (2.5.5)
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The Dirac delta δD(k) has dimension of a volume. Analogously, the Dirac delta in real space is δD(x) =
(2π)−3

∫
eikxd3k. The two Dirac delta’s are not the Fourier transform of each other.

Let now δ(x) be the density contrast of a density field in a survey of volume V and

δk =
1

V

∫
δ(x)e−ikxdV (2.5.6)

its Fourier transform. The power spectrum is defined as

P (k) = V 〈δkδ∗k〉 (2.5.7)

Notice that the power spectrum has the dimension of a volume. For a single realization (e.g. a survey or a
single simulation) one has P = V δkδ

∗
k. In this case it follows

P (k) =
1

V

∫
δ(x)δ(y)e−ik(x−y)dVxdVy (2.5.8)

Now, putting r = x− y, and taking the volume average

ξ(r) = 〈δ(y + r)δ(y)〉V =
1

V

∫
δ(y + r)δ(y)dVy (2.5.9)

then,

P (k) =

∫
ξ(r)e−ikrdV (2.5.10)

Therefore, the power spectrum is the Fourier transform of the correlation function (Wiener-Khintchin theorem).
The converse property is

ξ(r) = (2π)
−3
∫
P (k)eikrd3k (2.5.11)

(notice that here, following most literature, the Fourier volume factor is not included). Finally, assuming spatial
isotropy, i.e. that the correlation function depends only on the modulus |r|, we obtain

P (k) = 4π

∫
ξ(r)

sin kr

kr
r2dr (2.5.12)

A more general definition of power spectrum can also be given, but this time we have to think in terms of
ensemble averages, rather than volume averages. Consider in fact the ensemble average of V δkδ∗k′ :

V 〈δkδ∗k′〉 =
1

V

∫
〈δ(y + r)δ(y)〉ei(k−k

′)y+ikrdVrdVy (2.5.13)

Performing ensemble averages, one has to think of fixing a positions and making the average over the ensemble
of realizations. Then the average can enter the integration, and average only over the random variables δ. Then
we obtain

V 〈δkδ∗k′〉 =
1

V

∫
ξ(r)ei(k−k

′)y+ikrdVrdVy =
(2π)3

V
P (k)δD(k − k′) (2.5.14)

The definition (2.5.14) states simply that modes at different wavelengths are uncorrelated if the field is sta-
tistically homogeneous (that is, if ξ does not depend on the position in which is calculated but only on the
distance r; also called translation invariance). Notice that this property is general and not confined to the
linear approximation. This will often be useful later.

One can go from Eq. (2.5.14) to Eq. (2.5.7) in this way:

V 〈δkδ∗k〉 = V

∫
d3k′〈δkδ∗k′〉δD(k − k′) =

(2π)3

V

∫
d3k′P (k)δD(k − k′)δD(k − k′) = (2.5.15)

(2π)3

V
P (k)

∫
d3k′δD(k − k′)δD(k − k′) = P (k) (2.5.16)
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where we used the identity∫
δD(k1 − k4)δD(k1 − k4)d3k1 =

∫
e−ix(k1−k4)

(2π)3
d3xδD(k1 − k4)d3k1 =

∫
1

(2π)3
d3x =

V

(2π)3
(2.5.17)

These definitions refer to infinite samples and to a continuous field. In reality, we always have a finite sample
and a discrete realization of the field, i.e.. a finite number of particles. Therefore, we have to take into account
the effects of both finiteness and discreteness.

To investigate the discreteness, we assume as field a collection of N particles of dimensionless masses mi

expressed in units of the average mass m0 at positions xi, in a volume V . In the following we will make use
of the window function W (x), a function which expresses the way in which the particles are selected. A typical
selection procedure is to take all particles within a given region, and no particles elsewhere. In this case, the
function will be a constant inside the survey, and zero outside. We will always consider such a kind of window
function in the following, and normalize it so that∫

W (x)dV = 1 (2.5.18)

With this normalization, W (x) = 1/V inside the survey. The density contrast field we have in a specific sample
is therefore the universal field times the window function (times the sample volume V because of the way we
normalized W )

δs = δ(x)VW (x) (2.5.19)

Let us now express the field as a sum of Dirac functions

δs(x) =

(
ρ(x)

ρ0
− 1

)
VW (x) =

V

N

∑
i

miwiδD(x− xi)− VW (x) (2.5.20)

where wi = VW (xi). The Fourier transform is

δk =
1

V

∫ (
V

N

∑
i

miwiδD − VW (x)

)
eikxdV =

1

N

∑
i

miwie
ikxi −Wk (2.5.21)

where we introduced the k−space window function

Wk =

∫
W (x)eikxdV (2.5.22)

normalized so that W0 = 1. The most commonly used window function is the so-called top-hat function, which
is the FT of the simple selection rule

W (x) = 1/V inside a spherical volume V of radius R
W (x) = 0 outside (2.5.23)

We have then

Wk =

∫
W (x)eikxdV = V −1

∫
eikxdV

=
3

4π
R−3

∫ R

r2dr

∫ π

−π
eikr cos θd cos θdφ

=
3

2
R−3

∫ R (
eikr − e−ikr

) r2

ikr
dr

= 3R−3

∫ R r sin kr

k
dr = 3

sin kR− kR cos kR

(kR)3
(2.5.24)

Notice that W0 = 1, and that the WF declines rapidly as k → π/R. Now, the expected value of the power
spectrum is

P (k) = V 〈δkδ∗k〉 (2.5.25)
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that is

P (k) =
V

N2

∑
ij

mimjwiwje
ik(xi−xj) − VW 2

k (2.5.26)

Usually we do not know the masses of the galaxies, so all we can do is to use the number counts as a proxy for
the density contrast: that is, we put mi = 1. Then we can use the relation

〈 1

N

∑
i

miwie
ikxi〉 =

1

N

∑
i

mi

∫
W (x)eikxdV = Wk (2.5.27)

Finally, if the positions xi and xj are uncorrelated, we can pick up only the terms with i = j, so that, neglecting
the window function, which is important only for k → 0, we obtain the pure noise spectrum

Pn(k) =
V

N2

∑
i

m2
iw

2
i = V/N (2.5.28)

where the last equality holds only if mi = 1 for all particles and wi equals 0 or 1. The noise spectrum is
negligible only for large densities, ρ0 = N/V → ∞. Since the galaxy distributions are often sparse, the noise
is not always negligible and has to be subtracted from the estimate. For the power spectrum applies the same
consideration expressed for the moments: the power spectrum does not characterize completely a distribution,
unless we know the distribution has some specific property, e.g. is Gaussian, or Poisson, etc.

2.6 From the power spectrum to the moments
The power spectrum is often the basic outcome of the structure formation theories, and it is convenient to
express all the other quantities in terms of it. Here we find the relation between the power spectrum and the
moments of the counts in random cells.

Consider a finite cell. Divide it into infinitesimal cells with counts ni either zero or unity. We have by
definition of ξ

〈ninj〉 = ρ2
0dVidVj [1 + ξij ] (2.6.1)

The count in the cell is N =
∑
ni . The variance is then

M2 = 〈 (N −N0)2

N2
0

〉 =
〈N2 +N2

0 − 2NN0〉
N2

0

=
〈N2〉+N2

0 − 2〈N〉N0

N2
0

=
〈N2〉 −N2

0

N2
0

(2.6.2)

where

〈N2〉 = 〈
∑

ni
∑

nj〉 =
∑
〈n2
i 〉+

∑
〈ninj〉 =

N0 +N2
0

∫
dVidVjWiWj [1 + ξij ] (2.6.3)

where N0 = ρ0V is the count average, and ξij ≡ ξ(|ri − rj |). Let us simplify the notation by putting

WidVi = dV ∗i

We define the integral ( by definition
∫
WdV =

∫
dV ∗ = 1 for any window function)

σ2 =

∫
dV ∗1 dV

∗
2 ξ12 (2.6.4)

This is clearly a dimensionless quantity. Inserting the power spectrum we have

σ2 = (2π)−3

∫
P (k)eik(r1−r2)W1W2d

3kd3r1d
3r2 (2.6.5)
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This becomes

σ2
R = (2π2)−1

∫
P (k)W 2

R(k)k2dk (2.6.6)

where R is the size of the cells. Then we see that 〈N2〉 = N0 + N2
0 + N2

0σ
2. Finally we obtain the relation

between the power spectrum (or the correlation function) and the second-order moment of the counts:

M2 = N−2
0 (〈N2〉 −N2

0 ) = N−1
0 + σ2 (2.6.7)

The first term is the so called shot-noise, the second term is the count variance in the continuous limit. Clearly, in
the limit of a high density of particles so we can neglect the noise term, σ2 quantifies how strong the fluctuations
are. If σ2 ≈ M2 ≈ 1, the numer of particles in cells have a relative variance which is as big as the average
number itself. Therefore we can say that the distribution is very inhomogeneous and the linear approximation
δ � 1 fails.

For the third order moment we proceed in a similar fashion:

〈N3〉 = 〈
∑

ni
∑

nj
∑

nk〉 =
∑
〈n2
i 〉+ 3

∑
〈n2
i 〉
∑

ni +
∑
〈ninjnk〉 = (2.6.8)

N0 + 3N2
0 +N3

0

∫
dV ∗i dV

∗
j dV

∗
k [1 + ξij + ξik + ξjk + ςijk] (2.6.9)

where in the last equality we used the definition of the three point correlation given in Eq. (2.4.3)

〈ninjnk〉 = ρ3
0dVidVjdVk[1 + ξij + ξik + ξjk + ςijk] (2.6.10)

The third order moment is then

M3 = N−3
0 〈(∆N)3〉 = N−2

0 +

∫
dV ∗i dV

∗
j dV

∗
k ςijk (2.6.11)

where ∆N = N −N0. If we can assume the scaling relation ςijk = Q[ξijξjk+ ξijξik+ ξikξjk] then we can express
M3 in terms of P (k) and of the new parameter Q. In the limit of large N0, a Gaussian field (M3 = 0) has Q = 0.



Chapter 3

The galaxy power spectrum

In Ch. (1) we have seen how to derive the linear matter power spectrum as a function of scale and redshift.
What we observe however is the power spectrum of the linear and non-linear galaxy distribution when distances
are measured with the redshift. Its relation to the theoretical prediction is not a straightforward one, as we will
see in this Chapter.

Quick summary
• The linear galaxy power spectrum expresses the clustering of galaxies in redshift space

• It is related to theoretical prediction of the matter power spectrum in real space through several corrections
(the bias, the redshift distortion) and depends on the growth function

• The baryon oscillations that are prominently visible on the CMB spectrum are also visible as small wiggles
on the galaxy power spectrum

• The comparison to observations can constrain several cosmological parameters, from the primordial slope
ns to Ωm,Ωb, to the dark energy equation of state.

• The Euclid satellite (launched in 2023) will measure the power spectrum up to redshift 2 to great precision.

3.1 Large scale structure
Let us see now how to link the primordial inflationary spectrum with the present observations of the galaxy
distribution. Instead of the spectrum evaluated at horizon reenter tH , which is different for every scale, we prefer
to evaluate it at a fixed epoch tF , for instance the decoupling epoch z ≈ 1000. The difference is that at a fixed
epoch, the perturbations that are already inside the horizon had the time to grow, contrary to those still outside.
Let us consider a perturbation that reenter in MDE when the scale factor was a, and H = (2/3)t−1 = a−3/2H0

(as usual we assume the present value a0 = 1) ; at that epoch, k = aH = aa−3/2H0 = a−1/2H0. Thus a
perturbation with wavenumber k reenters when the scale factor was a = (k/H0)−2. This perturbation grows
between a and an arbitrary instant, say aF , as δk ∼ (aF /a) = (k/kF )2 (since we are in MDE), if kF is the scale
that reenters at aF . Therefore smaller scales reenter the horizon earlier than larger ones and have therefore
more time to grow in amplitude. To conclude, the amplitude of a perturbation of size k−1 has the time to grow
between its reenter and aF by a factor (k/kF )2. Then the relation between δ at tF and at tH is

(δρ/ρ)k(tF ) = (k/kF )2(δρ/ρ)k(tH) , (3.1.1)

and consequently

Pk(tF ) = (k/kF )4Pk(tH) .

Assuming the inflationary spectrum k−3 with ns ≈ 1 it follows that for the scales reentering after equivalence

Pk(tF ) = Ak . Harrison− Zeldovich spectrum (3.1.2)

20
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Figure 3.1.1: Power spectrum of the large scale structure (at small scales) and of the cosmic microwave back-
ground (at large scales). (ESA and the Planck Collaboration).

This scale-invariant spectrum is a remarkable prediction of inflation. During the subsequent evolution, this
initial spectrum will be modified in a way that depends on the detailed components, e.g. the amount of dark
matter and baryons. Note that we obtained (3.1.2) assuming exponential inflation. If inflation is a power law,
the resulting spectrum becomes Pk = Akns , with ns ≤ 1. The Planck data of the cosmic background found
ns = 0.96± 0.01, in complete agreement with inflation.

We can now predict the observational quantities: the power spectrum and (in the next section) the peculiar
velocity field. Notice that the average of the density contrast vanishes, < δ >= 0, by definition of average
density. The simplest non-trivial average quantity that describe the fluctuation field is therefore the dispersion
δ, that is the variance < δ2 >. In the Fourier space, the corresponding quantity is the spectrum P (k) = δ2

k.
We have seen that the spectrum at horizon crossing goes like k−3, modified in k1 for the perturbations that
reenter in MDE. However, those that are smaller than λeq =13 Mpc h−1, reentering in RDE, do not suffer this
correction since as we have seen they do not grow during RDE. In other words, for scales smaller than λeq, the
spectrum at horizon crossing coincides with the one at equivalence. For these scales then the behavior remains
k−3. All this means that the inflationary spectrum at a fixed t, P (k) = Akns (with ns close to 1) is modified
during RDE and MDE by a function T 2(k) such that T ∼ 1 at large scales and T ∼ k−4 at small ones. For the
final spectrum we have then

P (k) = AknsT 2(k) (3.1.3)

where T (k) is called transfer function. This spectrum remains unvaried in slope from equivalence to now: during
this epoch, in fact, perturbations grow independently of k. A simple form of T 2 that produces the requested
behavior is T 2 = 1/[1 + (k/keq)

4]. The exact transfer function can be evaluated only numerically, integrating
for every k the perturbation equations. A popular approximation is (Efstathiou, Bond White 1992)

P (k) = AknsT (k)2 (3.1.4)

T (k) =
[
1 +

[
ak + (bk)

1.5
+ (ck)

2
]ν]−1/ν

(3.1.5)

(a, b, c) = (6.4, 3.0, 1.7) Γ−1Mpc/h, ν = 1.13 (3.1.6)
Γ = Ωnrh (3.1.7)

where T 2(k) has the correct limit k−4 . The scale at which this limit is approached is kt = Γ = Ωnrh. In a flat
model with h = 0.5 this is roughly 2π/0.5 Mpc/h = 12.6 Mpc/h, close to the horizon scale at equivalence, as it
should be.
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The whole linear treatment fails naturally at very small scales, those that are non-linear and collapsed into
galaxies and clusters. A rough approximation to the linearity scale is 50 Mpch−1.

3.2 The bias factor
The power spectrum we observe is obtained by mapping the position of the galaxies and then performing
a Fourier transform of the density contrast. However the power spectrum that is predicted by the linear
perturbation theory is the mass power spectrum, not the galaxy one. The density contrast of the galaxies
can be well different from the matter density contrast: for instance, galaxies could form only when the matter
density is above a certain threshold. The simplest possibility is to assume that the two density contrast are
proportional to each other

δg = bδm (3.2.1)

where b is called linear bias factor. In this case obviously

Pg = b2Pm (3.2.2)

Of course the real bias could be a non-linear function of δm, or an average of δm at various locations. In general,
the bias factor might depend on space (i.e. on k after Fourier transformation) and time, and also on galaxy
type and luminosity. In fact it is often reported that brighter galaxies have a larger bias, perhaps because they
form only on density peaks. The values of b that have been reported so far are always around unity. In a later
chapter we will considerably generalize the bias prescription.

3.3 Normalization of the power spectrum
Several ways to normalize the mass power spectrum have been employed so far: the cosmic microwave fluctua-
tions, the cluster abundance, weak lensing.

As we have seen the CMB measures at large scales the Sachs-Wolfe effect, i.e. temperature anisotropies
proportional to the gravitational potential. The amount of anisotropies is then a direct measurement of the
power spectrum at large scales. If we know the shape of the transfer function, measuring the spectrum at large
scales fixes its amplitude at all scales and we can estimate the normalization (see Sect. 2.5)

σ2
8 = (2π2)−1

∫
P (k)W 2

8Mpc/h(k)k2dk (3.3.1)

Planck (2015) result assuming ΛCDM is

σ8 = 0.834± 0.03 (3.3.2)

Cluster abundance, along with X-ray mass-temperature relation, is another tool for estimating σ8. In this case
σ8 is strongly degenerate with Ωm but using also the cluster correlation function one can reduce the level of
degeneracy and measure separately the two parameters. Clusters detected with the SZ effect by Planck can also
give an estimate of σ8 (see Fig. 3.3.1).

The variance σR increases with smaller scales R. The fact that σ8 ≈ 1 implies that fluctuations averaged
over scales of 8 Mpc/h are already in the non-linear regime. As we will see later, linear approximations are valid
on scales larger than roughly RNL = 60Mpc/h, or kNL = 2π/RNL ≈ 0.1h/Mpc.

3.4 The peculiar velocity field
The mass power spectrum can be studied also by analyzing the peculiar motion of the galaxies. It is intuitive,
in fact, that a more clustered distribution of matter will induce stronger peculiar velocities. The importance of
this is that the velocity field depends on the total mass distribution, including any unseen component. Let us
start from the first of Eq. (1.1.29). In terms of the time t it becomes

a
dδ

dt
= −ikivi (3.4.1)
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Figure 3.3.1: Planck (2015) constraints on Ωm, σ8 from SZ clusters and from CMB (Ade et al. A&A 594, A13,
2016; ESA and the Planck Collaboration).

Consider now the Euler Eq. (1.1.29) for cs = 0:

v̇i = −Hvi − a2ikiψ (3.4.2)

Expressing the velocity vector by a component parallel and a component orthogonal to the potential gradient
(the peculiar acceleration), we see that the orthogonal component (subscript t) obeys the equation

v̇it = −Hvit (3.4.3)

so that it will decay as a−1. Neglecting therefore this purely rotational component, we can look for solutions of
(3.4.1) in the form vi = F (k)ki. This gives immediately from (3.4.1) the relation between the peculiar velocity
field and the density fluctuations in linear perturbation theory, in the Newtonian regime:

vi = iHaδf
ki

k2
(3.4.4)

where

f =
a

δ

dδ

da
(3.4.5)

is a function that expresses the growth rate of the fluctuations; for a flat universe in MDE we have seen that
δ ∼ a and f = 1. A good approximation for a model with matter parameter Ωm(t), as we have seen in Sec. 1.4
, is

f = Ωγm (3.4.6)

with γ ≈ 0.55 and, for ΛCDM,

Ωm(z) =
Ωm0(1 + z)3

Ωm0(1 + z)3 + 1− Ωm0
(3.4.7)

The peculiar velocity at location x is

v(x) = iHf V

(2π)
3

∫
δk

k
k2
eikrd3k (3.4.8)

and the average in a volume of radius R is

vR =
1

VR

∫
vd3r = iHf V

(2π)
3
VR

∫
δk

k
k2
eikrW (r)d3kd3r = iHf V

(2π)
3

∫
δk

k
k2
W (kR)d3k (3.4.9)
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where W (kR) is the Fourier transform of the window function, defined as

W (kR) =
1

VR

∫
W (x)eikxd3x

Therefore, the average of the square of the velocity is

〈v2〉R = H2f2 V 2

(2π)
6

∫
〈δkδk′〉

k
k2

k′

k′2
W (k′R)W (kR)d3kd3k′ (3.4.10)

=
H2f2

(2π)
3

∫
P (k)δD(k− k′)

k
k2

k′

k′2
W (k′R)W (kR)d3kd3k′ (3.4.11)

=
H2f2

2π2

∫
P (k)W 2(kR)dk (3.4.12)

where in the last integral we integrated over the solid angle 4π and we used the definitions (see 2.5)

V 〈δkδk′〉 =
(2π)3

V
P (k)δD(k− k′)∫

δD(k− k′)d3k = 1 (3.4.13)

The square root of 〈v2〉R is called bulk flow, that is the magnitude of the peculiar flow on the scale R.

3.5 The redshift distortion
The galaxy distances we measure are mostly obtained through their redshift. The redshift however includes
the peculiar velocity of the galaxies themselves, so that there is an error in the distances we assign to galaxies.
On very small scales the peculiar velocity of a galaxy is more or less randomly oriented, so that the error in
the distance is statistical, and can be taken into account along the experimental errors. On redshift maps, the
small scale peculiar velocities cause the finger-of-god effect: galaxies in a cluster acquire an additional random
redshift that distorts the cluster distribution, making it appear elongated along the line of sight.

On large scales, however, the galaxies tend to fall toward concentrations, so that the velocity field is coupled
to the density field. This correction is systematic, and can be accounted for in the following way.

A source at distance r with peculiar velocity along the line of sight u

vp = v · r
r

(3.5.1)

will be assigned a distance s = r+u(r)−u(0) where u ≡ vp/H has units of distance. Consider then a coordinate
transformation from real space (subscript r) to redshift space (subscript s):

s = r
[
1 +

u(r)− u(0)

r

]
(3.5.2)

Then, if dVs and dVr are the volume elements in the two coordinates, we can write

n(r)dVr = n(s)dVs (3.5.3)

where the volume element dVs can be written in terms of the r coordinates as

dVs = s2dsd cos θdφ = r2

(
1 +

∆u(r)

r

)2

|J |drd cos θdφ =

(
1 +

∆u(r)

r

)2

|J |dVr (3.5.4)

where the Jacobian is

|J | = |∂s
∂r
| = 1 +

du

dr
(3.5.5)
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Then we have that the density contrast in s-space is

δs =
n(s)dVs
n0dVs

− 1 =
n(r)dVr

n0dVr

(
1 + ∆u(r)

r

)2

|J |
− 1 (3.5.6)

where n0 is the average density. To first order, this is

δs =
n(r)

n0
(1− 2

∆u(r)

r
− du

dr
)− 1

=

[
n(r)

n0
− 1

]
− n(r)

n0

[
2

∆u(r)

r
+
du

dr

]
= δr − 2

∆u(r)

r
− du

dr
(3.5.7)

where in the last line we used the fact that to first order we can approximate n(r) with n0. Therefore, we see
that the density contrast will be different in the two spaces. As a consequence, the correlation function and the
power spectrum measured in redshift space will have to be corrected to be expressed in real space. To do so,
we have to take the velocity field from the linear perturbation theory.

Eq. (3.4.8) is clearly in real space:

v = Hfi
∫
δke

ik·r k
k2
d3k∗ (3.5.8)

where, to simplify notation, the Fourier factor V/ (2π)
3 is included in the differential d3k∗. Its line-of-sight

component is

u(r) = H−1 r
r
· v = if

∫
δke

ik·r kr
k2r

d3k∗ (3.5.9)

while its derivative is (notice that k · r/(kr) = µ does not depend on r)

du

dr
= −f

∫
δke

ik·r
(
kr
kr

)2

d3k∗ (3.5.10)

where we used the relation

d

dr
eik·r = i

k · r
r
eikr (3.5.11)

Finally, we have

δs = δr −
du

dr
= δr + f

∫
δke

ikr
(
kr
kr

)2

d3k∗ = δr + f

∫
δke

ikrµ2d3k∗ (3.5.12)

where µ = kr/(kr) and we neglected the second term in (3.5.7) because it is negligible for large r. It is useful
now to notice that the density fluctuation in the second term r.h.s. is the mass density fluctuation, responsible
for the velocity field, while the other fluctuation terms can refer to the number density of any class of sources,
e.g. galaxies. If the mass fluctuations are b times smaller that the galaxy fluctuations, we could write inside the
integral at r.h.s. δk/b instead of δk. Then, the relation holds for any class of objects provided we use β = f/b
in place of f in the final result. The Fourier transform of this relation is

δsk = δrk + β

∫
δrk′I(k, k′)d3k′ (3.5.13)

I(k, k′) = (2π)
−3
∫
ei(k−k

′)rµ2d3r (3.5.14)

The redshift distortion then introduces a mode-mode coupling. This coupling can be broken if we can assume
that the cosine

µ =
kr
kr

(3.5.15)
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varies much slower with r than the fast oscillating ei(k−k
′)r term, i.e. if the survey covers a small angular size

and the direction of line-of-sight r/r is almost constant. In this case the µ2 term goes out of the integral and
we have then I = µ2δD(k − k′), so finally

δsk = δrk(1 + βµ2) (3.5.16)

Notice that these are the three-dimensional Fourier coefficients. The power spectrum now is

Ps(k) = V δ2
rk(1 + βµ2)2 = Pr(k)(1 + βµ2)2 (3.5.17)

If we average it over angles we get

Ps(k) = Pr(k)(1 + 2β〈µ2〉+ β2〈µ4〉) (3.5.18)

where

〈µ2〉 =
1

2

∫ 1

−1

cos2 θ′d cos θ′ = 1/3

〈µ4〉 =
1

2

∫
cos4 θ′d cos θ′ = 1/5 (3.5.19)

Finally we obtain for the µ-averaged spectrum

Ps(k) = Pr(k)(1 + 2β/3 + β2/5) (3.5.20)

The power spectrum is then boosted in redshift space, because the velocity field is directed toward mass con-
centrations: as a result, galaxies seem more concentrated when seen in redshift space.

At very small scales, on the other hand, the velocity orientation can be assumed to be random. The variance
of s will be larger than the variance of r along the line of sight and unchanged across it: the sphere will appear
pointing towards us. This is the non-linear redshift distortion, also called “fingers-of-God”. The power spectrum
is therefore decreased. Empirical studies have shown that a sufficiently good approximation is given by an
exponential damping factor,

Ps(k, µ) = Pr(k)(1 + βµ2)2e−k
2µ2σ2

v (3.5.21)

where σv is the cloud velocity dispersion along the line of sight in units of H0; one has typically σv ≈
(300km/sec)/H0 ≈ 3Mpc/h. The exponential damping can be obtained also by considering a convolution
of the correlation function with a Gaussian distribution for the redshift displacement with variance σ2

v . An
example of this procedure for a similar (but distinct) effect will be discussed in Sec. 3.8.

The final result taking into account redshift distortion (RSD), bias, growth G(z) (see Eq. 1.4.3) and velocity
dispersion is then rather simple:

Ps(k, µ, z) = (1 + βµ2)2b2G2Pr(k)e−k
2µ2σ2

v (3.5.22)

where f , the growth rate and b,G all depend on z and perhaps on k, and Pr(k) is today’s matter power spectrum.
By measuring the anisotropy combination√

Ps(k, µ = 1, z)

Ps(k, µ = 0, z)
− 1 =

f

b
(3.5.23)

we can then obtain information on the combination β = f/b . By measuring instead√
Ps(k, 1, z)− Ps(k, 0, z)
Ps(k, 1, z′)− Ps(k, 0, z′)

=
f(z)G(z)

f(z′)G(z′)
(3.5.24)

we obtain information on the combination

fG =
δ′

δ(0)
(3.5.25)

Often the combination fσ8(z) ≡ fσ8G is said to be directly measurable via the redshift distortion, but this
assumes one has a specific model for Pr(k), e.g. ΛCDM.
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Figure 3.5.1: Correlation function versus radial (line of sight) and longitudinal (orthogonal to line of sight)
coordinates π, σ, respectively. Notice the elongated “finger-of-God” feature along the radial coordinate and the
squashed form along the longitudinal one (linear redshift distortion). (Hawkins et al. 2003MNRAS.346...78H).
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3.6 Baryon acoustic oscillations
The spectrum of fluctuations at linear scales we observe today is a combination of the fluctuations in the dark
matter and in the baryonic content. As we have seen in the CMB chapter, the baryonic component was tightly
coupled to radiation before recombination and underwent Jeans oscillations on scales below the sound horizon,
roughly 100 Mpc/h in comoving distance (i.e. the size they will have been expanded to by today). When the
baryons finally decouple from radiation, the oscillations remain imprinted on their distribution and, in the linear
regime, show up as an additional feature on the smooth power spectrum proportional to the amount of baryons,
called baryon acoustic oscillations (BAO). Since the amount of baryons and radiation are well known, the BAO
scale is essentially fixed: it constitutes then a standard rod.

In the correlation function, we expect therefore a local peak at roughly the same comoving scale

dcs =
cs
c
dcH ≈ 144Mpc (3.6.1)

(as measured by Planck in 2015).
The correlation function is on average a isotropic function of distance. When plotted as a function of the

distance along and across the line of sight the baryonic peak should then appear as a circular ring around the
origin with radius dcs. The correlation function for galaxies in a shell around redshift z1 is measured in redshift
and angular space and the peak will therefore appear as a peak in the z, θ plane. The radius in the θ direction
gives the comoving angular diameter distance dcA = (1 + z)dA of that shell

dcA(z) = θdcs (3.6.2)

By estimating the redshift difference ∆z between the two opposite points in the ring one measures instead the
difference of comoving distances along the line of sight:

∆dcA = ∆r =

∫ z1+∆z

0

dz

H(z)
−
∫ z1

0

dz

H(z)
≈ ∆z

H(z)
|z1 (3.6.3)

In practice of course the entire ring is fitted by varying the cosmological parameters. Since there are two
directions orthogonal to the line of sight and one along it, one can define a combined distance

DV (z) ≡ [
(dcA)2

H(z)
∆z]1/3 (3.6.4)

and express the results in terms of DV . Current measurements are however good enough to measure separately
dcA(z) and 1/H(z).

The peak in the correlation function manifests itself also in the power spectrum as the Fourier transform of a
peak, namely oscillations at a wavenumber kBAO ≈ 2π/dcA and multiples, appropriately called baryon acoustic
oscillations (BAO), overimposed to the smooth spectrum, with an amplitude proportional to Ωb.

The baryonic oscillations have been detected for the first time in 2005 with SDSS and 2dFGRS data, obtaining

rs
DV (z = 0.35)

≈ 0.1± 0.003 (3.6.5)

Subsequent analyses measured the BAO scale to a precision of 2-4%, with results always consistent with con-
cordance cosmology.

To go below this precision one needs to take into account small effects that tend to “distort the ring”
and smear out the oscillations: the redshift measurement error, the peculiar velocity redshift, the non-linear
correction to the spectrum. Of course when estimating the cosmological parameters from the power spectrum
the entire shape of the spectrum has to be taken into account, not just the BAO wiggles.

3.7 Alcock-Paczyński effecta

When we observe galaxies, we measures angles and redshifts, not real space distances. If we observe an angle
θ subtending a transverse comoving scale λ1 at z, then the angular diameter distance is D1(z) = λ1/(1 + z)θ

aAdapted from Amendola & Tsujikawa, Dark Energy. Theory and Observations, CUP 2010.
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where the subscript 1 indicates a given cosmology, i.e. some values of Ω
(0)
m ,Ω

(0)
Λ etc. In a different cosmology

(subscript 2), the relation will be d2(z) = λ2/(1 + z)θ, i.e. the scale has to change in order to keep the same
subtending angle at the same redshift. It follows that for any cosmology the combination d/λ for each given
angle is a constant. In Fourier space, the scale λ is converted into a mode k, so also the combination k⊥D,
where k⊥ is the transverse wavenumber corresponding to that transverse scale, remains constant regardless of
cosmology. Therefore, if we take a reference cosmology r, we have that for any other cosmology the transverse
wavenumber is given by

k⊥ = kr⊥Dr/D . (3.7.1)

A similar argument can be applied to the comoving scale extending along the line of sight from z1 to z2. The
scale is then λ = dz/H(z) and in order for this scale to be seen at the same dz = z2 − z1 the product λH has
to remain constant when changing cosmology. Therefore, along with (3.7.1), we have for radial modes

k‖ = kr‖H/Hr . (3.7.2)

Clearly, any wave vector k can be decomposed into k‖ and k⊥. The relations above apply therefore to any
perturbation mode. Every mode k in the power spectrum can be written in terms of the reference mode kr with
an explicit dependence on the cosmological parameters inside d and H. We know then how the wavenumber
changes with cosmology. This implies that if a power spectrum is isotropic for the reference cosmology, it
will become anisotropic for any other cosmology, because k‖ and k⊥ change differently: this is called Alcock-
Paczyński (AP) effect ([1, 2, 17]).

From the relations (3.7.1) and (3.7.2) we derive the relation between the wavenumber modulus k and the
direction cosine µ = k · r/k (here r is the unit vector parallel to the line of sight) in the reference cosmology
and in the generic cosmology

k = (k2
‖ + k2

⊥)1/2 = αkr , (3.7.3)

µ =
k‖

(k2
‖ + k2

⊥)1/2
=
Hµr
Hrα

, (3.7.4)

where, putting h = H/Hr and d = D/Dr

α =

√
µ2
r(h

2d2 − 1) + 1)

d
. (3.7.5)

Therefore the general expression for the theoretical power spectrum becomes

Pgg = P (αkr)(1 + fµ2
r

h2

α2
)2 (3.7.6)

Comparing with real data, the reference model should be the one provided by the observers. The factors α, h
contains therefore additional dependence on cosmological parameters. Notice that the change in the angle µ
only depends on the combination hd. If we do not know the shape of P (k), at the linear level there is no way
we can measure αkr, but only the combination h/α which, as mentioned, depends only on hd. Often it is only
this combination that is regarded as an AP effect.

Since the power spectrum is proportional to the volume V in which we measure the perturbations, we need
to evaluate also how V depends on cosmology. If we measure the spectrum in a solid angle γ rad2 and a shell
of thickness dz, then the comoving volume is

V = γ2r2dr = γ2 D2

(1 + z)2
r,z(z)dz =

D2

H

γdz

(1 + z)2
, (3.7.7)

where r,z = dr/dz = 1/H(z). It follows that V H/D2 is independent of cosmology and therefore

V = Vr
HrD

2

HD2
r

= Vr
d2

h
. (3.7.8)

The relations (3.7.3,3.7.4,3.7.8) above allow us to relate this reference power spectrum to a general power
spectrum for any d,H, i.e. for any given cosmology. The theoretical power spectrum P (k) = V δ2

k can then be
compared to the real data spectrum by multiplying it by Vr/V :

P (k, z) =
h

d2
P (αkr)(1 + fµ2

r

h2

α2
)2 . (3.7.9)
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Figure 3.7.1: Baryon acoustic peak in a correlation function obtained from MICE, a very large N -body simu-
lation. From Fosalba et al. MNRAS 448 (2015), 2987-3000 arXiv:1312.1707.

Figure 3.7.2: Baryon acoustic peak observed in the power spectrum of SDSS and BOSS galaxies. The smooth
part of the spectrum has been subtracted. From Anderson et al. 2012, arXiv:1203.6594, Mon. Not. R. Astron.
Soc. 427, 3435–3467 (2012).
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Figure 3.7.3: Matter power spectrum in linear ΛCDM (black dotted line) and including a simplified halo non-
linear correction (q = rs/R and n = d3, green lines), compared with a numerical non-linear spectrum (thick
blue dashed line).

3.8 The BAO damping
The BAO peak is an importat probe of cosmology, and its precise estimation is therefore a crucial aspect of
both theory and data analysis. In the previous section we estimated the BAO scale. That estimate, and every
estimate based on numerically solving the pertrubation equations, was however an idealized one, because it
assumed the galaxies did not move from their initial position so that the imprint from the baryon acoustic
waves remained unchanged up to today. In reality, the initial scale imprinted on the matter distribution by the
baryon-photon waves is in time slightly blurred by the random peculiar velocity of galaxies. Intuitively, one
should expect therefore a damping of the BAO peaks, as we discuss below. I follow here the analysis of Ref.
[10].

In order to estimate this effect, we begin by writing down the relative velocity between two galaxies (sub-
scripts 1,2 respectively) at initial position r1, r2. The real-space peculiar velocity field is

v(r) =

∫
vke

ikr d3k

(2π)3
= i

∫
δ̇k

k

k2
eikr

d3k

(2π)3
(3.8.1)

The displacement accumulated up to time t since decoupling is therefore

d(r) = i

∫ [∫
δ̇kdt

]
k

k2
eikr

d3k

(2π)3
= iG(z)

∫
δk

k

k2
eikr

d3k

(2π)3
(3.8.2)

where G is the growth function and δk the present value. Then we see that the relative displacement between
the galaxies 1 and 2 is

d12 = iG

∫
δk

k

k2
[eikr1 − eikr2 ]

d3k

(2π)3
(3.8.3)

and

d‖ ≡ d12 ·
r12

r12
= iG

∫
δk

kr12

k2r12
[eikr1 − eikr2 ]

d3k

(2π)3
(3.8.4)

its component along the separation r12. We take as separation the scale of the BAO peak, roughly 100 Mpc/h.



CHAPTER 3. THE GALAXY POWER SPECTRUM 32

The mean of the displacement vector is of course zero. The variance of the parallel displacement is

〈d‖d∗‖〉 = G2

∫
P (k)

(
kr12

k2r12

)2 ∣∣eikr12 − 1
∣∣2 d3k

(2π)3
(3.8.5)

= 4πr2
12G

2

∫
P (k)W‖(kr12)k2dk ≡ s2

0G
2 (3.8.6)

(there is a typo in the original expression in [10]) where we implicitly defined the total displacement today as
s0 and

W‖(x) =
2

x2

(
1

3
− sinx

x
− 2

cosx

x2
+ 2

sinx

x3

)
(3.8.7)

Similarly, the displacement along the direction transverse to r12 is the same but with

W⊥(x) =
2

x2

(
1

3
− sinx

x
+

cosx

x2

)
(3.8.8)

Let us consider now the displacement of the field d‖ parallel and transverse to the line of sight. The displacement
d⊥ plays a minor role since the BAO scale is affected mostly by the change in the distance of the galaxies along
their separation vector. Taking into account the RSD factor (1 + fµ2) in the power spectrum for µ = 0 and
µ = 1, we can write therefore the r.m.s. of the displacement at any given epoch as

σ‖ = s0G(1 + f) (3.8.9)
σ⊥ = s0G (3.8.10)

where s0 is defined above, or can be calibrated in N-body simulations; it turns out to be around 12 Mpc/h for
an initial separation of 100 Mpc/h similar to the BAO scale. Therefore, the original imperturbed separation r
between the galaxies is now moved to a new separation vector y = r+s. Comparison with numerical simulation
show that we can approximate the displacement distribution as a Gaussian Π(s) with zero mean and standard
deviation given by the σ’s:

Π(s) = N exp(−1

2

s2
‖

σ2
‖
− 1

2

s2
⊥
σ2
⊥

) (3.8.11)

An imperturbed correlation function ξ(r) will then be distorted by the convolution with the s field

ξs(r) =

∫
ξ(r)Π(y − r)d3y (3.8.12)

A convolution in real space means a product of the Fourier transformed ξ,Π in Fourier space. Therefore the
unperturbed linear power spectrum P0 becomes

Ps(k) = P0(k) exp(−1

2
k2
‖σ

2
‖ −

1

2
k2
⊥σ

2
⊥) = P0(k)e−k

2σ2

(3.8.13)

(there is a typo in the original expression in [10]) where, putting k‖ = kµ and k2
⊥ = k2 − k2

‖, and s = s0G/
√

2,

σ2 =
[
1 + fµ2(2 + f)

]
s2 (3.8.14)

This damping is similar to the FoG damping of Eq. (3.5.21). However, we are not discussing here a change in
redshift space due to the peculiar velocity, but a real change in location in real space. This change in location
affects only the BAO peaks, and not the smooth part of the spectrum. Therefore one should decompose the
spectrum into a smooth no-wiggle component Pnw and a purely wiggly part Pw, and apply the BAO damping
only to the latter part. In summary, the theoretical spectrum including the damping should be evaluated as

Pd = Pnw + Pwe
−k2σ2

(3.8.15)
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The smooth spectrum for a given cosmology is usually estimated by either running a code with the same
parameters as the full spectrum (without BAO damping) P but no baryons, or by using some approximate
fitting function, while Pw is obtained by Pw = P − Pnw.

A more refined model for the BAO damping has been derived in Ref. [13] by a full consideration of the
small-scale non-linear displacement on the BAO scale (a technique called IR resummation). The result is

P = Pnw + Pwe
−k2Σ2

tot(µ,ks) (3.8.16)

where

Σ2
tot = (1 + fµ2(2 + f))s2 + f2µ2(µ2 − 1)δs2 (3.8.17)

s2 =
4π

3

∫ ks

0

Pnw(k)[1− j0(
k

kosc
) + 2j2(

k

kosc
)]dk (3.8.18)

δs2 = 4π

∫ ks

0

Pnw(k)j2(
k

kosc
)dk (3.8.19)

with ji(x) the spherical Bessel functions, kosc = 1/110 h/Mpc the scale of the BAO oscillation, and ks a scale of
separation of long and short modes that needs to be calibrated in N-body simulations. A value ks = 0.2h/Mpc
has been suggested. The expression for s coincides with s = s0G/

√
2 when s0 is given in Eq. (3.8.6), except

that here the integral extends only up to ks, rather than infinity. The difference is however small in ΛCDM
because the integral converges to a constant value for k & 0.2h/Mpc. The correction proportional to δs2 is
negative and quite subdominant.



Chapter 4

Non-linear perturbations: simplified
approaches

Quick summary
• Strongly non-linear fluctuations are difficult to handle and normally one has to employ powerful numerical

simulations

• We first introduce a simple correction which gives a qualitative idea of the non-linear effects

• We then introduce the Zel’dovich approximation, which allows to follow in an almost analytical way the
initial stages of structure formation beyond linearity

• Some more analytical results can be obtained assuming a spherical collapse. On scales of galaxies and
clusters, Newtonian physics is sufficient

• Spherical collapse gives a simple but surprisingly accurate expression for the density of collapse and of
virialization

• Using the so-called Press-Schechter formalism, one can approximately predict the number density of
collapsed object as a function of their mass, to be compared to real data or simulations

• In this entire chapter we can safey use Newtonian gravity since we deal with scales well smaller than the
horizon.

4.1 A first glimpse of non-linear corrections
All we have seen so far is only valid at linear scales where δm � 1, i.e. at scales larger than 10 Mpc or so (so in
fact the k−3 slope is never exactly reached). To measure smaller scales one has two ways: either estimate the
spectrum at high redshift or find the non-linear correction.

At redshift zero the ΛCDM spectrum normalization σ equals 0.8 when averaged over spherical cells of radius
R ≈ 8 Mpc/h. At higher redshifts the value of σ8 decreases proportionally to the growth function G. Since
f = d logG/d log a, and putting f ≈ Ωm(a)γone has σ8(z) = G(z)σ8(0) where

G(z) = exp

∫ a

1

f(a′)
da′

a′
= exp

∫ a

1

Ωγm(a′)
da′

a′
(4.1.1)

For instance, assuming Ωm0 = 0.3, one has σ8(1) ≈ 0.6 and σ8(3) ≈ 0.3, and therefore the scale of non-linearity
moves to smaller and smaller scales. Intergalactic lumps of neutral hydrogen called Lyman−α clouds along the
line of sight of distant quasars absorb part of the quasar radiation and due to different redshifts appear as a
“forest” of Lyman−α lines on the quasar’s spectrum. Their power spectrum can be calculated up to redshifts of

34
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order 4 or even more and provide a window on the linear high−k tail that is otherwise hidden in non-linearities
for nearby galaxies.

On smaller scales one should consider non-linear corrections that generally push the power up by even one
order of magnitude. One rough way of estimating the non-linear correction is to imagine that at small scales the
universe can be seen as a random collection of identical spherical halos with, for instance, the Navarro-Frenk-
White (NFW) profile

ρNFW =
ρ0

r
rs

(1 + r
rs

)2
(4.1.2)

where rs is a free scale parameter that has to be fit to each halo. This functional form has been found to be a
very good fit to the profiles in N -body simulations. Then one should evaluate the Fourier transform of a single
halo density contrast in a radius R and volume V = 4πR3/3,

δ1 =
4π

V

∫ R

0

(
ρNFW
ρ̄
− 1

)
sin(kr)

(kr)
r2dr (4.1.3)

=
1

V
[
4π

ρ̄

∫ R

0

ρNFW
sin(kr)

(kr)
r2dr − 4π

ρ̄

∫ R

0

sin(kr)

(kr)
r2dr] (4.1.4)

=
1

V
(WNFW −WTH) (4.1.5)

where ρ̄ is the average density

ρ̄ =
4π

V

∫ R

0

ρNFW r
2dr (4.1.6)

and then obtain the halo power spectrum as the sum of many random (uncorrelated) halos

Ph(n,R, rs) = NV δ2
1 = n(WNFW −WTH)2 (4.1.7)

where n is the halo number density. This can be considered a correction to be added to the linear spectrum

PNL = PLIN + Ph (4.1.8)

Some results for PNL are in Fig. (3.7.3). This particular halo correction is very naive and depends on three
free parameters rs, R, n. It can be however considerably improved by taking realistic distributions of the three
parameters (see e.g. [16, 19]) and shown to be a very simple and relatively accurate description for standard
cosmologies up to k ≈ 1h/Mpc, requiring however extensive calibration with N-body simulations of many free
parameters. In fact, it is still often employed to get a quick approximation under the name of Halofit (see App.
C of [19] for a detailed implementation).

Better and more general non-linear schemes are based on fitting N -body simulations or on higher-order
perturbation theory. We discuss them in the next sections.

4.2 The Zel’dovich approximation
So far we have only investigated linear perturbations, except for a brief comment on Sect. ??. Stars, galaxies
and clusters, however, are certainly not linear objects. For instance, the density contrast of a typical cluster
of galaxies can be δ > 200. Going from the linear treatment to the non-linear one is however generally very
difficult. Even if some important step forward can be achieved by going to higher order in perturbation theory,
ultimately one needs large N-body simulations.

A popular way to make progress in non-linear evolution before ressorting to numerical methods is to adopt
the Zel’dovich approximation. The idea is to follow the movement of particles under the action of gravity until
they hit each other and create a (fomally) infinite density. This should approximate the behavior of particles in
a N-body simulation at least at some early time. Consider two sets of comoving coordinates. One, x0, represents
the coordinates of particles in an unperturbed Universe. Since they are comoving, they do not depend on time.
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The other, x(t), is a perturbed one. Initially, we perturb the position of each particle by a vector field s, called
displacement. Then we assume that at some later time t the position of the particles is given by

x(t) = x0 + g(t)s(x0) (4.2.1)

This means we assume the position at time t only depends on the initial displacement through a time (and not
space) dependent function, still to be defined. The density of the particle at any given time is ρ(x, t) in the
perturbed Universe and ρ0(t) in the unperturbed one (which just follow the cosmic expansion, ρ0 ∼ a−3). Since
the particle number density dn = ρdV must be conserved, we have

ρ(x, t)d3x = ρ0(t)d3x0 (4.2.2)

which implies

ρ(x, t) = ρ0(t)

∣∣∣∣ ∂x∂x0

∣∣∣∣−1

(4.2.3)

Let us assume now, without loss of generality, that the coordinates have been chosen along the direction of the
eigenvectors of the deformation tensor

dij ≡ −
∂si
∂x0,j

(4.2.4)

In this case dij is diagonal and therefore∣∣∣∣ ∂x∂x0

∣∣∣∣ =

∣∣∣∣I + g(t)
∂s(x0)

∂x0

∣∣∣∣ = |δij − g(t)dij | = (1− gλ1)(1− gλ2)(1− gλ3) (4.2.5)

where I and δij represent the identity matrix and λi are the three eigenvalues of dij (we show below that the
eigenvalues are real). This means

ρ(x, t) =
ρ0(t)

(1− gλ1)(1− gλ2)(1− gλ3)
(4.2.6)

Before we comment on this important expression, let us understand the meaning of g and s. Expanding (4.2.6)
for small gλi, we find

ρ(x, t) ≈ ρ0(t)(1 + g(t)(λ1 + λ2 + λ3) = ρ0(t)(1 + g(t)Tr(dij)) (4.2.7)

and therefore

δ(t) ≡ ρ(x, t)− ρ0(t)

ρ0(t)
= −g(t)

∂si
∂x0,i

= −g(t)∇x0
s(x0) (4.2.8)

This expression, being a linearized one, must coincide with the growth law, δ(t) = G(t)δ0, where G(t) is the
growth function we have evaluated for various cases in Chap. (1). Then we see that we should identify g(t)
with G(t) and

−∇x0
s(x0) = δ0 (4.2.9)

Now, from the Poisson equation and the Friedmann equation we have

∇2Ψ = 4πρmδ =
3

2
a2H2ΩmG(t)δ0 (4.2.10)

where the factor a2 arises because we are adopting comoving, rather than physical, coordinates. Then we see
that

δ0 =
2

3a2H2ΩmG
∇2Ψ (4.2.11)
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Figure 4.2.1: Formation of pancakes in a simulation based on the Zel’dovich approximation (from S. Shandarin,
arXiv:0912.4520).

and therefore

s(x0) = − 2

3a2H2ΩmG
∇Ψ (4.2.12)

With this identification of s, the deformation tensor dij is symmetric and therefore its three eigenvalues are
real. Therefore, we have completely specified the prescription (4.2.1): g(t) is the growth factor, and the initial
displacement field s is essentially the gradient of the gravitational potential, i.e. the force acting on the particles.
In this way, one can run a very cheap N -body simulation: first, take the linear power spectrum at some early
epoch for the model you want to simulate; second, convert the power spectrum for δ into a power spectrum for Ψ
using Poisson equation in Fourier space; third, create a real space realization of this spectrum by overimposing
sinusoidal oscillations with amplitude given by the spectrum and random phases; fourth, put particles on a
regular grid; fifth, evaluate the displacement field by evaluating at every grid point (4.2.12); finally, move the
particles out of their initial grid point by using (4.2.1).

To appreciate strenghts and limits of this technique, let us now come back to Eq. (4.2.6). Since g(t) is a
growing function (we discard the decaying mode, if any), ρ(x, t) will develop a singularity as soon as one the
largest λi is positive. This means that the particle will move primarily along the eigenvector associate to maxλi
and form regions of high density on the plane orthogonal to this direction: in other words, particle will tend to
form planar structures, called pancakes (or blinis in the original Russian) by Zel’dovich, clearly visible in Fig.
(4.2.1). After this singularity, the approximation will no longer be valid. In reality, is already quite surprising
that the prescription (4.2.1) holds quite well beyond the linear regime!

Once the pancakes have been reached, one might assume that the particles “stick” onto, or oscillate around,
the planar regions by friction or some hydrodynamic mechanism, and then continue flowing along the planes
reaching the edges (called filaments) and finally slide along the filaments towards halos where, in turn, galaxies
and clusters will form. This is indeed qualitatively what is seen in full N-body simulations. Most of the current
codes actually exploit the Zel’dovich approximation to speed up the calculations during the earliest stages at
z � 1.

Much more on this topic in [12].

4.3 Spherical collapsea

After the formation of pancakes, the Zel’dovich approximation is no longer viable, although it can be extended
through second-order schemes or ad hoc prescriptions. There is however a way to get, on a first approximation
which however turns out to be surprisingly accurate, an estimate of an important observable, namely how many
objects form (i.e., collapse into a virialized structure) for a given mass. This approximation relies on sphericality
and Gaussianity. The idea is first to find the value of the density contrast in the linear approximation at which
a spherical perturbation collapse and virializes and then, find the fraction of the Gaussian distribution of

aAdapted from Amendola & Tsujikawa, Dark Energy. Theory and Observations, CUP 2010.
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perturbations that are above this δ collapse value. This fraction corresponds to the fraction of perturbations
that form structures for a given mass.

For scales at which Newtonian thery applies, a shell of matter at distance R from the center of a spherical
overdensity with uniform density ρ moves according to the Newtonian force law

d2R

dt2
= −GM(R)

R2
= −4

3
πGρR , (4.3.1)

where M(R) = 4πρR3/3 is the constant mass inside the shell. Since for pressureless matter the background
density scales as ρ0 = (3M(R0)/4π)(R0a(t))−3, where R0 is the initial size of the perturbation, we can define
the density contrast as

δ =

(
a(t)R0

R

)3

− 1 , (4.3.2)

inside the shell and δ = 0 outside. The crucial assumption here is that δ is a step, or top-hat, function, which
allows in fact to cancel all spatial derivatives. Replacing R with δ, the equation for δ in our time variable N is
then:

δ′′ +

(
1 +
H′

H

)
δ′ − 3

2
Ωmδ =

4

3

δ′2

1 + δ
+

3

2
Ωmδ

2 . (4.3.3)

Multyiplying Eq. (4.3.1) on both sides by 2dR/dt the equation can be integrated once as(
dR

dt

)2

=
2GM

R
− C , (4.3.4)

where C is an integration constant. This is the cycloid equation, whose solution for C > 0 can be given
parametrically as R = GM(1− cos τ)/C and t = GM(τ − sin τ)/C3/2 where τ ∈ (0, 2π). Substituting in δ and
putting a(t) = a0(t/t0)2/3 we obtain in the Einstein-de Sitter case:

δ =
9

2

(τ − sin τ)2

(1− cos τ)3
− 1 , (4.3.5)

δL =
3

5

[
3

4
(τ − sin τ)

]2/3

, (4.3.6)

where δL (> 0) is the solution of the linearized equation, i.e. the left-hand-side of Eq. (4.3.3). Note that
δ(τ = 0) = 0. It is convenient to use δL as a bookkeeping device: we express the behavior of δ as a function of
δL instead of the parameter τ . A similar solution exists for an underdensity δL < 0. We have assumed a constant
mass M(R): this implies that our analysis is valid only until shell-crossing occurs. As one expects, the radius R
first increases (a small perturbation expands with the cosmological expansion), reaches a turnaround point and
then decreases to zero (the perturbation collapses under its own gravity). The final singular phase is of course
unphysical because the dust assumption will fail at some high density, non-radial fluctuations will develop and
even the dark matter collisionless component will undergo the so-called “violent relaxation” mechanism and will
set into virial equilibrium.

The main result we get from this model is the critical or collapse value δcoll of the linear fluctuation δL that
is reached at the time of collapse. This quantity is of cosmological relevance because it is used in the Press-
Schechter theory as a first approximation to the epoch of galaxy formation and to calculate the abundance of
collapsed objects, as we will discuss below. It can be seen from Eq. (4.3.6) that when τ = 0 the perturbations
are zero, then δ reaches a turnaround at τ = π (for which δT ≡ δ(π) = (3π/4)2 − 1 ≈ 4.6 and δL ≈ 1.063) and
finally for τ = 2π the overdensity δ (but of course not δL) becomes singular. This singularity occurs when

δL = δcoll = (3/5)(3π/2)2/3 ≈ 1.686 , (4.3.7)

and it takes exactly twice as much time as for the turnaround. Notice that this value is independent of time: a
spherical perturbation in the Einstein-de Sitter universe collapses to a singularity whenever the linear density
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contrast equals 1.686. For other models, however, δcoll depends on time. An approximation for dark energy
with constant wDE in flat space is (Weinberg and Kamionkowski, MNRAS 341, 2003, 251)

δcoll(z) = 1.686 [1 + α(wDE) log10 Ωm(z)] , (4.3.8)
α(wDE) = 0.353w4

DE + 1.044w3
DE + 1.128w2

DE + 0.555wDE + 0.131 . (4.3.9)

One can define other phenomenologically interesting epochs that are sometimes used: the epoch of non-
linearity (δ = 1, corresponding to δL ≈ 0.57) and the epoch of expected virialization. The latter is defined to
correspond to the instant in which the kinetic energy K is related to the gravitational potential energy U by
the condition

K =
R

2

∂U

∂R
. (4.3.10)

However, it is by no means obvious that this condition is enough to realize virialization, especially when dark
energy is present. For an inverse-power potential (U ∝ −1/R), the virialization implies K = −U/2. The radius
and the density of the perturbation at virialization can be calculated by assuming conservation of energy at
turnaround (when the kinetic energy vanishes; subscript T ) and at a virialization epoch tV when the kinetic
energy satisfies KV = −UV /2, i.e.

UT = UV +KV = UV /2 . (4.3.11)

Since for a uniform sphere U = −3GM/5R (and remembering once again we are assuming M = constant),
we obtain the relation RV = RT /2. Hence the virialized radius is half the turnaround radius. The density inside
this radius turns out to be δV ≈ 178 and the epoch of this occurrence is very close to the final collapse time. A
numerical fit for wDE = constant models in flat space gives (Weinberg and Kamionkowski, MNRAS 341, 2003,
251)

δV ≈ 178[1 + b1θ
b2(z)] , (4.3.12)

θ =
1− Ωm(z)

Ωm(z)
, (4.3.13)

b1 = 0.399− 1.309(|wDE|0.426 − 1) , (4.3.14)
b2 = 0.941− 0.205(|wDE|0.938 − 1) , (4.3.15)

if z is the collapse redshift.
It is difficult to go much beyond this kind of phenomenological parametrization. A full understanding of

non-linear physics in dark energy would require extensive N -body simulations coupled to lattice simulations of
scalar fields, a technical feat which is still largely to be explored.

4.4 The mass function of collapsed objectsb

The main reason why it is worthwhile to discuss the abstract phenomenon as a “spherical collapse” is that
the critical value δcoll and the virial radius RV (or rather the mass contained within that radius) enter the
Press-Schecther (PS) formula for the abundance of virialized objects. The main idea behind the PS formula is
that we can estimate the number of collapsed objects formed in a random Gaussian field by simply counting at
any given time how many regions have an overdensity above the collapse threshold given by δcoll.

Suppose at some redshift z we smooth a random Gaussian field of density fluctuations over cells of radius
R, each containing on average the mass M = 4πR3ρ/3 with ρ(z) the background density. Since the smoothing
is a linear operation, if the field is Gaussian then also the density contrast δ in the cells will be distributed
as a Gaussian probability distribution function with variance σ2

M (z). Suppose that all the cells with δ > δcoll

undergo collapse and virialization. The fraction of collapsed regions (i.e. the fraction of space containing objects
of mass larger than M) will be then

p(M, z)|δ>δcoll =
1

σM (z)
√

2π

∫ ∞
δcoll

exp

(
− δ2

M

2σ2
M (z)

)
dδM =

1

2
erfc

(
δcoll√

2σM (z)

)
, (4.4.1)

bAdapted from Amendola & Tsujikawa, Dark Energy. Theory and Observations, CUP 2010.
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where erfc(x) is the error function. The fraction containing objects of mass within the range [M,M + dM ] is
given by

dp(M, z) =

∣∣∣∣∂p(M, z)|δ>δcoll
∂M

∣∣∣∣ dM . (4.4.2)

Remember that in general the threshold δcoll depends on z. Although the boxes with δ > δcoll are certainly
not in the linear regime, the idea is to use the linear regime to estimate the fraction of collapsed regions. We
are then implicitly assuming that the variance σM (z) is in the linear regime (σM � 1) and therefore that it can
be calculated from Eq. (2.6.6) with the linear spectrum at any redshift. By using the growth function D(z) we
have σM (z) = D(z)σM (0).

Now, suppose in a volume V we find N collapsed objects, each occupying a volume VM = M/ρ. Then by
definition the volume occupied collectively by the N objects is the fraction dp of V , i.e.

NVM = V dp , (4.4.3)

and therefore the number density dn of collapsed halos with mass in the dM range (the mass function) will be

dn =
N

V
=

dp

VM
=

ρ

M

∣∣∣∣∂p(M, z)|δ>δcoll
∂M

∣∣∣∣ dM =

√
2

π

ρ

M2

δcoll

σM

∣∣∣∣d lnσM
d lnM

∣∣∣∣ e−δ2coll/(2σ2
M )dM . (4.4.4)

The extra factor of two that we have inserted in the last step is required because we want all the masses to end
up in some object, so that we impose the condition

V

∫ ∞
0

(
dn

dM

)
dM = 1 . (4.4.5)

This factor-of-2 adjustment can be justified with a random walk analysis of fluctuations. In any case, one finds
it necessary to fit N -body simulations. Sometimes the number density n(M, z) is taken to be the comoving
number density (i.e. is multiplied by a3): in this case also ρ should be identified with the comoving background
density.

Equivalently, Eq. (4.4.4) is sometimes written as

M

ρ

∣∣∣∣ dn

d lnσM

∣∣∣∣ = f(σM , z) , (4.4.6)

where all the cosmological information is contained in the function

f(σM , z) =

√
2

π

δcoll

σM
e−δ

2
coll/(2σ

2
M ) . (4.4.7)

The number density dn(M, z) can then be “directly” confronted with the observed densities of objects (clusters,
galaxies, quasars) at any redshift. The mass M is often taken to be the virial mass of that class of objects.
Because of the exponential dependence on δcoll/σM , the PS formula is quite sensitive to the cosmological model.

The simplicity of the PS approach must not hide the fact that it relies on a dangerous extrapolation of
the linear theory, on the critical assumption of spherical collapse with top-hat filter, on a dubious definition of
virialization, and on the absence of processes like merging, dissipation, shell crossing. Surprisingly, this shaky
foundation did not prevent the PS formula to prove itself a valuable first approximation to the abundances
obtained through numerical simulations. Not surprisingly, many works have been dedicated to improving the
original PS formula by including corrections due to departure from sphericity or merging or by directly fitting
to large N -body simulations. A remarkably successful fit is given by (Jenkins et al. MNRAS 321 (2001) 372)

f(σM , z) = 0.315 exp(−|0.61− lnσM (z)|3.8) . (4.4.8)

This fit has been found to hold for a large range of masses, redshifts, and cosmological parameters, including
dark energy with constant or varying wDE .



Chapter 5

Standard non-linear perturbation theory

In this chapter we introduce a systematic way to estimate the effect of non-linearities on the power spectrum.
We work entirely in Newtonian gravity since we refer to scales much smaller than the horizon, and neglect
radiation since we refer to the late-time universe. A useful review for this section is Bernardeau et al. 2002 [4].
For redshift distortions and biased tracers, I followed [18] [7] [11].

Quick summary
1. The Newtonian fluidodynamics equation are non-linear; this non-linearity is expected to be important at

small scales (large k’s)

2. In Fourier space, the non-linear terms becomes convolutions of the perturbation variables δ, θ, with some
kernels

3. Finding the correct kernels is the main problem of non-linear perturbation theory

4. We derive here the standard perturbation theory (Eulerian SPT) kernels; they are analytical in the
Einstein-deSitter (EdS) limit Ωm = 1, which however is a decent approximation also for ΛCDM and
similar cosmologies

5. What we observe however are galaxies in redshift space, so the kernels must be improved to take this into
account

5.1 Second-order perturbations
We now go back to the general non-linear Newtonian fluidodynamical equations

ρ̇+ v · ∇ρ = −ρ∇ · v continuity (5.1.1)
ρ(v̇ + v · ∇v) = −∇p− ρ∇Φ Euler (5.1.2)

∇2Φ = 4πρ Poisson (5.1.3)

where the dot is here a derivative wrt cosmic time, v = vp + Hx is the total velocity, including the Hubble
expansion vH = Hx, and vp the peculiar velocity. We now perform the same steps as in Chap. 1 but keep the
second-order terms. By introducing the density contrast δ = (ρ(x, t)− ρ0(t))/ρ0(t) the first one can be written
as (ρ̇ = ˙(ρ0δ) + ρ̇0 = ρ̇0(1 + δ) + ρ0δ̇)

ρ̇0(1 + δ) + ρ0δ̇ + ρ0(vp+Hx) · ∇δ = −ρ0(1 + δ)(∇ · vp + 3H) (5.1.4)

Since at the background level ρ̇0 + 3Hρ0 = 0, this becomes (we suppress the subscript p from now on)

dδ

dt
≡ δ̇ +Hx · ∇δ = −∇ · (1 + δ)v (5.1.5)

41
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On the rhs a nabla operator wrt physical coordinates x = ar, which becomes a−1∇r converting to comoving
coordinates. On the lhs, as already demonstrated,(

dδ

dt

)
x

≡ δ̇ + v0 · ∇δ =

(
∂δ

∂t

)
r

(5.1.6)

Finally, therefore, the continuity equation is (dot is from now on the derivative wrt conformal time, so the a−1

factors cancel out)

δ̇ = −∇(1 + δ)v (5.1.7)

where the nabla is now wrt comoving coordinates and we suppressed the subscript r.
The same steps as above lead to the following form of the Euler equation

v̇ +Hv = −∇(v · ∇v)−∇φ (5.1.8)

whereH = aH, φ is the cosmological potential defined in Eq. (1.2.13), and now v is the peculiar velocity. Taking
the gradient and employing the Poisson equation we obtain

θ̇ +Hθ +
3

2
H2δ = −∇(v · ∇v) (5.1.9)

where θ ≡ ∇v, and we employed the Friedmann equation 3H2 = 8πρ.
The two equations (5.1.7),(5.1.9) are the basic starting point for the non-linear perturbation theory. They

can be combined into a single non-linear second order equation if we assume that v is irrotational also at second
order, i.e. v = ∇w, where w is a velocity potential and of course θ = ∇2w. Let us first rewrite the equations
using log a as independent variable and redefining θnew = θold/H:

dδ

dN
≡ δ′ + v∇δ = −(1 + δ)θ (5.1.10)

θ′ = −(1 +
H′

H
)θ − 3

2
δ −∇i(vj∇jvi) (5.1.11)

The last term is

∇i(vj∇jvi) = ∇i
[
(∇jw)∇j∇iw)

]
= (∇i∇jw)(∇j∇iw) +

[
(∇jw)∇i∇j∇iw

]
(5.1.12)

= (∇i∇jw)(∇j∇iw) +
[
(∇jw)∇j∇2w)

]
= (∇i∇jw)2 + vi∇iθ (5.1.13)

so

dθ

dN
≡ θ′ + vi∇iθ = −(1 +

H′

H
)θ − 3

2
δ − (∇i∇jw)2 (5.1.14)

5.2 Spherical collapse, again
We now solve the equations in a special case, the spherical collapse. That is, we study how the density contrast
evolve when the dominant component of the velocity is purely radial, i.e. the non-linear collapse is approximately
spherical. This gives an estimate of the growth in the non-linear regime.

Here and in the next section we will often refer to the Einstein-de Sitter (EdS) model due to its simplicity that
allows for analytical solutions. This is a cosmological model with zero spatial curvature and only pressureless
matter, so that Ωm = 1. Therefore, the Hubble expansion function as a function of redshift is simply H =
H0(1 + z)3/2. Moreover, the linear growth of perturbations if δ ∼ a and therefore the rate is f = 1. Although
today’s best-fit model is considerably different, the EdS is a good approximation for the past history at redshifts
higher that a few, and overall not a terrible approximation even today.

If the fluid moves spherically, one can write v = v{1, 1, 1}/
√

3 and

(∇i∇jw)2 = (∇ivj)(∇ivj) =
1

3
θ2 (5.2.1)
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so finally

dθ

dN
≡ θ′ + vi∇iθ = −(1 +

H′

H
)θ − 3

2
δ − 1

3
θ2 (5.2.2)

Now, differentiating (5.1.10) and inserting (5.2.2), and neglecting the gradient terms ∇δ,∇θ because near the
center of a spherical perturbations they must indeed vanish, we obtain the same spherical collapse equation
already encountered in Eq. (4.3.3):

δ′′ +

(
1 +
H′

H

)
δ′ − 3

2
Ωmδ =

4

3

δ′2

1 + δ
+

3

2
Ωmδ

2 . (5.2.3)

where now δ depends only on time. In a Einstein-de Sitter (EdS) Universe in which Ωm = 1, one has H
′

H = − 1
2

and, as we know already, one finds at first order G(1) = G(1)′ = G(1)′′ = a and the growth function f = 1. At
second order, we can neglect the denominator 1 + δ at rhs, and write

4

3

δ′2

1 + δ
+

3

2
Ωmδ

2 ≈
(

4

3
f2 +

3

2
Ωm

)
δ2 =

17

6
δ2 (5.2.4)

We now expand δ = G(1)δ(1) +G(2)(δ(1))2 + ... Therefore at second order we get in EdS

G(2)′′ +
1

2
G(2)′ − 3

2
G(2) =

17

6
G(1)2 . (5.2.5)

Under the Ansatz G(2) = αG(1)2 we find

G(2) =
17

21
G(1)2 . (5.2.6)

One sees therefore that the second-order perturbations grow as G(1)2 in a EdS model. Although this result has
been derived in the spherical collapse case, in the following we will assume that the second order perturbations
grow as G(1)2 even outside this assumption. Later on we will write down the general equations for the second-
order growth, and show that G(1)2 is a good approximation.

5.3 Fourier space
We now consider in detail the space dependence of the second-order perturbations, in order to derive a correction
to the power spectrum. This approach is called Eulerian perturbation theory (because the observer is supposed
to stay at fixed coordinates), or simply standard perturbation theory (SPT). There are other approaches in
literature, for instance Lagrangian Perturbation Theory, in which the main concept is to follow the particle’s
trajectories through the evolution of a displacement field, and Kinetic Field Theory [15], a non-perturbative
approach in which the main idea is to build a partition function for the ensemble of particles. We will not
discuss them here.

In the linear regime, Eq. (5.1.7) gives δ̇ = −∇v, which can be immediately Fourier-transformed as δ̇ =
−ikv = −θ. Now we put δ̇ = Hδ′ = Hfδ, and notice that at the linear level the velocity vector v is sourced by
the gravitational gradient, and therefore v ∝ k (provided the rotational part has decayed away). Then putting
v = Ak we find

v = iHδkf
k

k2
(5.3.1)

where δk is the total matter field. This can also be written as

v = −iθ k

k2
(5.3.2)

so we can convert v, δ, θ at linear level one onto another. It is also to be noticed that the linear equation (1.3.2)
can be written in general

f ′ + f2 + Ff − S = 0 (5.3.3)
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introducing a “friction” coefficient F = 1 +H′/H = 1
2 (1− 3wDEΩDE) and a “source” term S = 3Ωm/2.

Expanding in Fourier modes, we have δ(x) = (2π)−3
∫
δke

ikxd3k, and the analog for v. The Fourier decom-
position gives for Eq. (5.1.7)∫

δ̇ke
ikx d3k

(2π)3
= −∇(1 +

∫
δke

ikx d3k

(2π)3
)(

∫
vk′e

ik′x d3k′

(2π)3
) (5.3.4)

or ∫
δ̇ke

ikx d3k

(2π)3
= −i

∫
vkke

ikxd3k − i
∫
δkvk′(k + k′)ei(k+k′)x d3k

(2π)3

d3k′

(2π)3
(5.3.5)

Integrating over (2π)−3e−ik
′′xd3x one gets on the lhs∫

δ̇k
(2π)3

ei(k−k
′′)x d3k

(2π)3
d3x =

∫
δ̇k

d3k

(2π)3
δD(k− k′′) =

δ̇k′′

(2π)3
(5.3.6)

and on the rhs

− ivk
′′k′′

(2π)3
− i
∫
δkvk′(k + k′)δD(k + k′ − k′′)

d3k

(2π)3

d3k′

(2π)3
(5.3.7)

So we have (switching some k labeling)

δ̇k + ivkk = −i
∫
δk1vk2(k1 + k2)(2π)3δD(k1 + k2 − k)

d3k1

(2π)3

d3k2

(2π)3
(5.3.8)

We now expand the perturbation variables as

δ = εδ(1) + ε2δ(2) + ... (5.3.9)

and similarly for θ and v , where the small parameter ε is temporarily inserted to keep track of the order.
Inserting these expansions, one immediately see that at order ε the δ(1), θ(1) cancel out since they obey the
first order equation δ̇(1) = −θ(1). At order ε2, the lhs remains formally the same (but now the quanities
are second order), while at rhs we get products of first order terms, so we can use first order equations as
e.g. δk1 = −ik1v1/(Hf) = −θ/(Hf) . In the following calculations we simplify the notation by defining
d3k/(2π)3 → d3k, i.e. the factor of (2π)3 will be understood, and put back at the very end. Then, using Eq.
(5.3.2), at order ε2 one has

ε2δ̇
(2)
k + ε2θ

(2)
k = ε2Hf

∫
δ

(1)
k1
δ

(1)
k2

k2

k2
2

· (k1 + k2)(2π)3δD(k1 + k2 − k)d3k1d
3k2 (5.3.10)

(Clearly, here and often below, we could immediately do one of the 3D integrals on the rhs thanks to the Dirac
delta, but it is convenient to keep the expression in this more symmetric form.) The terms on the rhs couple
different k modes, whereas they are uncoupled at the linear level. From now on, we delete the ε and also
suppress the superscripts (1), (2) when not needed, since it is clear that wherever there is a single perturbation
variable, it has to be second order, and wherever there is a product of two perturbation variables, they have to
be first order. Also, the perturbation variables at the lhs of the equations are understood to be functions of k
and we suppress the subscript k, so that δi ≡ δ(1)(ki) .

As already seen, we define the linear growth factor G (dropping the superscript (1)) such that G(z = 0) = 1
and

δ = G(z)δ0

and the growth rate f ≡ G′/G (we assume G, f are k-independent). It is again useful to define a new divergence:

θnew =
θold
H

(5.3.11)
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Then Eq. (5.3.10) can be written as

Hδ′ +Hθ = HG2f

∫
δ1δ2

k2k1 + k2k2

k2
2

(2π)3δD(k1 + k2 − k)d3k1d
3k2 (5.3.12)

where the prime is d/d log a and where δi are evaluated at the present time (so they are independent of time).
All δ, θ inside the integrals from now on are the present values. We rewrite this as

θ + δ′ = G2f

∫
δ1δ2α(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2 ≡ C (5.3.13)

In this and the following equations, we observe that the homogenous part of the equation (i.e., the l.h.s)
is identical to the first order equations, and therefore the homogenous solution coincides with the first order
solution, which we already included in the expansion (5.3.9). Therefore, in the following we only need to identify
particular solutions of the inhomogeneous equations.

Since we can switch the labels 1, 2 inside the integral, the kernel α(k1,k2) can be symmetrized

α(k1,k2) =
1

2

[
k2 · (k1 + k2)

k2
2

+
k1 · (k1 + k2)

k2
1

]
(5.3.14)

=
1

2

(
k2

k2
1

+
k1

k2
2

)
· (k1 + k2) (5.3.15)

This symmetrization is always possible and sometimes used explicitly, sometimes understood. Similarly, the
general Euler equation (5.1.9) in real space can be written as

θ′ + Fθ + Sδ = −∇
[
(

∫
vke

ikxd3k) · ∇
∫

vk′e
ik′xd3k′

]
(5.3.16)

= −i∇
[∫

(vk · k′)vk′eikxeik
′xd3kd3k′

]
(5.3.17)

=

∫
(vk · k′)(vk′ · (k + k′))ei(k

′+k)xd3k′d3k (5.3.18)

From now on we put ourselves in an Einstein-de Sitter model (i.e. Ωm = 1). In this case, G = G′ = G′′ = a.
Moreover, F = 1/2, S = 3/2. Although in EdS f = 1, we keep explicitly f in some expressions. Notice that we
always assume that G and f only depend on time and not on k. Then we see that

θ′ + Fθ + Sδ = −G2

∫
θkθk′(

k

k2
· k′)( k′

k′2
· (k + k′))ei(k

′+k)xd3k′d3k (5.3.19)

= −G2

∫
θkθk′(

k · k′

k2k′2
k′ · (k + k′))ei(k

′+k)xd3k′d3k (5.3.20)

The kernel can be symmetrized:

β(k1,k2) =
1

2
[(
k · k′

k2k′2
k′ · (k + k′)) + (k↔ k′)] =

1

2k2k′2
[k · k′(k′ + k) · (k + k′)] =

k · k′(k′ + k)2

2k2k′2
(5.3.21)

Integrating again over (2π)−3e−ik
′′xd3x one gets

θ′ + Fθ + Sδ = −G2

∫
θ1θ2β(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2 (5.3.22)

= −G2f2

∫
δ1δ2β(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2 ≡ E (5.3.23)

where now all perturbation variables are in Fourier space, where (after symmetrization)

α =
(k1 + k2)

2
(
k1

k2
1

+
k2

k2
2

) = 1 +
1

2
k1k2(

1

k2
1

+
1

k2
2

) (5.3.24)

β =
(k1 + k2)2(k1k2)

2k2
1k

2
2

(5.3.25)
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We can now differentiate the θ equation (5.3.13) and obtain

θ′ + δ′′ = 2G2(f2 +
1

2
f ′)

∫
δ1δ2α(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2 = C ′ (5.3.26)

Then we insert the θ′ equation, replace again θ = C − δ′ and obtain an equation for the second order δ alone
on the lhs

δ′′ + (−F (C − δ′)− Sδ + E) = C ′

or

δ′′ + Fδ′ − Sδ = C ′ − E + FC (5.3.27)

Putting δ(2) = G(2)δ
(2)
k , where δ(2)

k depends only on k, and, as shown in Eq. (5.2.6), G(2) = AG2, we see that

G(2)′ = 2AG2f ; G(2)′′ = 4AG2f2 + 2AG2f ′ (5.3.28)

and thus

δ′′+Fδ′−Sδ = [(G(2))′′+FG(2)′−SG(2)]δ = (4(f2 +
1

2
f ′)+2Ff−S)AG2δ

(2)
k = (4(f2 +

1

2
f ′)+2Ff−S)δ(2)

(5.3.29)

In EdS, putting f = 1, the last expression equals 7δ(2)/2 and then one has from (5.3.27)

δ(2) =
2

7
(δ′′ + Fδ′ − Sδ) = 2

C ′ − E + FC

7
(5.3.30)

=
2G2

7

∫
δ1δ2[2α+ β +

1

2
α](2π)3δD(k1 + k2 − k)d3k1d

3k2 (5.3.31)

Notice that we do not need the value of A, but just that G(2) ∝ G2. So we obtain

δ(2) =
G2

7

∫
δ1δ2[5α+ 2β](2π)3δD(k1 + k2 − k)d3k1d

3k2 (5.3.32)

=
2G2

7

∫
δ1δ2[5

k

4
(
k1

k2
1

+
k2

k2
2

) +
(k1 + k2)2(k1k2)

2k2
1k

2
2

](2π)3δD(k1 + k2 − k)d3k1d
3k2 (5.3.33)

= G2

∫
δ1δ2F2(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2 (5.3.34)

where

F2 =
5α+ 2β

7
=

2

7

[
5
k

4
(
k1

k2
1

+
k2

k2
2

) +
(k1 + k2)2(k1k2)

2k2
1k

2
2

]
(5.3.35)

=
2

7

[
5

4
(2 + k1k2(

1

k2
1

+
1

k2
2

)) +
(k2

1 + k2
2 + 2k1k2)(k1k2)

2k2
1k

2
2

]
(5.3.36)

=
2

7

[
5

2
+

7

4
k1k2(

1

k2
1

+
1

k2
2

)) +
(k1k2)2

k2
1k

2
2

]
(5.3.37)

=
5

7
+

1

2
k1k2(

1

k2
1

+
1

k2
2

)) +
2

7

(k1k2)2

k2
1k

2
2

(5.3.38)

Similarly, one can write an equation for θ(2) alone

θ(2) + δ′(2) = θ(2) + 2G2fδ(2) = G2f

∫
δ1δ2α(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2 (5.3.39)
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from which, since GG′ = G2 in EdS,

θ(2) = −2G2f

∫
δ1δ2F2(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2

+G2f

∫
δ1δ2α(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2

or

θ(2) = −G2f

∫
δ1δ2G2(2π)3δD(k1 + k2 − k)d3k1d

3k2 (5.3.40)

with

G2 = 2F2 − α =
3α+ 4β

7
=

10

7
+ k1k2(

1

k2
1

+
1

k2
2

) +
4

7

(k1k2)2

k2
1k

2
2

− k1 + k2

2
(
k1

k2
1

+
k2

k2
2

) (5.3.41)

=
10

7
+ k1k2(

1

k2
1

+
1

k2
2

) +
4

7

(k1k2)2

k2
1k

2
2

− 1− 1

2
(
k2k1

k2
1

+
k1k2

k2
2

) (5.3.42)

=
3

7
+ k1k2(

1

k2
1

+
1

k2
2

) +
4

7

(k1k2)2

k2
1k

2
2

− 1

2
k2k1(

1

k2
1

+
1

k2
2

) (5.3.43)

=
3

7
+

1

2
k2k1(

1

k2
1

+
1

k2
2

) +
4

7

(k1k2)2

k2
1k

2
2

(5.3.44)

In general, it happens that G(2) ≈ AG2 even for non EdS models.
Whatever the cosmology, therefore, one always has, to a good approximation, the forms

θ(2) = −G2f

∫
δ1δ2G2(k1,k2)(2π)3δD(k1 + k2 − k)

d3k1

(2π)3

d3k2

(2π)3
(5.3.45)

δ(2) = G2

∫
δ1δ2F2(k1,k2)(2π)3δD(k1 + k2 − k)

d3k1

(2π)3

d3k2

(2π)3
(5.3.46)

(we inserted back the (2π)3 factors) where G is the linear growth function and

F2 =
5

7
+

k1k2

2k1k2
(
k1

k2
+
k2

k1
) +

2

7
(
k1k2

k1k2
)2 (5.3.47)

G2 =
3

7
+

k1k2

2k1k2
(
k1

k2
+
k2

k1
) +

4

7
(
k1k2

k1k2
)2 (5.3.48)

(Notice that although is a good approximation to take f = 1 in (5.3.29), the factor f is θ(2) is necessary). Note
that

F2(k1,−k1) = 0 (5.3.49)
G2(k1,−k1) = 0 (5.3.50)

This property is a consequence of the fact that at any order we have δk=0 = V −1
∫
δ(x)d3x = 0, i.e. mass

conservation, and the same for all perturbation variables.
The procedure can be extended to all orders by a recursive process for n ≥ 2, see e.g. [4]:

Fn(k1, ...kn) =

n−1∑
m=1

Gm(k1, ...km)

(2n+ 3)(n− 1)
[(2n+ 1)α(q1,q2)Fn−m(km+1, ...kn) + 2β(q1,q2)Gn−m(km+1, ...kn)]

(5.3.51)

Gn(k1, ...kn) =

n−1∑
m=1

Gm(k1, ...km)

(2n+ 3)(n− 1)
[3α(q1,q2)Fn−m(km+1, ...kn) + 2nβ(q1,q2)Gn−m(km+1, ...kn)]

(5.3.52)
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where q1 ≡ k1 + ...+ km, q2 ≡ km+1 + ...+ kn and F1 = G1 = 1. So one gets for instance (see Appendix for a
detailed calculation of F3)

θ(3) = G3

∫
θ1θ2θ3G3(k1,k2,k3)(2π)3δD(k1 + k2 + k3 − k)

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
(5.3.53)

= −G3

∫
δ1δ2δ3G3(k1,k2,k3)(2π)3δD(k1 + k2 + k3 − k)

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
(5.3.54)

δ(3) = G3

∫
δ1δ2δ3F3(k1,k2,k3)(2π)3δD(k1 + k2 + k3 − k)

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
(5.3.55)

where

F3 =
1

18
[7α(k1, k2 + k3)F2(k2, k3) + 2β(k1, k2 + k3)G2(k2, k3) +G2(k1, k2)(7α(k1 + k2, k3) + 2β(k1 + k2, k3))]

(5.3.56)

G3 =
1

18
[3α(k1, k2 + k3)F2(k2, k3) + 6β(k1, k2 + k3)G2(k2, k3) +G2(k1, k2)(3α(k1 + k2, k3) + 6β(k1 + k2, k3))]

(5.3.57)

(to be symmetrized). As will be shown shortly, we need also the third order for δ to derive the corrected power
spectrum.

The approximation G(2) ∝ G2 can be easily lifted. Let us restart with Eq. (5.3.27)

δ′′ + Fδ′ − Sδ = C ′ − E + FC = 2G2(f2 +
1

2
f ′)

∫
δ1δ2α(k1,k2)(2π)3δD(k1 + k2 − k)

d3k1

(2π)3

d3k2

(2π)3

(5.3.58)

−G2f2

∫
δ1δ2β(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2 (5.3.59)

+ FG2f

∫
δ1δ2α(k1,k2)(2π)3δD(k1 + k2 − k)

d3k1

(2π)3

d3k2

(2π)3
(5.3.60)

= G2(2f2 + f ′ + Ff)

∫
δ1δ2α(k1,k2)(2π)3δD(k1 + k2 − k)

d3k1

(2π)3

d3k2

(2π)3
(5.3.61)

+G2f2

∫
δ1δ2β(k1,k2)(2π)3δD(k1 + k2 − k)

d3k1

(2π)3

d3k2

(2π)3
(5.3.62)

Then we write the general solution as a linear combination of separable terms

δ(2) = G2[gA(a)A(k) + gB(a)B(k)] (5.3.63)

with

A(k) =

∫
δ1δ2α(k1,k2)(2π)3δD(k1 + k2 − k)

d3k1

(2π)3

d3k2

(2π)3
(5.3.64)

B(k) =

∫
δ1δ2β(k1,k2)(2π)3δD(k1 + k2 − k)

d3k1

(2π)3

d3k2

(2π)3
(5.3.65)

By identifying separately on both sides of (5.3.62) the terms with α and those with β, we obtain two equations,
one for gA and one for gB

g′′A + (4f + F )g′A + gA
(
2f2 + S

)
= f2 + S

g′′B + (4f + F )g′B + gB
(
2f2 + S

)
= f2 (5.3.66)

(we used Eq. 5.3.3). Now one can see that the combination D = gA + gB obeys the equation

D′′ + (4f + F )D′ +D
(
2f2 + S

)
= 2f2 + S (5.3.67)
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which has particular solution D = 1. Therefore gB = 1− gA. Then the new time-dependent kernel is

F2(k1,k2, a) = gA(a)α(k1,k2) + (1− gA(a))β(k1,k2) = gA(a)(α(k1,k2)− β(k1,k2)) + β(k1,k2) (5.3.68)

The initial conditions can be taken to be standard pure EdS (i.e. dominated by CDM), so that gA = 1 and
g′A = 0. A similar set of equations gives the third order growth. In EdS, with F = 1

2 , S = 3
2 , f = 1, the equations

become

g′′A +
9

2
g′A +

7

2
gA =

5

2
(5.3.69)

g′′B +
9

2
g′B +

7

2
gB = 1 (5.3.70)

solved by gA = 5/7 and gB = 2/7 (we consider only the growing solution as usual), recovering the EdS solutions.
For θ(2) we can proceed as above, starting from Eq. (5.3.39), that we rewrite as

θ(2) + δ′(2) = θ(2) + (G2gA)′A(k) + (G2gB)′B(k) = fG2A(k) (5.3.71)

from which

θ(2) = G2{[−g′A − 2fgA + f ]A(k)− (g′B + fgB)B(k)} (5.3.72)

In EdS, f = 1 and gA = 5/7, gB = 2/7, so we get θ(2) = −G2[ 3
7A(k) + 2

7B(k)] which agrees with Eq. (5.3.45).
The solution of (5.3.66) can in general only be obtained numerically; an accurate fit for wCDM is provided

in [20]. As already mentioned, however, the approximation G(2) ∝ G2 is usually good to within a few percent
at most.

Since f ≈ Ω0.54
m and therefore Ωm ≈ f2, one has S ≈ 3f2/2, and then the rhs of both equations (5.3.66)

is 7G2f2/2. This means that as long as Ωm ≈ f2, as in this more general case, δ(2) is separable in a function
that depends only on time and one that depends only on k. This occurs at all orders. This is the fundamental
reason why G(2) ∝ G2 is a good approximation.

5.4 Bias and RSD
To see the effect of the redshift distortion on the kernels, we go back to the real space-redshift space mappinga

s = r
[
1 +

u(r)

r

]
(5.4.1)

(we assume that the velocity u(0) of the observer has been subtracted out) in Eq. (3.5.6)

δs =
n(s)dVs
n0dVs

− 1 =
n(r)dVr

n0dVr

(
1 + ∆u(r)

r

)2

|J |
− 1 (5.4.2)

where |J | = 1 + du
dr and

u = H−1v · r
r

(5.4.3)

This relation is exact at all orders. The term ∆u/r can be neglected because we assume the galaxies are very
distant. So we have

δs =
n(r)dVr
n0dVr|J |

− 1 =
1 + δ(r)

1 + du
dr

− 1 =
δ(r)− du

dr

1 + du
dr

(5.4.4)

In Fourier space, this equation becomes

δs(k) =

∫
d3s[

δ(r)− du
dr

1 + du
dr

]eiks =

∫
d3s

1 + du
dr

[δ(r)− du

dr
]eikr+ik r

ru =

∫
d3r[δ(r)− du

dr
]eikr+ik r

ru (5.4.5)

aFor this section, we follow in part Refs. [18, 11].
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(since d3s = |J |d3r). The term inside the square brackets is usually called redshift space distortion, RSD; the
additional term in the exponent instead is responsible for the excess of clustering along the line of sight, and is
called fingers-of-God (FOG) effect.

Now we write v · rr = vµθ and define θ = ikθv/H, so that

eik
r
ru = eik

r
r
v
Hµθ = eikµ

v
Hµθ = e

k
kθ
θµµθ (5.4.6)

The term θµθ/kθ is a field in real space. We can write it as a Fourier integral and expand the exponential in a
series of Fourier integrals

e
kµθ

µθ
kθ =

∑
n=0

(kµ)n

n!
[
µθ
kθ
θ(r)]n = 1+ (5.4.7)

∑
n=1

(kµ)n

n!

∫
d3q1

(2π)3

µ1

q1
θ(q1)e−iq1r

∫
d3q2

(2π)3

µ2

q2
θ(q2)e−iq2r..

∫
d3qn
(2π)3

µn
qn
θ(qn)e−iqnr (5.4.8)

= 1 +
∑
n=1

(kµ)n

n!

∫
d3q1

(2π)3

µ1

q1
θ(q1)

∫
d3q2

(2π)3

µ2

q2
θ(q2)..

∫
d3qn
(2π)3

µn
qn
θ(qn)e−i

∑n
i qir (5.4.9)

so that

δs(k) =

∫
d3r[δ(r)− du

dr
]{eikr +

∑
n=1

(kµ)n

n!

∫
d3q1

(2π)3

µ1

q1
θ(q1)

∫
d3q2

(2π)3

µ2

q2
θ(q2)..

∫
d3qn
(2π)3

µn
qn
θ(qn)ei(k−

∑n
i qi)r}

(5.4.10)

We assumed that the angle µ is a constant. This is called flat-field approximation: the galaxies are so far, and
the field of view is so small in angular extension and in depth, that the angles between the vectors k and the
line of sight r, is constant.

Before proceding further, we need now to consider the bias between galaxies δg and dark matter δ. A
reasonable model, called local deterministic bias, for the non-linear bias is the expansion

δg(r) = b1δ(r) +
1

2
b2δ(r)2 + ... (5.4.11)

where the parameters bi are supposed to depend only on time and not on space. A constant b0 is absent because
we require 〈δg〉 = 0. It is generally assumed that there is no velocity bias, so θg = θ. The reason is that, if
the equivalence principle is satisfied, baryons and dark matter respond to the same gravitational potential and
therefore acquire the same velocity if the initial conditions are the same. Here we refer explicitly to galaxies but
a similar treatment can be applied to any tracer of the underlying mass distribution: Lyman-α clouds, standard
candles, 21cm, etc. At the end, each tracer field will be characterized by a set of bias functions, of which b1, b2, ..
are just a first simplified example.

In Fourier space this δg expansion becomes at second order

δg(k) = b1δ
(1)(k) +

1

2
b2

∫
d3q1

(2π)3

d3q2

(2π)3
(2π)3δD(k− q1 − q2)δ(1)(q1)δ(1)(q2) + ... (5.4.12)

Let us consider now the first terms of the expansion (5.4.10). The first term reproduces the linear theory:

δ(1)
g (k) =

∫
d3r[b1δ(r)− du

dr
]eikr =

∫
d3rb1δ(r)eikr −

∫
d3r

du

dr
eikr (5.4.13)

= δ(1)(k)(b1 + fµ2) (5.4.14)

(the subscript g stands now for galaxies in redshift space) where we used the linear theory relation (Eq. 5.3.1)

v(k) = iHδkf
k

k2
(5.4.15)

from which

u(r) =
r
r
· v
H

(r) = if

∫
d3k′

(2π)3
δ(k′)

k’r
k′2r

e−ik
′·r (5.4.16)
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while its derivative is (notice that k · r/(kr) = µ is assumed constant)

du

dr
= −f

∫
δ(k′)e−ik’·r

(
k’r
k′r

)2
d3k′

(2π)3
= −f

∫
δ(k′)e−ik’·rµ2 d

3k′

(2π)3
(5.4.17)

so that∫
d3r

du

dr
eikr = −f

∫
d3r

d3k

(2π)3
δ(k′)ei(k−k

′)·rµ2 = −f
∫

d3k

(2π)3
δD(k− k′)δ(k′)µ2 = −fµ2δ(k) = µ2θ(k)

(5.4.18)

This is the usual linear Kaiser effect, and no FOG effect is present.
The second term gives

δg(k) =

∫
d3r[δ(r)− du

dr
]ei(k−q1)rkµ

d3q1

(2π)3

µ1

q1
θ(q1) (5.4.19)

=

∫
d3r

∫
d3q0

(2π)3
[δ(q0)− θ(q0)µ2

0]ei(k−q0−q1)rkµ
d3q1

(2π)3

µ1

q1
θ(q1) (5.4.20)

=

∫
d3q0

(2π)3

d3q1

(2π)3
[δ(q0)− θ(q0)µ2

0](2π)3δD(k− q0 − q1)kµ
µ1

q1
θ(q1) (5.4.21)

Relabeling 0, 1, ... into 1,2,..., it is then not difficult to see that the entire series can be recast in the more
symmetric form

δg(k) =
∑
n=1

∫
d3q1

(2π)3

∫
d3q2

(2π)3
...

∫
d3qn
(2π)3

[δ(q1)− θ(q1)µ2
1](2π)3δD(k−

n∑
i=1

qi)
(kµ)n−1

(n− 1)!

µ2

q2
θ(q2)

µ3

q3
θ(q3)..

µn
qn
θ(qn)

(5.4.22)

(with the understanding that for n = 1 the product of µiq−1
i θi factors reduces to unity). Notice that, in several

references, θ is defined with the opposite sign.
This expansion is valid at all orders. Now we can use for δ, θ the expansion (5.3.9) and the results 5.3.45-

5.3.46 of the previous section, plus the bias expansion (5.4.12), systematically collecting terms that contribute
with the same power of ε. At second order the terms that contribute are as follows

δ(2)
g (k) = b1δ

(2)(k)− θ(2)(k)µ2 +

∫
d3q1

(2π)3

d3q2

(2π)3
(2π)3δD(k− q1 − q2)

b2
2
δ(1)(q1)δ(1)(q2) (5.4.23)

+

∫
d3q1

(2π)3

d3q2

(2π)3
[b1δ

(1)(q1)− θ(1)(q1)µ2
1](2π)3δD(k− q1 − q2)kµ

µ2

q2
θ(1)(q2) (5.4.24)

=

∫
d3q1

(2π)3

d3q2

(2π)3
δ(1)(q1)δ(1)(q2)[b1F2 +G2fµ

2 +
b2
2

+ fkµb1
µ2

q2
+ f2µ2

1µk
µ2

q2
](2π)3δD(k− q1 − q2)

(5.4.25)

=

∫
d3q1

(2π)3

d3q2

(2π)3
δ(1)(q1)δ(1)(q2)[b1F2 +G2fµ

2 +
b2
2

+ fkµ[
µ2

q2
(b1 + fµ2

1)](2π)3δD(k− q1 − q2)

(5.4.26)

=

∫
d3q1

(2π)3

d3q2

(2π)3
δ(1)(q1)δ(1)(q2)[b1F2 +G2fµ

2 +
b2
2

+
fkµ

2
[
µ1

q1
(b1 + fµ2

2) +
µ2

q2
(b1 + fµ2

1)](2π)3δD(k− q1 − q2)

(5.4.27)

=

∫
d3q1

(2π)3

d3q2

(2π)3
δ(1)(q1)δ(1)(q2)Z2(q1,q2)(2π)3δD(k− q1 − q2) (5.4.28)

where in the fifth line we symmetrized the new kernel, which now can be read as

Z2(q1,q2) = b1F2 +G2fµ
2 +

fkµ

2
[
µ1

q1
(b1 + fµ2

2) +
µ2

q2
(b1 + fµ2

1)] +
b2
2

(5.4.29)
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A similar calculations leads to the third order kernel. Before we do that, however, we need to observe that
the bias scheme above is incomplete. Various tentative schemes have been introduced in the literature, since we
know very little about the exact mechanism of bias. In general one can expect δg to depend not only on the
matter δ but also on other variables that influence the assembly of galaxies from the underlying distribution.
In particular, one should expect a dependence on the gravitational force. The density contrast is proportional
to ∆Φ due to the Poisson equation, so we expect that a generic expansion for δg will include second derivatives
of the potential, i.e. the tensor ∂i∂jΦ. Notice that there could not be a dependence on Φ and on ∂iΦ without
further derivatives, because the Equivalence Principle tells us that one can always find a local frame in which
there is no gravitational potential nor force. Similarly, one should also expect a dependence on the second
derivatives of the peculiar velocity field (tidal field).

A traceless stress tensor (or tidal tensor) of gravitational forces can be defined as

Kij = (∂i∂jΦ)− 1

3
δij∆Φ (5.4.30)

The tensor Kij is defined to be traceless because the trace part of (∂i∂jΦ) would correspond to ∆Φ, which by
Poisson equation is simply proportional to δ and therefore degenerate with the other terms. With the tidal
tensor, one can form the scalar

G2 = KijK
ij = (∂i∂jΦ)2 +

1

9
δijδ

ij(∆Φ)2 − 2

3
(∂i∂jΦ)δij(∆Φ) (5.4.31)

= (∂i∂jΦ)2 − 1

3
(∆Φ)2 (5.4.32)

In Fourier space Kij becomes

Kij(k) = (
kikj
k2
− 1

3
δij)δ(k) (5.4.33)

The scalar G2 is then of the same order as δ(2). We need however to go to third order. A very general form of
the bias to third order can then be taken as [9, 7]

δg = b1δ +
b2
2
δ2 + bGG2︸ ︷︷ ︸

2nd

+
b3
3!
δ3 + bΓΓ3 + bδGG2δ + bG3G3︸ ︷︷ ︸

3rd

+ ... (5.4.34)

where all the parameters are functions of time only, and now we added yet another contribution from a similarly
defined velocity stress tensor

Γ3 = G2(Φg)− G2(Φv) (5.4.35)

where Φg is the gravitational potential and Φv the velocity potential, and finally

G3 = KijK
jmKi

m (5.4.36)

Additional stochastic, i.e. non-deterministic, terms can also be considered, that are generally to be expected
since the initial conditions are themselves random variables. In the simplest formulation in which the stochastic
term is Poissonian noise, this adds to (5.4.34) a term ε whose power spectrum is just a constant, and therefore
can be absorbed into the shot noise we already considered.

It turns out that the b3, bδG , bG3 terms are degenerate with other terms after taking into account the UV
correction (see next chapter). Also a higher-derivative term R∗∂

2δ should be added to (5.4.34), but again it
can be absorbed into the UV correction. There are then overall four free bias parameters, b = b1, b2, bG, bΓ that
are only time-dependent. Adopting β = f/b1, the generalized kernels Z2, Z3 can be written as

Z2(qa,qb) = b1{F2(qa,qb) + βµ2G2(qa,qb)

+
βbµk

2

[
µaz
qa

(1 + βµ2
bz) +

µbz
qb

(1 + βµ2
az)

]
}+

b2
2

+ bGS1(qa,qb) (5.4.37)
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(already symmetrized) and

Z3(q1,q2,q3) = b1{F3(q1,q2,q3) + βµ2G3(q1,q2,q3) + βµkb[F2(q1,q2) + βµ2
12zG2(q1,q2)]

µ3z

q3

+ βµkb(1 + βµ2
1z)

µ23z

q23
G2(q2,q3) +

(βµk)2

2
b21(1 + βµ2

1z)
µ2z

q2

µ3z

q3
}

+ 2bGS1(q1,q2 + q3)F2(q2,q3) + bGb1βµk
µ1z

q1
S1(q2,q3)

+ 2bΓS1(q1,q1 + q3)(F2(q2,q3)−G2(q2,q3)) (5.4.38)

(to be symmetrized), where in Z3 terms in b2 have been discarded because degenerate with other terms, and

S1(q1,q2) =
(q1 · q2)2

q2
1q

2
2

− 1 (5.4.39)

Double subscripts, e.g. 12, refer to k1 + k2. All µ’s are the angles wrt the line of sight ẑ, except µ1 , which is
the angle between k and k1. All angles can be expressed in terms of µ, µ1, φ1 by the relations

µ2z =
q2z

k2
=

(k− q1)z

|k− q1|
=
−kµ+ q1µµ1 + q1(1− µ2)1/2(1− µ2

1)1/2 cosφ1

(q2
1 + k2 − 2kq1µ1)1/2

(5.4.40)

µ1z =
q1z

k1
= µµ1 + (1− µ2)1/2(1− µ2

1)1/2 cosφ1 (5.4.41)

and µ12z, µ23z denote the angles between k1 + k2 and ẑ etc. The φ1 integration is always analytical and can be
included in the definition of the kernels.

Appendix: Third order kernels
At order ε3we have (here I absorb the factors of G inside the perturbation variables and take the EdS value
f = 1; moreover, for shortness, every term d3k etc. is mean to include (2π)3at denominator)

δ′
(3)
k + θ

(3)
k = −

∫
(δ

(1)
k1
θ

(2)
k2

+ δ
(2)
k1
θ

(1)
k2

)α(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d
3k2 (5.4.42)

=

∫
δk1δq2δq3G2(q2,q3)(2π)3δD(k1 + q2 + q3 − k)α(k1,q23)d3k1d

3q2d
3q3 (5.4.43)

+

∫
δk2δq1δq3F2(q1,q3)(2π)3δD(q1 + q3 + k2 − k)α(q13,k2)d3q1d

3k2d
3q3 (5.4.44)

=

∫
δk1δk2δk3G2(k2,k3)(2π)3δD(k1 + k2 + k3 − k)α(k1,k23)d3k1d

3k2d
3k3 (5.4.45)

+

∫
δk1δk2δk3F2(k1,k3)(2π)3δD(k1 + k2 + k3 − k)α(k13,k2)d3k1d

3k2d
3k3 (5.4.46)

=

∫
δk1δk2δk3 [G2(k2,k3)α(k1,k23) + F2(k1,k3)α(k13,k1)](2π)3δD(k1 + k2 + k3 − k)d3k1d

3k2d
3k3

(5.4.47)

=

∫
δk1δk2δk3α3(k1,k2,k3)(2π)3δD(k1 + k2 + k3 − k)d3k1d

3k2d
3k3 (5.4.48)

where we defined kij = ki + kj and

α3(k1,k2,k3) = G2(k2,k3)α(k1,k23) + F2(k1,k3)α(k13,k1) (5.4.49)
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For the Euler equation at 3rd order we get

θ′ + Fθ + Sδ = −
∫

[θ
(1)
1 θ

(2)
2 + θ

(2)
1 θ

(1)
2 ]β(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2 (5.4.50)

= −
∫
δk1δq2δq3G2(q2,q3)δD(q2 + q3 − k2)β(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2d
3q2d

3q3

(5.4.51)

−
∫
δq1δq3δk2G2(q1,q3)δD(q1 + q3 − k1)β(k1,k2)(2π)3δD(k1 + k2 − k)d3k1d

3k2d
3q1d

3q3

(5.4.52)

= −
∫
δk1δq2δq3G2(q2,q3)β(k1,q23)(2π)3δD(k1 + q2 + q3 − k)d3k1d

3q2d
3q3 (5.4.53)

−
∫
δq1δq3δk2G2(q1,q3)β(q13,k2)(2π)3δD(q1 + q3 + k2 − k)d3q1d

3k2d
3q3 (5.4.54)

= −
∫
δk1δk2δk3G2(k2,k3)β(k1,k23)(2π)3δD(k1 + k2 + k3 − k)d3k1d

3k2d
3k3 (5.4.55)

−
∫
δk1δk3δk2G2(k1,k3)β(k13,k2)(2π)3δD(k1 + k3 + k2 − k)d3k1d

3k2d
3k3 (5.4.56)

= −
∫
δk1δk2δk3β3(k1,k2,k3)(2π)3δD(k1 + k2 + k3 − k)d3k1d

3k2d
3k3 (5.4.57)

where

β3(k1,k2,k3) = G2(k2,k3)β(k1,k23) +G2(k1,k3)β(k13,k2) (5.4.58)

We can then repeat the same steps as for the second order. We only have to change

G(3)′ = 3AG3; G(3)′′ = 9AG3 (5.4.59)

so that now

δ′′ + Fδ′ − Sδ = [(G(3))′′ + FG(3)′ − SG(3)]δ = (9 + 3F − S)AG3δ
(3)
k = 9δ(3) (5.4.60)

and obtain

F3 =
7α3 + 2β3

18
=

7[G2(k2,k3)α(k1,k23) + F2(k1,k3)α(k13,k1)] + 2[G2(k2,k3)β(k1,k23) +G2(k1,k3)β(k13,k2)]

18
(5.4.61)

=
7F2(k1,k3)α(k13,k1) + 2G2(k1,k3)β(k13,k2) +G2(k2,k3)[7α(k1,k23) + 2β(k1,k23)]

18
(5.4.62)

which coincides with Eq. (5.3.56) up to a reshuffling of indexes. A similar calculation produces G3.



Chapter 6

Spectrum and bispectrum

Quick summary
1. We can now combine the results of the previous section into the correlators: spectra and bispectra

2. Suitable “counterterms” should be added to take into account shear and viscosity of tracers

3. We show that the rules for building higher order terms can be described using “Feynman” diagrams

4. We also generalize further the kernels beyond EdS and ΛCDM by invoking general symmetry principles

5. Finally, we see how to compare the theoretical spectra to observational data

6.1 Spectrum at one loop
Let’s collect the first three terms of the δg expansion obtained so far: (check factors of 2π in this section!)

δ(1)
g (k) = δ(1)(k)Z1(k) (6.1.1)

δ(2)
g (k) =

∫
d3q1

(2π)3

d3q2

(2π)3
δ(1)(q1)δ(1)(q2)Z2(q1,q2)(2π)3δD(k− q1 − q2) (6.1.2)

δ(3)
g (k) =

∫
d3q1

(2π)3

d3q2

(2π)3

d3q3

(2π)3
δ(1)(q1)δ(1)(q2)δ(1)(q3)Z3(q1,q2,q3)(2π)3δD(k− q1 − q2 − q3) (6.1.3)

where

Z1(k) = b1 + fµ2 (6.1.4)

In the rest of this section the internal momenta qi will be denoted as ki.
In this and the next section we need to make use of Wick’s theorem. This applies to correlation of Gaussian

fields, i.e. to the linear density contrast δ(1) (notice that δ(2) and all higher order terms are of course non-
Gaussian, being formed out of product of Gaussial variables). The theorem says that all odd moments vanish
and all even moments can be written in terms of a sum of products of second-order ones. Schematically

〈δ1...δ2p+1〉 = 0 (6.1.5)

〈δ1...δ2p〉 =
∑

all pairs

∏
p pairs

〈δiδj〉 (6.1.6)

where δi = δ(1)(ki). For instance

〈δ1δ2δ3δ4〉 = 〈δ1δ2〉〈δ3δ4〉+ 〈δ1δ3〉〈δ2δ4〉+ 〈δ1δ4〉〈δ2δ3〉 (6.1.7)

55
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As we have already mentioned, the linear power spectrum including bias and redshift distortion is

Pgg,L = 〈δ(1)
g δ(1)∗

g 〉 = b2(1 + βµ2)2PL (6.1.8)

where PL is the matter power spectrum at any z, so the factors of G are now included in its definition (the
factor of V appearing in (2.5.7) can be conveniently put to unity; they would anyway cancel out in the final
result). Analogously, the power spectrum up to fourth order in the linear δ (the third cancels out because the
linear δ are Gaussian and all odd moments of Gaussian variables vanish) is then

Pgg(k) = 〈δg(k)δg(k)〉 = 〈(δ(1) + δ(2) + δ(3))g(δ
(1)∗ + δ(2)∗ + δ(3)∗)g〉

= 〈δ(1)
g δ(1)∗

g 〉+ 〈δ(2)
g δ(2)∗

g 〉+ 〈δ(1)
g δ(3)∗

g 〉+ 〈δ(3)
g δ(1)∗

g 〉 = (b+ fµ2)2PL (6.1.9)

+

∫
〈δ∗(1)
k1

δ
∗(1)
k2

δ
(1)
k3
δ

(1)
k4
〉Z2(k1,k2)Z2(k3,k4)(2π)3δD(k1 + k2 − k)(2π)3δD(k3 + k4 − k)

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3

d3k4

(2π)3

+ 2(b+ fµ2)

∫
〈δ∗(1)
k δ

(1)
k1
δ

(1)
k2
δ

(1)
k3
〉Z3(k1,k2,k3)(2π)3δD(k1 + k2 + k3 − k)

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3

(6.1.10)

Now since the linear δ(1)’s are supposed to be Gaussian variables, one has due to Wick’s theorem that (the
superscript (1) is understood)

〈δ∗k1δ
∗
k2δk3δk4〉 = 〈δ∗k1δ

∗
k2〉〈δk3δk4〉+ 〈δ∗k1δk3〉〈δ

∗
k2δk4〉+ 〈δ∗k1δk4〉〈δ

∗
k2δk3〉 (6.1.11)

where

〈δk1δ∗k2〉 = 〈δk1δ−k2〉 = (2π)3PL(k1)δD(k1 − k2) (6.1.12)

So we have, e.g. for the first term, 〈δ∗k1δ
∗
k2
〉 = (2π)3PL(k1)δD(k1 + k2) and therefore∫

〈δ∗k1δ
∗
k2〉〈δk3δk4〉Z2(k1,k2)Z2(k3,k4)(2π)3δD(k1 + k2 − k)(2π)3δD(k3 + k4 − k)

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3

d3k4

(2π)3
=∫

PL(k1)δD(k1 + k2)PL(k3)δD(k3 + k4)Z2(k1,k2)Z2(k3,k4)δD(k1 + k2 − k)δD(k3 + k4 − k)d3k1d
3k2d

3k3d
3k4 =∫

PL(k1)PL(k3)Z2(k1,−k1)Z2(k3,−k3)δD(−k)δD(−k)d3k1d
3k3 = 0

(6.1.13)

since δD(−k) vanish for all k except k = 0. The other two terms instead do not vanish and give two identical
contributions of this form (considering the last one):∫

PL(k1)δD(k1 − k4)PL(k2)δD(k2 − k3)Z2(k1,k2)Z2(k3,k4)δD(k1 + k2 − k)δD(k3 + k4 − k)d3k1d
3k2d

3k3d
3k4 =∫

PL(k1)δD(k1 − k4)PL(|k− k1|)δD(k− k1 − k3)Z2(k1,k− k1)Z2(k3,k4)δD(k3 + k4 − k)d3k1d
3k3d

3k4 =∫
PL(k1)δD(k1 − k4)PL(|k− k1|)δD(k− k1 − k + k4)Z2(k1,k− k1)Z2(k− k4,k4)d3k1d

3k4 =∫
PL(k1)δD(k1 − k4)PL(|k− k1|)δD(−k1 + k4)Z2(k1,k− k1)Z2(−k + k1,k1)d3k1d

3k4

Here we estimated the product of Dirac deltas as follows (already introduced in Eq. (2.5.17)):∫
δD(k1 − k4)δD(k1 − k4)d3k1 =

∫
e−ix(k1−k4)

(2π)3
d3xδD(k1 − k4)d3k1 =

∫
1

(2π)3
d3x =

V

(2π)3
(6.1.14)

Then we get (putting again V = 1)∫
PL(k1)PL(|k− k1|)Z2

2 (k1,k− k1)
d3k1

(2π)3
≡ P22 (6.1.15)
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Similarly, for the last term in Eq. (6.1.10)

〈δ∗kδk1δk2δk3〉 = 〈δ∗kδk1〉〈δk2δ∗−k3〉+ (1↔ 2) + (2↔ 3) (6.1.16)

and each of the three term equals∫
〈δ∗kδk1〉〈δk2δ∗−k3〉Z3(k1,k2,k3)(2π)3δD(k1 + k2 + k3 − k)

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
=

(2π)6

∫
PL(k)δD(k− k1)PL(k2)δD(k2 + k3)Z3(k1,k2,k3)(2π)3δD(k1 + k2 + k3 − k)

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
=

(6.1.17)

(2π)6

∫
PL(k)δD(k− k1)PL(k2)δD(k− k1)Z3(k1,k2,k− k1 − k2)

d3k1

(2π)3

d3k2

(2π)3
=

(6.1.18)∫
PL(k)PL(k2)Z3(k1,k2,−k2)

d3k2

(2π)3
=

(6.1.19)

PL(k)

∫
PL(k1)Z3(k,k1,−k1)

d3k1

(2π)3
≡ P13

(renaming k2 into k1 in the last step). So finally the one-loop spectrum for galaxies in redshift space is

Pgg(k, z) = (b+ fµ2)2PL(k, z) + 2P22(k, z) + 6(b+ fµ2)P13(k, z) (6.1.20)

The shot noise spectrum Eq. (2.5.28) should also be added when comparing to obervations. It is convenient to
discard from Pgg a constant term that arises in the limit k → 0, since it can be absorbed into the constant shot
noise.

Notice that an additive constant in Z3 would produce a term const× PL
∫
PL(k1)d3k1/(2π)3 ∼ const× PL

which can be absorbed into the power spectrum normalization. This is the reason why the b3 term in the bias
expansion Eq. (5.4.34) can be neglected.

The integrations in P22, P13 can be best performed by taking the z-axis in the k-direction, and then using
spherical coordinates

k1 = k1

{√
1− µ2

1 cosφ1,
√

1− µ2
1 sinφ1, µ1

}
(6.1.21)

k = k{0, 0, 1} (6.1.22)

The φ1 integral is analytical, so we are left with at most double integrals. For instance we have in EdS∫
Z2

2 (k1,k− k1)dφ1 = (6.1.23)

[98r2
(
r2 − 2µ1r + 1

)
2]−1π

{
r
(
µ2

1(2b1(7f + 5)− 14bG + f(7f + 6))− 7b1f − 3b1 − 7b2 + 14bG + f
)
(6.1.24)

−7(f + 1)µ1(b1 + f)− 7b2r
3 + 14b2µ1r

2
}2 (6.1.25)

and ∫
Z3(k,k1,−k1)dφ1dµ1 = (6.1.26)

(10584r5)−1π[−6
(
r2 − 1

)3
tanh−1

(
2r

r2 + 1

)(
b1
(
101r2 − 164

)
+ 21

(
r2 − 1

)
(4bΓ − 5c2)

)
(6.1.27)

+ + 4b1r
(
303r6 − 1300r4 − 2203r2 + 492

)
+ 84r

(
r2 + 1

) (
3r4 − 14r2 + 3

)
(4bΓ − 5c2)] (6.1.28)

where r = k1/k and c2 = 10
7 b1 − 2bG.
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6.2 UV correction
This non-linear power spectrum, also called one-loop P (k), is however still not a good approximation to N-body
simulations even for relatively small k < 0.2h/Mpc. What is still missing from the picture is the stress tensor
defined in Eq. (1.2.36) for the tracers

σij = pδij − η(∂ivj + ∂jvi−
2

3
δij∂kv

k)− ζδij∂kvk (6.2.1)

As already discussed, this tensor goes beyond the single-stream approximation so far employed. The stress
tensor can be generalized and expanded to first order as follows [6]

σij = pbδ
ij + ρb[c

2
sδδ

ij − 3

4

c2sv
H

(∂ivj + ∂jvi − 2

3
δij∂kv

k)−
c2bv
H
δij∂kv

k] + ... (6.2.2)

(do not confound the Kronocker symbol δij with the density contrast δ) where the subscript b stands for
background values. In practice, we redefined

η =
3

4
ρb
c2sv
H

(6.2.3)

ζ = ρb
c2bv
H

(6.2.4)

and introduced the perturbed pressure p = pb + c2sρbδ. The three time-dependent velocity factors, cs, csv, cbv,
are new free parameters, that can be measured in N-body simulations or used as free parameter to fit the data.
Notwithstanding the notation, they are not supposed to be positive definite. This stress tensor happens to be
roughly of the same order as the one-loop corrections [6], so we can ignore the “...” in Eq. (6.2.2), even if we
take δ, vi at first order. Intuitively, we can consider the pressure and viscosity coefficients cs,v as first-order
entities themselves, i.e. carrying a factor of ε.

The term in Eq. (1.2.31) is

1

ρb
∂jσ

ij = c2s∂
iδ − 3

4

c2sv
H

(∂i∂jv
j + ∆vi − 2

3
∂i∂kv

k)−
c2bv
H
∂i∂kv

k

In terms of θ = ikiv
i/H and in Fourier space this is

1

ρb
∂jσ

ij(k) = i[c2sk
iδ − 3

4
c2sv(k

iθ + kiθ− 2

3
kiθ)− c2bvkiθ] = iki[c2sδ(k)− c2vθ(k)] = iki[c2s + c2vf ]δ(k) (6.2.5)

with c2v = c2sv + c2bv and where we also replaced c2vθ = −c2vfδ. Assuming now that c2v is of order ε2, and δ of
order ε1, implies that the expression on the rhs of the previous equation is effectively third order. Now, if we
add this term to the Euler equation (5.3.23), we get at third order

θ′(3) + Fθ(3) + Sδ(3) − (c2s + c2vf)k2δ(1) = −G3f3

∫
δ

(1)
1 δ

(1)
2 δ

(1)
3 β3(k1,k2,k3)δD(k1 + k2 + k3 − k)d3k1d

3k2d
3k3

(6.2.6)

Carrying the perturbation theory with the extra pressure and viscosity terms we obtain that δ(3) acquires a
correction

δ(3)
s,v ∼ (c2s + c2vf)k2δ(1)

In the power spectrum, this will produce an additional negative term, often called a counterterm, that at the
lowest non-trivial order is proportional to

Pctr ≡ 〈δ(1)δ(3)
s,v〉 ∼ (c2s + c2vf)k2〈δ(1)δ(1)〉 = −2c0PL(k)k2

where c0 ≡ −1
2 (c2s + c2vf) . Since this correction increases with k2, it will be particularly important at small

scales; for this reason is also called UV correction. The fact that the crrection is negative helps correcting the
divergent behavior of the one-loop terms at high k.
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Figure 6.2.1: Comparison of SPT and SPT with counterterms (denoted as EFT here) with a fit to N-body
provided in CAMB. From [6].

To further improve the agreement with N-body simulations, one can add additional semi-empirical terms,
all called generically counterterms (see e.g. [7]), of the form (see Fig. 6.4.1)

Pctr = −2PL(k)k2(c0 + c2βµ
2 + c4β

2µ4) (6.2.7)

Typical values for ci are around 1 (Mpc/h)2 but one should leave them as free time-dependent parameters in a
real data analysis. The two additional terms depend on µ2, because they are supposed to improve the modeling
of the finger-of-God effect, which smooths the power spectrum by a factor e−k

2σ2
vµ

2

(see Eq. 3.5.21), where σv
is the velocity dispersion of galaxies inside a halo, proportional to the growth factor f . The Taylor expansion
of the smoothing function produces powers of k2f2µ2 which are represented by the c2,4 terms. These terms
occurs along the line of sight, and vanish for transverse directions µ = 0. So finally the theoretical model for
the galaxy power spectrum in redshift space is

Pgg(k, µ, z) = Z2
1PL + 2P22 + 6Z1P31 − 2PLk

2(c0 + c2βµ
2 + c4β

2µ4) (6.2.8)

6.3 Diagrams
The corrections just evaluated are called one-loop following the terminology of quantum field theory. The idea
is to associate to each term a diagram. For the m-th loop n-point spectrum, one should draw n points, and
connect them in all possible ways with internal lines (the dashed lines in Fig. 6.3.1) such that they describe
m loops. Diagram that can be continuously deformed one into another without cutting lines are considered
equivalent. Each internal line is labeled by a momentum qi associated to a factor of PL. At zero loop, the
diagram is two points joined by a single lines (adding any other line between the two points would create a
loop). Two external lines, labeled by k, can also be added or are understood. In this trivial case, the diagram
is then just a single continuous line (a tree diagram). At one loop, we draw all diagrams that connect two
points with internal lines forming only one loop, as in Fig. 6.3.1. Each vertex (i.e. a point with p internal
lines) represents a factor δ(p) and to it we associate a kernel of order p. For instance, the third diagram for P
in the figure representes δ(1)δ(3) ∼ Z1Z3. To each diagram we associate also a Dirac delta for all the momenta
δD(k−

∑
i qi) that ensures conservation of momenta. Here, k labels the external lines. Each diagram should be

counted according to how many symmetric ways can be built: for instance, the loop in P13 can be on the first
or second point, and therefore should be counted twice. To each element (vertices, loops, internal and external
lines) there is an associated factor that allows to write down at once the final amplitude. More detals in e.g.
[9].
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k kq=k k kq1=kk k

q2

PL P22 P13

+ +
q1

q2

B = + + + +

P =

one loop

Figure 6.3.1: Diagrammatic expansion of spectrum and bispectrum. For the bispectrum we did not draw the
external lines for clarity.

6.4 Bispectrum
The power spectum for galaxies in redshift space is defined as

(2π)3δD(k1 + k2)P (k1,k2) ≡ 〈δg(k1)δg(k2)〉 (6.4.1)

Analogously, the bispectrum is defined as

(2π)3δD(k1 + k2 + k3)Bg(k1,k2,k3) ≡ 〈δg(k1)δg(k2)δg(k3)〉 (6.4.2)

= 〈(δ(1) + δ(2) + ..)gk1
(δ(1) + δ(2) + ...)gk2

(δ(1) + δ(2) + ...)gk3
〉
(6.4.3)

Since the linear density contrast is a Gaussian field, the odd moments vanish, so that 〈δ(1)
g (k1)δ

(1)
g (k2)δ

(1)
g (k3)〉 =

0. The first non-trivial term, called tree-level term, is therefore

Bg(k1,k2,k3) = 〈δ(1)
g (k1)δ(1)

g (k2)δ(2)
g (k3)〉+ cyclic (6.4.4)

Here cyclic means that we should add the terms 〈δ(1)
g (k1)δ

(2)
g (k2)δ

(1)
g (k3)〉, 〈δ(2)

g (k1)δ
(1)
g (k2)δ

(1)
g (k3)〉. Then we

obtain

Bg(k1,k2,k3) = Z1(k1)Z1(k2)〈δ(1)(k1)δ(1)(k2)δ(2)
g (k3)〉+ cyclic (6.4.5)

with
∑

ki = 0. Since k3 = −k1 − k2, we have

〈δ(1)(k1)δ(1)(k2)δ(2)
g (k3)〉 = (6.4.6)∫

d3q1

(2π)3

d3q2

(2π)3
〈δ(1)(k1)δ(1)(k2)δ(1)(q1)δ(1)(q2)〉 × Z2(q1,q2)δD(−k1 − k2 − q1 − q2) (6.4.7)

=

∫
d3q1

(2π)3

d3q2

(2π)3
{PL(k1)δD(k1 + k2)PL(q1)δD(q1 + q2)

(6.4.8)

+ PL(k1)δD(k1 + q1)PL(k2)δD(k2 + q2) (6.4.9)
+ PL(k1)δD(k1 + q2)PL(k2)δD(k2 + q1)} (6.4.10)
× (Z2(q1,q2)δD(−k1 − k2 − q1 − q2) (6.4.11)

The first term in curly brackets vanishes, since δD(q1 + q2) implies q2 = −q1, but Z2(q1,−q1) = 0 due to
the property (5.3.49), that is respected also by Z2. The second and third term are identical under exchange of
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Figure 6.4.1: Linear and non-linear spectra at z = 1.

q1,q2 and therefore

Bg(k1,k2,k3) = 2Z1(k1)Z1(k2)× (6.4.12)∫
d3q1

(2π)3

d3q2

(2π)3
PL(k1)δD(k1 + q1)PL(k2)δD(k2 + q2)Z2(q1,q2)δD(−k1 − k2 − q1 − q2) + cyclic

(6.4.13)

= 2Z1(k1)Z1(k2)Z2(k1,k2)PL(k1)PL(k2) + cyclic (6.4.14)

where we used the symmetry Z2(−k1,−k2) = Z2(k1,k2). This is the tree-level bispectrum, that is proportional
to the square of the linear spectra and is therefore of the same order as the spectrum 1-loop corrections. The
expression for the four one-loop bispectra are given in e.g. [4], [11].

6.5 Generalized kernels and symmetry conditions
The perturbation theory we have seen so far has been developped for models that obey the standard conservation
and Euler equations. This approach can however be generalized to any model that satisfy some general symmetry
requirement. We give here only a very sketchy summary following Ref. [8], to which we refer for all the details.
We have seen that SPT depends on two crucial “interaction” terms (Eq. 5.3.25), namely

α =
(k1 + k2)

2
(
k1

k2
1

+
k2

k2
2

) = 1 +
1

2
k1k2(

1

k2
1

+
1

k2
2

) (6.5.1)

β =
(k1 + k2)2(k1k2)

2k2
1k

2
2

(6.5.2)

The main idea is to write down all possible such terms that obey general principles. These requirements can be
summarized as
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1. Equivalence principle

2. Invariance under a general time-dependent translation, dubbed Extended Galilean Invariance (EGI)

τ → τ̃ = τ ; x→ x̃ + d(τ) (6.5.3)

The standard fluidodynamics equations satisfy this invariance, up to a redefinition of v and Φ.

3. Mass and momentum invariance∫
d3x δ(x, τ) = 0 (6.5.4)∫
d3xxδ(x, τ) = 0 (6.5.5)

4. Rotational invariance

Additionally, the symmetry of the multi-dimensional integration can be translated into the symmetry of the
kernels under exchange of any pairs of momenta, e.g. F2(k1,k2) = F2(k2,k1). These symmetries are indeed
satisfied by the conservation, Euler, and Poisson equation, as discussed in e.g. [14], once appropriate transfor-
mation rules for δ,v, and Φ are established (see below). The mass and momentum constraints, however, do not
apply in general to tracers: galaxies, for instance, can merge and possibly break up, and therefore their number
density is not conserved (mass is conserved but we can only count the galaxies, not measure their mass).

The equations we are considering here are the same discussed in Sec. 5.1:

δ̇ = −∇(1 + δ)v (6.5.6)
v̇ +Hv = −∇(v · ∇v) +∇φ (6.5.7)

∇2φ =
3

2
H2Ωδ (6.5.8)

Here, the perturbation variables δ,v, φ are all functions of x, τ (τ being the conformal time). In the Poisson
equation we also included the density fraction Ω = 8πρa2/3H2. The background variables a,H, ρ,Ω are, of
course, functions of time alone.

The invariance under EGI can be demonstrated by inserting the following rescalings into Eqs. (5.1.1-5.1.3):

τ̃ = τ (6.5.9)
x̃ = x + d(τ) (6.5.10)

δ̃(x̃, τ̃) = δ(x, τ) (6.5.11)

ṽ(x̃, τ̃) = v(x, τ) + ḋ(τ) (6.5.12)

φ̃(x̃, τ̃) = φ(x, τ)− [d̈(τ) +Hḋ(τ)] · x (6.5.13)

The EGI can be seen as a manifestation of general covariance for non-relativistic particles. In fact, it can
be employed to settle the observer into an inertial frame. It includes as special cases the ordinary Galileian
invariance (d = v0τ) and a constant-acceleration (d = 1

2a0τ
2). Since the potential is in general not constant,

also the displacement d(τ) has to be time-dependent. The possibility of finding an inertial frame depends of
course on the validity of the Equivalence Principle for all the particles. The EGI therefore, contrary to the
mass and momentum symmetries, also applies to tracers (e.g. galaxies) as long as they obey the Equivalence
Principle.

The mass and momentum invariance are obviously satisfied. In fact∫
δ(x)d3x =

1
V

∫
ρ(x)d3x− 1

V

∫
ρ0d

3x

ρ0/V
=
ρ0 − ρ0

ρ0/V
= 0 (6.5.14)

while the second condition defines a center of mass position R such that∫
xδ(x)d3x =

1
M

∫
x(ρ(x)− ρ0)d3x

1
M ρ0

=
R

1/V
(6.5.15)
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and one can always choose the frame origin so that R = 0.
Let us now write the mass and momentum invariance condition in Fourier space and apply them to δ(2).

The mass condition gives∫
δke

ikx d3k

(2π)3
d3x =

∫
δk

d3k

(2π)3
eikxd3x =

∫
δkδD(k)d3k = δk=0 = 0 (6.5.16)

This implies

δ
(2)
k=0 = G2

∫
δ1δ2F2(k1,k2)δD(k1 + k2)d3k1d

3k2 (6.5.17)

= G2

∫
δ1δ2F2(k1,−k1)d3k1 = 0 (6.5.18)

→ F2(k1,−k1) = 0 (6.5.19)

which can also be written as

lim∑
ki→0

F2(k1,k2) = 0 (6.5.20)

The momentum condition gives∫
xδ(x)d3x =

∫
xδke

ikxd3kd3x (6.5.21)

=

∫
δkxd

3keikxd3x = −i
∫
δkd

3k
d

dk

∫
eikxd3x (6.5.22)

= −i
∫
δkd

3k
d

dk
δD(k) = i

∫ (
d

dk
δk

)
d3kδD(k) = i

(
d

dk
δk

)
k=0

= 0 (6.5.23)

and therefore

lim
k→0

∂

∂k
δ

(2)
k = 0 (6.5.24)

In turn, this condition gives

G2 lim
k→0

∂

∂k

∫
δ1δ2F2(k1,k− k1)d3k1 = (6.5.25)

G2 lim
k→0

∫
δ1δ2

∂

∂k
F2(k1,k− k1)d3k1 = 0 (6.5.26)

→ lim
k→0

∂

∂k
F2(k1,k− k1) =0 (6.5.27)

The last condition can be written as

lim
k→0

∂

∂k
F2(k1,k− k1) = lim

k→0

[
∂

∂k2
F2(k1,k2)

]
∂k2

∂k
= −k1 lim

k→0

[
∂

∂k2
F2(k1,k2)

]
= 0 (6.5.28)

and the same by exchanging k1 ↔ k2. Therefore we obtain

lim∑
ki→0

∂

∂k1
F2(k1,k2) = 0 (6.5.29)

lim∑
ki→0

∂

∂k2
F2(k1,k2) = 0 (6.5.30)

Together, mass and momentum constraints imply therefore at second order

lim∑
ki→0

F2(k1,k2) = 0 (6.5.31)

lim∑
ki→0

∂

∂ki
F2(k1,k2) = 0 (6.5.32)
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They are readily generalized to all orders:

lim∑
ki→0

Fn(k1,k2, ...kn) = 0 (6.5.33)

lim∑
ki→0

∂

∂ki
Fn(k1,k2, ...kn) = 0 (6.5.34)

Same conditions hold for the velocity kernel Gn.
The EGI condition on the kernels is, on the other hand, is more difficult to derive, and we refer to [8]. The

main point is that it produces a recursive relation between kernel of different order in the limit of vanishing
momenta. At second order, the condition is simply

lim
k2→0

F2(k1,k2) =
k1 · k2

k2
2

(6.5.35)

and k1 ↔ k2. This means that the pole for k1,k2 → 0 is of order 1, i.e. it goes as 1/ki. Now, rotational
invariance means that the kernel at second order can be built only out of k1 · k1 = k2

1, k2 · k2 = k2
2, k1 · k2.

Moreover, since the conservation equations contain only quadratic powers of momenta, we also require that each
momentum in the kernels appears at most quadratically. There are only four combinations that are dimensionless
(as kernels must be), have poles as 1/ki, and contains at most quadratic functions in each momentum:

1,
k1 · k2

k2
1

,
k1 · k2

k2
2

,
(k1 · k2)2

k2
1k

2
2

(6.5.36)

Notice that they are all homogeneous of degree zero, i.e. f(λk1, λk2) = f(k1,k2). It turns out convenient to
reorganize them into an equivalent set of four basis functions:

1, γ = 1− (k1 · k2)2

k2
1k

2
2

, β =
(k1 + k2)2k1 · k2

2k2
1k

2
2

, αa =
k1 · k2

k2
1

− k1 · k2

k2
2

(6.5.37)

All the kernels can be expressed in terms of these building blocks. For instance, the previously defined function
α is

α = γ + β +
αa
2

(6.5.38)

At every order n, the kernels are to be built with all possible combinations of n − 1 basis functions. As an
immediate application, we can say that the most general kernel K2 must have the structure

F2(k1,k2) = a
(2)
0 + a

(2)
1 γ(k1,k2) + a

(2)
2 β(k1,k2) (6.5.39)

where all coefficients depend on time only. The function αa is absent because it is antisymmetric, and therefore
vanishes upon symmetrization. Now, one can immediately show that mass conservation (6.5.27) requires a(2)

0 =

0, while EGI (6.5.35) implies a(2)
2 = 2 so that

F2(k1,k2) = a
(2)
1 γ(k1,k2) + 2β(k1,k2) (6.5.40)

is the most general form. In EdS, we see that a(2)
1EdS = 10

7 . Analogously, for G2 we find

G2(k1,k2) = d
(2)
1 γ(k1,k2) + 2β(k1,k2) (6.5.41)

and d(2)
1EdS = 6

7 . By analogous arguments, at order n = 3 we find

F3 (q1,q2,q3) = 2β (q1,q2)β (q12,q3) + a
(3)
5 γ (q1,q2) γ (q12,q3)− 2

(
a

(3)
10 − h

)
γ (q1,q2)β (q12,q3)

(6.5.42)

+ 2
(
a

(2)
1 + 2a

(3)
10 − h

)
β (q1,q2) γ (q12,q3) + a

(3)
10 γ (q1,q2)αa (q12,q3) + cyclic (6.5.43)

G3 (q1,q2,q3) = −2β (q1,q2)β (q12,q3)− d(3)
5 γ (q1,q2) γ (q12,q3) + 2

(
d

(3)
10 − h

)
γ (q1,q2)β (q12,q3)

(6.5.44)

− 2
(
d

(2)
1 + 2d

(3)
10 − h

)
β (q1,q2) γ (q12,q3)− d(3)

10 γ (q1,q2)αa (q12,q3) + cyclic. (6.5.45)
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where h is defined as

h(τ) =

∫ τ

dτ ′f(τ ′)

(
G(τ ′)

G(τ)

)2

d
(2)
1 (τ ′) (6.5.46)

There are then overall six free coefficients for n = 2, 3: a(2)
1 , d

(2)
1 , a

(3)
5 , a

(3)
10 , d

(3)
5 , d

(3)
10 . Their EdS values are

a
(2)
1 =

10

7
, d

(2)
1 =

6

7
, a

(3)
5 =

8

9
, d

(3)
5 =

8

21
, a

(3)
10 = −1

9
, d

(3)
10 = − 1

21
(6.5.47)

Moreover, hEdS = 3
7 . Two combinations are degenerate with the UV correction, so can be discarded (or rather,

absorbed away). On top of the remaining four, there are the four bias parameters b1, b2, bG, bΓ for tracers.
Beyond EdS, one can provide differential equations using the same scheme as for Eq. (5.3.66), i.e. by inserting
trial forms of the type (5.3.63) for δ(2), θ(2), δ(3), θ(3)... into the conservation equations and matching separately
the various components for each basis function. Then one finds

a
(2)
1
′ = f(2− 2a

(2)
1 + d

(2)
1 ) (6.5.48)

d
(2)
1
′ = −fd(2)

1 +
S

f

(
a

(2)
1 − d

(2)
1

)
(6.5.49)

a
(3)
5
′ = f

(
a

(2)
1 + d

(2)
1 − 3a

(3)
5 + d

(3)
5

)
(6.5.50)

d
(3)
5
′ = −2fd

(3)
5 +

S

f

(
a

(3)
5 − d

(3)
5

)
(6.5.51)

a
(3)
10
′ = −f 1

2

(
a

(2)
1 − d

(2)
1 + 6a

(3)
10 − 2d

(3)
10

)
(6.5.52)

d
(3)′

10 = −2fd
(3)
10 +

S

f

(
a

(3)
10 − d

(3)
10

)
(6.5.53)

The initial conditions at early times can be taken to be EdS. These equations have to be complemented by the
equation for f , ie.

f ′ + f2 + Ff − S = 0 (6.5.54)

The numerical or analytical solutions then provide the general forms of the time-dependent kernels in all the
cosmologies that respect the equivalence principle and allow for k-independent f and S. In most cases, the
deviation from the EdS values are at most a few percent.

The equations for a(2)
1 , d

(2)
1 can be combined to get a single equation for a ≡ a(2)

1

a′′ + a′(4f + F ) + a
(
2f2 + S

)
= 2

(
f2 + S

)
Replacing a with gA/2, we see that this equation coincides with the first of Eq. (5.3.66). Repeating the same
argument that leads to the kernel F2 in Eq. (5.3.68) we see it coincides with Eq. (6.5.40) above.

6.6 Comparing to real data
Let’s be assigned a number of observational estimates of the power spectrum Pi = P (ki) for a given tracer, eg
galaxies, and let’s approximate their distribution as a Gaussian (even if actually the Gaussian variables are the
δ’s). We have then the likelihood (implicit sum over the k-vectors labelled by i, j)

L =
1

(2π)N/2|C|
exp−1

2
(Pi − P̂i)C−1

ij (Pj − P̂j) (6.6.1)

where P̂ is our theoretical model. Spectra at different k are assumed to be uncorrelated.
The power spectrum we extract from data is P (k) = δkδ

∗
k. Its variance is therefore

〈δkδ∗kδkδ∗k〉 = 〈δkδ∗k〉〈δkδ∗k〉+ 〈δkδ∗k〉〈δ∗kδk〉+ 〈δkδk〉〈δ∗kδ∗k〉 = 2P (k)P (k) (6.6.2)
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since (2π)3P (k)δD(k − k′) = 〈δkδ∗k〉 = 〈δkδ−k〉 and therefore 〈δkδk〉 = 〈δ∗kδ∗k〉 = 0. Data are collected into bins
of size k2∆k∆µ∆φ = 2πk2∆k∆µ, where φ is the azimuthal angle. The choice of the bins is relatively arbitrary,
but they should not be too small to contain too few modes, and not too large that possible interesting features
in the k-trend are smoothed out. All the modes k that fall into a bin are lumped together. If there are NP (k)
modes into a given bin around k, the sum over i, j becomes a sum over bins of the multiplicities NP (k)∑

ij

→
∑
bins

NP (k) (6.6.3)

and the likelihood becomes then

L(P ) =
1

(2π)N/2|C(P )|1/2
exp−1

2

∑
i,j

(Pi − P̂i)[C(P )
ij ]−1(Pj − P̂j) (6.6.4)

=
1

(2π)N/2|C(P )|
exp−1

2

∑
a,b∈bins

NP (Pa − P̂a)[C
(P )
ab ]−1(Pb − P̂b) (6.6.5)

=
1

(2π)N/2|C̄(P )|
exp−1

2

∑
a,b∈bins

(Pa − P̂a)[C̄
(P )
ab ]−1(Pb − P̂b) (6.6.6)

where now a, b run over the bins and C̄(P )
ab ≡

C
(P )
ab

NP
. We need then to count how many vectors k fit into such

bins in a survey of size V . In a 1D discrete Fourier transform over a length L, the k coefficients are spaced by
2π/L. In 3D this becomes (2π)3/V , which is therefore the size of the elementary k cell. Therefore there are

NP (k, µ) =
2πk2∆k∆µ

(2π)3/V
=

V

(2π)2
k2∆k∆µ (6.6.7)

modes per data bin. Since we assumed uncorrelated spectra, the covariance for the galaxy spectrum Pgg can be
written as a diagonal matrix

C̄
(P )
ab ≡

C
(P )
ab

NP
=

2

NP
P(ka)P(kb)δab , (6.6.8)

An analogous calculation for the bispectrum shows that the covariance matrix between triangles a, b (see
Fig. 6.6.1) can be written as

C̄
(B)
ab = sB

V

NB
G6P (k1)P (k2)P (k3)δabLi , (6.6.9)

where sB = 6, 2, 1 for equilateral, isosceles, and scalene triangles, respectively, to avoid overcounting of identical
triangles. Also, Li = 2 for co-linear triangles (i.e. such that k3 = k1 + k2 or k3 = |k2 − k1|) and 1 otherwise.
The number of triangles per bin is given by

NB = 2
V 2

8π4
ka1ka2ka3(∆k)3Σ(Ω)∆Ω , (6.6.10)

where ka1,2,3 are the central value of the k-bins, and Σ(Ω)∆Ω is the number of triangles within the angle
orientation ∆Ω = (∆µ)2, that depends on which coordinate system is used. The bispectrum likelihood is then

L(B) =
1

(2π)N/2|C(B)|1/2
exp−1

2

∑
a,b∈bins

NP (Ba − B̂a)[C
(B)
ab ]−1(Bb − B̂b) (6.6.11)

One should also consider the correlation between spectra and bispectra, but this is usually negligible. Then one
can simply multiply the two likelihoods.

The comparison to data consists then in sampling the P,B likelihoods over the parameter space, build-
ing therefore the corresponding posterior. The parameters are those that characterize the cosmology (e.g.
Ωm,Ωb, ns, h etc) plus those that characterize the bias, one-loop, and UV corrections.
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Figure 6.6.1: Triangle configuration in k-space.

6.7 Surveys
A galaxy survey that has been studied a lot with non-linear correction is the Baryon Oscillation Spectroscopic
Survey (BOSS). BOSS is a key component of the Sloan Digital Sky Survey III (SDSS-III), which ran from 2009
to 2014. The primary goal of BOSS was to create a highly detailed three-dimensional map of the large-scale
structure of the universe, focusing on the detection of baryon acoustic oscillations (BAOs). The power spectra
and bispectra of BOSS are publicly available.

The BOSS survey used the 2.5-meter Sloan Foundation Telescope at Apache Point Observatory in New
Mexico, USA, as well as the 4.1-meter Southern Astrophysical Research (SOAR) telescope in Chile, for spec-
troscopic observations. The survey targeted a large sample of galaxies and quasars, specifically focusing on a
volume of space that spanned about 10 billion light-years. In total, BOSS measured the redshifts of over 1.5
million galaxies, producing a high-precision catalog that covers approximately one-third of the entire sky.

A much larger survey that is under production now is Euclid. The Euclid mission is a major space-based
observatory dedicated to understanding the nature of dark energy and dark matter, and to mapping the large-
scale structure of the universe. Launched by the European Space Agency (ESA) in July 2023, Euclid is designed
to probe the geometry of the universe and the role of dark energy in its expansion, aiming to refine our
understanding of the cosmos over the next decade. Euclid is equipped with two main instruments:

1. Visible Imaging Channel (VIS): A large visible-light camera that will capture high-resolution images of
galaxies across a wide range of wavelengths (from 550 to 900 nm). This allows it to trace the geometry of the
universe through galaxy clustering and the patterns of weak gravitational lensing.

2. Near-Infrared Imaging Channel (NISP): An infrared camera that will observe galaxies at longer wave-
lengths (from 1 to 2 microns). This provides crucial information on galaxy evolution, especially for distant,
faint galaxies that are redshifted to longer wavelengths due to the expansion of the universe.

Euclid’s observations will focus on a large section of the sky spanning approximately 15,000 square degrees,
up to redshift 3. This vast survey area will provide a statistically significant sample of galaxies to investigate
cosmic structures at various scales.
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