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Abstract

These lectures, which were delivered at the School of Physics of Technology of the Wuhan Uni-
versity, were intended for an audience familiar with relativistic quantum field theory, but not
necessarily non-Euclidean geometry. The goal was to bring the audience as fast as possible to a
working knowledge in the field of AdS/CFT.

The first part deals in a very elementary way with those aspects of non-Euclidean geometry which
are necessary to perform calculations in AdS/CFT. In the second part dealing with applications,
the lectures follow very much the approach of Brodsky and Téramond. The relation between the
variable of the 5th dimension with the impact variable, in light cone dynamics, elaborated in this
approach, seems to me one of the most interesting results of AdS/CFT.

I have treated technical questions in detail, since I think a certain knowledge of the techniques
applied is essential to gain insight into the underlying physics, and that active work on a field,
even in petty problems, is the most efficient way to a deeper understanding

It is a pleasure to thank the University of Wuhan, and especially Prof. Liu, Jue Ping, for the
warm hospitality extended to me and the listeners of these lectures for their vivid interest and
collaboration.



Chapter 1

Generalities

1.1 Introduction

1.1.1 Old string theory in strong interactions

This introductory section is not a practical guide, it only shall give you an idea of the underlying
concepts and also to explain some of the highbrow names which occur even in the phenomenological
literature.

Theory of strong interactions was a difficult job for theoretical phycisists from the beginning.
There were several major steps forward in understanding strong interactions, but most of them
turned out to be incomplete. Even today, where we believe to have in QCD the final theory
of strong interactions we have very little understanding of its nonperturbative sector. We are
bound there to rely either on numerical calculations on the lattice or to use models. The so called
AdS/CFT theory, which relates nonperturbative QCD with string theory is an attempt to get an
analytical first order approach to nonperturbative effects.

The first big success in the history of strong interactions was the prediction of the π-Meson
(Yukawa 1935), which was indeed detected in 1947. But it turned out that pion field theory could
explain some features of strong interactions, but by far not all. Since the coupling of the π-meson
to the nucleons is large, the then newly developed renormalized perturbation theory was of little
use. The discovery of many “elementary particles” (ρ-Meson, ∆-resonance, Ω−) etc. led to two
opposite strategies:
• Search for elementary constituents of the pion, proton etc.
• The so called boot-strap method, an approach based on duality.

QCD was a development of the quark model, which is based on the first approach searching for
more elementary constituents of the strongly interacting particles (hadrons); it goes back to Fermi
and Yang (1949). I do not need to elaborate on QCD here.

The basis of the second approach was duality: In this approach one assumed that there were
no ultimate fundamental quantum fields which constitute matter, but one had rather a holistic
approach to the phenomena. An important concept was that of duality: The sum over all the
resonances in the s-channel yields the same result as the sum over the resonaces in the t-channel,
this is indicated in figure 1.1

A nice model for scattering amplitudes which show this dual behaviour is the Veneziano model
V (s, t) (Veneziano 1968). It consists of a sum of expressions like

1



Figure 1.1: Graphical illustration of duality
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Figure 1.2: Trajectories in the Veneziano model

V (s, t) =
Γ(−α(s))Γ(−α(t))

Γ(−α(s)− α(t))
(1.1)

with the linear function α(x) = −α0 − α′x. Γ(z) is the Euler Gamma function which for integer
values is the faculty, Γ(z +1) = z!. From the properties of the Γ function follows: For large values
of s and values of t < 0, V (s, t) shows Regge behaviour:

V (s, t) ∼ sα(t)

but it has also the resonance poles for for integer values of α(s) or α(t). These poles lie on straight
lines, the highest one is called the Regge trajectory, the lower ones are called daughter trajectories.

It was soon realized, that the Veneziano model corresponds to a string theory, where the rotation
of the string gives the resonances along the Regge trajectories and the vibrational modes yield the
daughter trajectories, see figure 1.3

In this approach the hadrons are not pointlike objects nor are they composed of pointlike objects
(elementary quantum fields), but they are inherently extended objects: strings.

Figure 1.3: Rotational and vibrational modes of a string

2



Figure 1.4: The world surface of a string in the (t, x(1)) plane, whose ends are parametrized by
τ = x4 = ct and ~x(0, τ) = (τ, 0, 0), ~x(1, τ) = (1 + τ, 0, 0)

Figure 1.5: Parametrization of a string

A string in 4-dimensional Minkowski space can be parametrized by two parameters, σ, τ :

xµ(σ, τ)

where xµ(0, τ) and xµ(1, τ) are the endpoints of the string.

If we have for instance:

τ = x4 = ct and ~x(0, τ) = (τ, 0, 0), ~x(1, τ) = (1 + τ, 0, 0),

the string is moving with velocity of light along the x1 axis in the (x2, x3) plane, see figure 1.4.

In figure 1.5 a more general parametrization is shown with lines of constant σ and τ indicated on
its world surface.

A result for the classical relativistic string is that the angular momentum is proportional to the four
momentum squared, that is the (relativistic) mass of the string, J ∼ m2 which is just the Regge
behaviour. The Veneziano model correponds to a classical string theory, quantum corrections are
shown in figure 1.6

Figure 1.6: Veneziano model and quantum corrections in string theory
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Big hopes were put in the Veneziano model and its development, but soon it turned out that it
was not the most adequate theory for strong interactions. Beyond internal difficulties one reason
was that Quantum Chromodynamics (QCD) came out as a strong competitor and now this field
theory is generally considered as the correct theory of strong interactions.

String theory however developed in a completely different direction and it is nowadays considered
as the best candidate for a quantum theory of gravitation. But it is interesting to note, that
string theory in strong interaction physics was never completely dead. The reason is that many
aspects of non-perturbative QCD seem to indicate that hadrons have indeed stringlike features.
The most poular model for confinement, the t’Hooft-Mandelstam model (see figure 1.7) is based on
the assumption that that the colour-electric force lines are compressed (by monople condensation)
into a flux tube which behaves in some respect indeed like a string.

q
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

Magnetischer Monopol

q

Figure 1.7: Formation of a colourelectric flux tube

Also the particular role of quarks as confined particles shows some analogy with a string picture:
If you split a hadron, you do not obtain quarks, but again hadrons. In a similar way, if you cut a
string you do not obtain two ends, but two strings again.

The present renewed interest of phenomenologically oriented physicists in this field goes back to
conjecture made by Maldacena , Gubser Klebanov and Polyakov, and Witten in 1998[1, 2, 3] 1 It
states that a certain string theory is equivalent to a certain Yang-Mills theory. Many people tried
to bring this mathematically high-brow theory down to earth and try to learn from string theory
some aspects of nonperturbative QCD.

Before we come to formulae, I shall try to tell you in words the principal ideas behind the approach
which we shall follow during the rest of the lectures.

1.1.2 AdS/CFT

As mentioned above, there are good reasons to believe, that a certain superstring (Type II B)
theory in ten dimensions is dual to a highly supersymmetric (N=4) gauge theory (Maldacena
conjecture). Duality means here that the strong coupling regime of one theory reflects the weak
coupling regime of the other one. Therefore the classical domain (without loops) of one theory
allows nonperturbative (strong coupling) calculations in the other theory. This is of course just
what we want for QCD.

The relation between the two very different theories comes over the so called D-branes. A D-brane
is a hypersurface on which open strings end. Since energy and momentum flows from the string
to the D-branes they are also dynamical objects. The D stands by the way for Dirichlet, since the
Dirichlet boundary conditions on the D-brane are essential for string dynamics. In the mentioned

1for some reviews for non-specialists see e.g. [4, 5] and the very short article [6]
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case the D3 branes have 3 space and one time direction and they are boundaries of a 5 dimensional
space with maximal symmetry (a so called ant-de Sitter space, we come to this back in detail).
In figure 1.8 two D1-branes (1 space, 1 time dimension) are shown, at which an open string ends
(picture at a fixed time).

Figure 1.8: Two D1 branes in three-dimensional space

The situation to which the Maldacena conjecture applies is however of no direct use, since the
supersymmetric gauge theory of the conjecture is very different from our QCD. The quarks for
instance are in this theory necessarily in the same representation as the gauge fields, for QCD this
would mean that there are eight coloured quarks. Furthermore this supersymmetric Yang-Mills
theory has no intrinsic scale like the QCD scale ΛQCD. This means that the coupling constant
is not running. But the close relation between a superstring (or better supergravity) theory and
a Yang Mills theory in one special case and the great need for nonperturbative methods have
motivated many physicists to try to obtain nonperturbative results in actual QCD from classical
calculations in a higher dimensional space. There are at the moment two principal approaches:

• The top-down approach: One looks for a superstring theory which has as limit on a D3
brane realistic QCD or at least a similar theory. This approach is very difficult and has to
my knowledge not yet led to phenomenologically useful results

• The bottom-up approach: One starts with QCD and tries to construct at least an approxi-
mate string theory which one can solve and obtain nonperturbative results for QCD

Needless to say that we follow here the bottom-up approach.

Before we come to a more complete mathematical description, I shall outline pictorially the situ-
ation. We first go back to the Maldacena conjecture, not to come to a top-down approach, but to
learn at least some constraints for the bottom-up construction.

In the Maldacena case the D3 branes at which the strings can end and move, are boundaries of
a 5 dimensional space with maximal symmetry, a so called anti-de-Sitter space. Since I cannot
draw a picture in 10 dimensions, I try to illustrate it with three dimensions.

If we embed into our three dimensional space a rotational hyperboloid, than this hyperboloid is a
space of maximal symmetry (Another example is a sphere, where the symmetry is more apparent;
the hyperboloid is an anti-de-Sitter space, the sphere is a de-Sitter space) This is shown in figure
1.9. Values with constant r of the hyperboloid are one-dimensional spaces which represents the
D-brane (in the figure it is actually a D0 brane).

5



Figure 1.9: A two dimensional anti-de-Sitter space is embedded into a three dimensional space

The maximal symmetry of the 5-dimansional AdS space involves scale invariance. The metric in
this space does not change, if we multiply the 4 space-time coordinates x by α and divide the 5th
coordinate (r in figure 1.9) by α. If we decrease r by dividing through a large number it correponds
to an increase of the distance in ordinary space time. Hence if we can study the r-behaviour in
the 5-dimensional AdS it may tell us something about the large distance behaviour in QCD.

The procedure we adopt will be the following: We construct operators in AdS5 which correspond
to local QCD operators, e.g. a vector field ψ̄Γµψ and study the behaviour of this operator in the
5 dimensional space (the so called bulk), especially the r behaviour, and hope to get information
on the large-distance, that is nonperturbative, behaviour of QCD see figure 1.10. Indeed we shall

Figure 1.10: A local QCD operator extended in the AdS5 (bulk)

calculate in this approach hadron spectra for mesons and baryons, form factors and even light
cone wave functions. All this is done by solving classical equations – that is no loop calculations
are performed– in the non-Euclidean geometry of AdS5. Since there is here some special interest
in light cone wave functions, I shall follow largely the lectures of Brodsky and Teramond [7] where
these important quantities are derived from AdS/CFT. In the rest of the first part we have to
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learn dynamics in a non-Euclidean geometry, as a spin off we shall also learn a little bit of general
relativity and cosmology.

1.2 Dynamics in non-Euclidean geometry

1.2.1 Basics of non-Euclidean geometry

We take here a very practical approach which leads us as fast as possible to the applications.

A scalar product contains all the information in Euclidean geometry: length and angle.

|~a| = √
a · a, cos θ =

1

|~a||~b|~a ·
~b

We write the scalar product in the clumsy form:

~a ·~b =
∑
µν

eµνa
µbν

with

eµν =





1 0 0
0 1 0
0 0 1





in a three dimensional space.

The tensor {eµν} is called the metric tensor (or short metric) of Euclidean geometry. Since the
length of a vector with components {dx1, dx2, . . . dxn} is given by

(ds)2 =
∑
µν

eµνdxµ dxν (1.2)

this expression is also referred to as “the metric”.

In Minkowski space the metric tensor is given by :

{ηµν} =





−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1





(1.3)

Since {ηµν} is not positive definite, it is called a pseudo-Euclidean metric tensor and geometry in
Minkowski space is called pseudo-Euclidean.

If {eµν} or {ηµν} are not diagonal, but only symmetric, we can bring them by a change of the
coordinate system into a diagonal form and by rescaling also to a form with ±1 in the diagonals.

In non-Euclidean geometry, the elements of the metric are no longer constants, but may differ
from point to point. The line element of eq. 1.2 therefore becomes:

(ds)2 =
∑
µν

gµν(x) dxµ dxν (1.4)

where gµν is a symmetric matrix function, gµν(x) = gνµ(x).
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If we want to determine the metric on a sphere in polar coordinates {θ, φ} we do this best by
considering a line element (see figure 1.11)

(ds)2 = R2dθ2 + (R sin θdθ)2

that is the metric tensor on a sphere S2 is:

(
R2 0
0 R2 sin2 θ

)

R is a constant, but we see that the tensor depends indeed on the coordinate θ.

Figure 1.11: A line element on the sphere S2

The metric of AdS

We can now make the statements made in the introduction mathematically precise.

The metric of the D3 brane in the 10 dimensional space of the Maldacena case is given by:

(ds10)
2 =

1√
1 + L4/r4

(
−(dx1)2 − (dx2)2 − (dx3)2 + (dx4)2

)
−

√
1 +

L4

r4
(dr2 + r2dΩ5) (1.5)

here L is a constant which will be related to the parameters of the Yang Mills theory:

L4 = g2
Y MNc(α

′)2

where gY M is the gauge coupling constant, Nc is the number of colors and α′ the inverse string
tension (the slope of the trajectories in the Veneziano model (see (1.1); dΩ5 is the metric of a
5-dimensional sphere.

For large r >> L this looks like a flat metric, but for small r we can write

(ds10)
2 ≈ (dsAdS)

2 + dΩ5 (1.6)

with

(dsAdS)2 =
r2

L2
(−(dx1)2 − (dx2)2 − (dx3)2 + (dx4)2)− L2

r2
(dr)2 (1.7)
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This is the metric of a 5-dimensional Anti-de-Sitter space. We see here directly the assertion
made in the introduction: If we multiply the space-time coordinates x with α and divide the 5th
coordinate r by α, the metric remains unchanged.

By coordinate transformations one can bring the metric in many forms. One which is very often
used in pheneomenlogical applications is given by the replacement:

z =
L2

r
(1.8)

which yields

dz = −L2

r2
dr

and therefore

(dsAdS)2 =
L2

z2

(
−(dx1)2 − (dx2)2 − (dx3)2 + (dx4)2 − (dz)2

)
(1.9)

Here we see very clearly the dilatation invariance: If all 5 coordinates are multiplied by a factor
α the metric remains unchanged.

Another choice of coordinates is
r = eu/L (1.10)

in this case we obtain:

dr =
1

L
eu/Ldu

and therefore

(dsAdS)2 =
e2u/L

L2
(−(dx1)2 − (dx2)2 − (dx3)2 + (dx4)2)− (du)2 (1.11)

So we see that things are very flexible in non-Euclidean geometry with general coordinate trans-
formations. But there are still invariants and symmetries left, and the AdS space is indeed a
maximally symmetric space. Before we understand that and can exploit it, we have to learn some
more things.

Upper and lower indices

The inverse metric tensor, {gµν}−1 is denoted by {gµν}, that is with upper indices:

{gµν}−1 · {gµν} = 1 thatis
∑
ν

gµν gνρ ≡ g ρ
µ = δρ

µ (1.12)

where

δρ
µ =

1 for µ = ρ
0 else

(1.13)

From now on we shall use the Einstein convention: We sum over equal upper and lower
indices, that is for instance:

gµν gνρ ≡ ∑
ν

gµν gνρ (1.14)

where the summation runs over all coordinates (d in a d-dimensional space).

In Euclidean and pseudo-Euclidean (Minkowski-space) geometry one has:

ηµν = ηµν (1.15)

9



as one easily verifies. This is not the case for general non-Euclidean metric.

A vector with upper indices is called a contravariant vector, one with lower indices is called a
covariant vector.

A contravariant vector V µ transforms under a coordinate transformation xµ → x′µ like:

V µ(x) → V ′µ = V ν ∂x′µ

∂xν
(1.16)

a covariant vector like

Vµ(x) → V ′
µ = Vν

∂xµ

∂x′ν
(1.17)

We can transform contravariant vectors in covariant ones and vice versa (lower or rise indices) by
the metric tensor:

gµν(x)V ν = Vµ; gµν(x)Vν = V µ (1.18)

The gradient of a scalar function φ(x), that is {∂µφ} is a covariant vector, as follows from the
chain rule (we write ∂ ′

µ for ∂
∂x′µ ):

V ′
µ ≡ ∂ ′

µφ
′(x′) = ∂ ′

µφ(x) = ∂νφ(x)
∂xν

∂x′µ
= Vν

∂xν

∂x′µ

which is the transformation law (1.17).

A covariant or contravariant or mixed tensor has several indices which transform according to
(1.17 or 1.16) A covariant tensor of rank two e.g. transforms as:

Vµν → V ′
µν = Vρσ ∂ ′

µx
ρ∂ ′

νx
σ (1.19)

We can easily check, that the derivative of a vector does not form a rank two tensor (in
contrast to special relativity).

∂ ′
µV

′
ν(x

′) = ∂ ′
µ

(
Vρ(x)∂ ′

νx
ρ
)

=
(
∂ ′

µVρ(x
′)

)
∂′νx

ρ + Vρ(x)∂ ′
µ∂

′
νx

ρ

= ∂σVρ(x)∂ ′
µx

σ ∂ ′
νx

ρ + Vρ(x)∂ ′
µ∂

′
νx

ρ (1.20)

We see that in order to get a rank two tensor we have to form

∂ ′
µV

′
ν(x

′)− Vρ(x)∂ ′
µ∂

′
νx

ρ. (1.21)

This is a consequence of the fact, that in non-Euclidean geometry a vector changes its components
under parallel transport. If we go from xµ to xµ + ε we have

Vν(x) → Vν(x + ε)− ε Γρ
νµVρ(x)

where Γρ
µσ is called parallel transporter.
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We define the covariant derivative:

DµVν ≡ ∂µVν − Γρ
µνVρ (1.22)

DµVν is a covariant rank 2 tensor.

One can show (using 1.20) that

Γρ
µν =

1

2
gρκ(∂µgνκ + ∂νgµκ − ∂kgµν) (1.23)

from which we see directly the symmetry:

Γρ
µν = Γρ

νµ (1.24)

Exercise

As a nice exercise, the result of which we need later, we calculate the two-dimensional Laplacian in
polar coordinates. This is in Euclidean geometry, but since we do not use Cartesian coordinates,
we can profitably use the machinery developed here.

In polar coordinates of the plane

x1 = r cos φ x2 = r sin φ (1.25)

the line element is
(ds)2 = (dr)2 + (rdφ)2 (1.26)

that is the metric tensor is

{g} =

(
grr grφ

grφ gφφ

)
=

(
1 0
0 r2

)
and {g}−1 =

(
grr grφ

grφ gφφ

)
=

(
1 0
0 1

r2

)
(1.27)

Looking at (1.23) we see that only one contribution to the parallel transporters is different from
zero, namely

∂rgφφ = 2r

Therefore we obtain easily from (1.23)

Γr
rr = 0; Γr

rφ = 0; Γr
φφ = −1

2
grr∂rgφφ = −r

Γφ
rr = 0; Γφ

rφ =
1

2
gφφ∂rgφφ =

1

r
; Γφ

φφ = 0 (1.28)

The gradient of a scalar function f(r, φ) is

(∂rf, ∂φf)

and therefore the covariant Laplacian:

D2f = grrDr∂rf + gφφDφ∂φf

= grr
(
∂2

rf − Γr
rr∂rf − Γφ

rr∂φf
)

+ gφφ
(
∂2

φ − Γr
φφ∂rf − Γφ

φφ∂φf
)

= ∂2
rf +

1

r
∂rf +

1

r2
∂2

φf (1.29)

11



This is the expression for the two dimensional Laplacian in polar coordinates (in Cartesian coor-
dinates it is of course (∂2

1f + ∂2
2f).

1.2.2 Wave equations in non-Euclidean geometry

Scalar field

We start with the action of a free scalar field in Minkoswski space. It is given by:

A =
∫

d4x
1

2
(ηµν ∂µφ∂νφ−m2φ2)

︸ ︷︷ ︸
L

(1.30)

Variation of the action δA = 0 leads to the Euler-Lagrange equations:

∂ρ
∂L

∂(∂ρφ)
− ∂L

∂φ
= 0 (1.31)

which leads to the wave equation (Klein-Gordon equation):

ηµν∂µ∂νφ + m2φ = 0. (1.32)

If we go to non-Euclidean metric we have to replace:

• ηµν → gµν

• d4x → d4x
√
|g| (Square root of the determinant of the metric) This is an invariant volume

element.

• ∂ → D (covariant derivative) Fortunately for a scalar the covariant derivative is the normal
one, see sect. 1.2.1.

Instead of the action (1.30) we obtain in non-Euclidean geometry:

A =
∫

d4x
√
|g|1

2
(gµν ∂µφ∂νφ−m2φ2)

︸ ︷︷ ︸
L

(1.33)

and from (1.31 we obtain instead of 1.32 the wave function in non-Euclidean metric:

∂ρ

(√
|g|gρν∂νφ

)
+

√
|g|m2φ = 0. (1.34)

or

gρν(∂ρ∂νφ) + m2φ =
−1√
|g|

∂ρ(
√
|g|gρν)∂νφ (1.35)

That is the interaction with the non-Euclidean metric (e.g. gravity) leads to an interaction term
(r.h.s. of 1.35).

12



Electrodynamics in non-Euclidean geometry

As a small exercise, which will be useful later, we derive the Maxwell equations in non-Euclidean
metric.

In electrodynamics we have

A =
∫

d4xFµν Fµ′ν′η
µµ′ηνν′

︸ ︷︷ ︸
Lem

(1.36)

where Fµν is the electromagnetic field tensor:

Fµν = ∂µAν − ∂νAµ (1.37)

and Aµ the electromagnetic vector potential.

The Euler-Lagrange equations are here:

∂ρ
∂Lem

∂(∂ρAσ)
− ∂L

∂Aσ

= 0 (1.38)

From the variational principle δA = 0 follow the free Maxwell equations

∂ρ F ρσ = 0 (1.39)

In a non-Euclidean metric the same replacements have to be done as in the scalar case. Here
again we have not to care about the covariant derivatives because . Indeed if we insert covariant
derivatives in (1.37) we obtain

Fµν = DµAν −DνAµ = ∂µAν − ∂µAν − (Γσ
µν − Γσ

νµ)Aσ = ∂µAν − ∂µAν (1.40)

because of the symmetry of the parallel transporters, see 1.242 The action for free electrodynamics
in non-Euclidean geometry is therefore:

A =
∫

d4x
√
|g|Fµν Fµ′ν′g

µµ′gνν′

︸ ︷︷ ︸
Lemg

(1.41)

The variation principle yields:

∂ρ
∂Lemg

∂(∂ρAσ)
= ∂ρ

∂

∂(∂ρAσ)

(√
|g|Fµν Fµ′ν′g

µµ′gνν′
)

= ∂ρ

(√
|g|gµµ′gνν′ ∂

∂(∂ρAσ)
(Fµν Fµ′ν′)

)
(1.42)

I give the calculation step by step, this is always advisable in non-Euclidean metrics, since there
are many traps there.

∂Lemg

∂(∂ρAσ)
=

√
|g| gµµ′gνν′ ∂

∂(∂ρAσ)

(
∂µAν − ∂νAµ) 2 ∂µ′Aν′

)

=
√
|g| gµµ′gνν′

(
2 δρ

µδ
σ
ν ∂µ′Aν′ − 2 δρ

νδ
σ
µ ∂µ′Aν′ + 2(∂µAν − ∂νAµ)δρ

µ′δ
σ
ν′

)

= 2
√
|g| gρµ′gσν′∂µ′Aν′ − 2

√
|g| gσµ′gρν′∂µ′Aν′ +

√
|g| gµ′ρgν′σ(∂µ′Aν′ − ∂ν′Aµ′)

= 4
√
|g| gµρgνσ(∂µAν − ∂νAµ)

(1.43)

2This result is general in Riemannian geometry. One calls such a antisymmetric construction a form and writes
eq. 1.40 as F = dΛA.
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Inserting (1.43) into the result of the variational principle

∂ρ
∂Lemg

∂(∂ρAσ)
= 0

we obtain as Maxwell equations in non-Euclidean geometry:

gµρgνσ∂ρFµν =
−1√
|g|

Fµν∂ρ(
√
|g| gµρgνσ) (1.44)

Again we see that the non-Euclidean geometry leads to an interaction term. The left hand side

acts like a current Jσ = −Fµν∂ρ(
√
|g| gµρgνσ)

String action

In order to show the formal relation between non-Euclidean geometry and string theory, we also
show the the classical action for a relativistic string. It is given by:

W =
∫

dσ dτ
√
||G|| (1.45)

where ||G|| is the determinant of the matrix (Gαβ) (the so called induced metric)

G =

(
∂σx

µ∂σx
νηµν ∂σx

µ∂τx
νηµν

∂σx
µ∂τx

νηµν ∂τx
µ∂τx

νηµν

)

This tensor G is just the metric tensor on the (2-dimensional) string.

1.3 The anti de Sitter space (AdS)

1.3.1 Maximal symmetry and conformal invariance

We have already shown the metric of the Anti-de-Sitter space (see 1.5 ff). Here we want to collect
some more important properties.

The anti-de-Sitter space is a space of maximal symmetry, which means that as a d dimensional
space it has d (d+1)/2 symmetries. Quite generally one can show, that a space with d dimensions
has d (d− 1)/2 isometries, that is symmetries which leave the metric invariant. If we look for the
symmetries of 4-dimensional Minkowski space, we have besides the 4 · 3/2 = 6 Lorentz transfor-
mations another 4 symmetry transformations, namely the translations in space and time, that is
we have indeed 5 · 4/2 = 10 symmetry transformations.

A non-Euclidean maximally symmetric space can be constructed from a d + 1 dimensional space
by eliminating one dimension by an invariant condition. Than this resulting d-dimensional space
has still the (d + 1) d/2 symmetries of the (d + 1)-dimensional space. An intuitive example is the
sphere S2. If we start with a 3-dimensional space it has 3 isometries, the 3 rotations. A sphere is
constructed in a 3-dimensional space by the condition x2 + y2 + z2 = R2 which is invariant under
rotations. Hence the surface of the sphere (d = 2) has still the 3 · 2/2 = 3 symmetries of the
3-dimensional space. The Euclidean 2-dimensional plane is a limit of the sphere with the radius
going to infinity.
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We shall consider a 5-dimensional anti-de-Sitter space, hence there are 15 symmetry transforma-
tions. On the other hand it is said to be dual to a Yang Mills theory in the four dimensional
Minkowski space, which as a four-dimensional maximally symmetric space has only 10 symme-
tries. Therefore the special Yang Mills theory dual to AdS5 must have additional symmetries, and
these are in the Maldacena case the so called conformal symmetries. This explains the name fully:
AdS/CFT : AdS for anti-de-Sitter space, CFT for conformal field theory.

A conformal symmetry is the symmetry under:
•Dilatation : x → λx
• Inversion : xµ → a xµ

x2

We deal here only with dilatations, since they lead in principle to the inversions.

We expect that a theory where the Lagrangian contains no scale (quantity with dimension) the
theory is scale invariant, that is invariant under dilatations.

In a somewhat sketchy way one can see this easily for gauge theories:

We replace: x → x′ = λx then ∂
∂xµ → 1

λ
∂

∂xµ and Aµ(x) → A′
µ(x′) = A′

µ(λx)

If we set A′
µ(λx) = 1

λ
Aµ(x), then F ′

µν(λx) = 1
λ2 Fµν(x)

For Abelian gauge theories this is trivial, but it holds also for non-Abelian gauge theories where
we have:

FC
µν = ∂µAν − ∂νAµ + i

∑

AB

fABCAA
µ AB

ν (1.46)

Each derivative ∂µ and each field Aµ leads to a factor 1
λ
. Therefore the action remains invariant

under dilatation:

A =
∫

d4xFµνFµ′ν′η
µµ′ηνν′ → A′ =

∫
d4(λx)

1

λ4
FµνFµ′ν′η

µµ′ηνν′ = A (1.47)

The same holds for a massless φ4 theory, with φ′(λx) = 1
λ
φ(x) But if there is a mass term,

dilatation invariance is no longer valid.

A =
∫

d4x ηµµ′∂µφ∂µ′φ−m2φ2 − gφ4 → A′ =
∫

d4x ηµµ′∂µφ∂µ′φ− λ2m2φ2 − gφ4 6= A (1.48)

The supersymmetric Yang Mills theory in the Maldacena case is indeed conformal invariant and
there is a one-to-one correponcence between the symmetries of AdS5 and CFT. This is one of the
reasons for the conjecture.

QCD, however is not supersymmetric and is not conformal invariant as a quantum theory. In
the renormalization procedure one has to include a mass scale which breaks this invariance and
leads among other things to the running coupling with a dimensional quantity, ΛQCD:

αs(Q
2) =

4π

β0 log(Q2/Λ2
QCD

) + . . . β0 = 11− 2

3
nf

One has argued, that from some phenomenological analysis follows that for large values of αs

(large distances) the coupling remains fixed and therefore there might be approximate conformal
invariance. But on the other hand, for confinement we need a dimensional quantity (the rise of the
linear potential, e.g.) and therefore the maximal symmetry of AdS5 must be violated somehow.
We shall see this explicitly in the phenomenological part.

The relation between dilatation symmetry and the symmetries in AdS5 can be seen directly from
the metric:

(ds)2 =
L2

z2
(−(dx1)

2 − (dx2)
2 − (dx3)

2 + (dx4)
2 − (dz)2). (1.49)
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This metric is invariant under a dilatation of all coordinates {x, z} → {λx, λz}.
From this we see further, that the variable z is something like a scaling variable in Minkowski
space. A small value for λ corresponds to small scales, that is small distances and correspondingly
high energies. If by choosing a small scale λ we investigate the small x behavior, also z is small,
because it is multiplied by the same factor λ.

1.3.2 Parallel transporters and curvature in AdS

In this subsection we collect some results for the special AdS5 geometry.

We first fix the notation for further use. We introduce the 5-dimensional pseudo-Euclidean
(Minkowski) tensor:

{ηAB} =




−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1




(1.50)

The indices A, B, C run from 1 to 5. In accordance with most of the literature we call the 5th
variable x5 ≡ z and use ∂5 ≡ ∂z.

The metric tensor is then, see (1.9)

{gAB} =
L2

z2
{ηAB} {gAB}−1 = {gAB} =

z2

L2
{ηAB} (1.51)

From 1.51 follows ∂KgLN = −2L2

z3 δ5
KηLN and the parallel transporters, see 1.23, can be easily

calculated to

ΓL
MN =

1

2
gLK (∂MgKN + ∂NgKM − ∂KgMN)

=
−1

z

(
δ5
MδL

N + δ5
NδL

M − ηL5ηMN

)
(1.52)

We shall use these parallel transporters later for the covariant derivative which is necessary for
the treatment of particles with higher spin.

As we have seen from equations 1.7-1.51 general coordinate transformations allow many different
forms of the metric for the same geometry. Are there also intrinsic invariants. The answer is yes,
the scalar curvature e.g..

We first give some results which are generally valid: The curvature tensor Rλ
µνκ can be calculated

from the metric tensor. It is most convenient to express it in terms of the parallel transporters :

Rλ
µνκ = ∂κΓ

λ
µν − ∂νΓ

λ
µκ + Γη

µνΓ
λ
κη − Γη

µκΓ
λ
νη (1.53)

The Ricci tensor is obtained by contracting over the contravariant with the second covariant
index:

Rµν = Rλ
µλν (1.54)

The scalar curvature as
R = gµνRµν (1.55)
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Now we come to the special case AdS5. The curvature R can be calculated from 1.55 together
with 1.53 and 1.52 to:

R = η55(52 − 5)
1

L2
= −20

L2
(1.56)

For a maximally symmetric space the curvature tensor is particularly simple :

RMNRS =
1

L2
(gNR gMS − gNSgMR) (1.57)

which means that the curvature tensor is determined by one single constant, the constant curva-
ture. You can check this by a simple but tedious calculation for AdS5.

1.3.3 Short excursion to general relativity and cosmology

This section is not needed for the following. It is only intended for those not familiar with the elements
of general relativity.

Here we stay in four dimensions. The action for pure gravity in Einsteins theory is very simple:

A =
∫

d4x
√
|g|R

where |g| is the modulus of the determinant of the metric, it is necessary, since only d4x
√|g| is invariant

under general coordinate transformations.

Coupling to matter leads to the Einstein equations:

Rµν − 1
2
gµν R = −8πGNTµν + Λgµν (1.58)

where Tµν is the energy-momentum tensor of matter, GN Newton’s gravitational constant and Λ the
famous cosmological constant. In the original work Einstein did not include a cosmological constant
(see the Einstein bust in front of the Department), but he later introduced it in order to allow a steady
state universe. When the expansion of the universe became apparent through he experiments of Hubble,
Einstein considered the introduction of the cosmological constant as his biggest blunder. Modern obser-
vational data indicate however that there is indeed a cosmological constant. It is necessary to explain
the fast expansion of the universe.

The energy momentum tensor can be obtained from the total Lagrangian, including matter, by variation
with respect to the metric:

Tµν =
δLtot

δgµν
. (1.59)

For radiation, which was dominant in the early stage of the universe, it is the Maxwell energy momentum
tensor, for “cold classical matter” it is

Tµν = ρ uµuν (1.60)

where uµ is the 4-velocity.

The de-Sitter metric in 4 dimensions is

(ds)2 =
L2

z2
(− (dx1)2 − (dx2)2 − (dx3)2 + (dz)2) (1.61)

Note that in the de-Sitter metric the“time” direction is singled out, in contrast to the anti-de-Sitter
metric, where a “space” component is singled out. The Ricci tensor is

Rµν =
−3
L2

gµν (1.62)
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and the curvature scalar is
R =

−12
L2

. (1.63)

Now we see that the de-Sitter space in four dimensions is a solution of the Einstein equations 1.58 with
Tµν = 0 (no matter) and a cosmological constant Λ = 3

L2 .

If we introduce new coordinates z = e−ct/L then the metric has the familiar form with time singled out:

(ds)2 = (c dt)2 − L2e2c t/L((dx1)2 + (dx2)2 + (dx3)2) (1.64)

The factor L2e2c t/L in front of the space part of the metric can be interpreted as the unit length. If
L > 0 we have an expanding universe without matter.

Though matter is rather diluted in the universe, we cannot ignore it completely. Fortunately in cosmology
one can make use of the cosmological principle: Averaged over very large (cosmological) scales, matter is
evenly distributed and no point is preferred, i.e. ρ = constant, T00 = ρ, and all other components are zero.
This leads to a metric with a maximally symmetric subspace of three dimensions, the Robertson-Walker
metric:

(ds)2 = (c dt)2 −R(t)2
(

(dr)2

1− kr2
+ r2dΩ

)
. (1.65)

If k = 0, the universe is asymptotically flat, for k 6= 0 it is either finite (k > 0) or infinite (k < 0). From
microwave data one has rather good indications that k = 0. Which we shall assume in the following.

If the Robertson Walker metric is inserted into the Einstein equations one obtains after a straightforward
calculation: (

∂tR(t)
R(t)

)2

=
1
3
(8πGNρ + Λ) (1.66)

and
∂2

tR(t)
R(t)

=
1
3

(
Λ− 4πGN (ρ + 3p)

)
(1.67)

where ρ is the density and p the pressure of matter. The R(t) has nothing to do with the curvature, but
is rather the unit length. If Λ 6= 0 the metric of the universe will approach more and more a de-Sitter
metric, since in the expanding universe the matter density ρ decreases.

According to modern observational data, Λ > 0 and R(t) is increasing. If we extrapolate back using
classical theory of (Einstein) gravitation, R was zero some 14 109 years ago. This is the famous big
bang, since for that time R(t0) = 0 the universe had no extension. It should be noted however that this
extrapolation to R(t0) = 0 is not justified, since for very small values of R quantum effects of gravitation
are supposed to be dominant. Superstring theory is just the attempt, to calculate these effects. In this
theory a minimal length scale exists and therefore it is very well possible that there was no big bang but
only a big bounce.
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Chapter 2

Applications

We now come to the applications of AdS/CFT. We shall first try to calculate particle spectra. The
general procedure is the following: We look for such a solutions of the wave equation for a field in
AdS5 which is the product of a free field in Minkowski space multiplied by a function depending
on the fifth variable z, that is

Φ(x, z) = ε(p)e−ipx φ(z), (2.1)

where p is the 4-momentum and ε(p) a polarization vector or spinor of the free field. To say it in a
very high-brow way: The full particle field in 4-dimensional Minkowski space M4 is the holographic
picture of the field Φ(x, z) ind the 5-dimensional AdS. If AdS/CFT yielded confinement, we
obtained solutions only for discrete values of p2 = m2, corresponding to the hadronic states.
But it will turn out, that this is not the case. Therefore the AdS5 metric has to be modified in
phenomenological applications.

In this second part I shall proceed very slowly, dwelling not only on the principal questions but
also on the technical ones.

A remark on notation: We shall use capital Latin indices A,B C,. . . K,M,L . . . in AdS5 and Greek
indices α, β, . . . κ, λ, µ . . . in the 4-dimensional border space M4. So we write e.g.:

ηAB∂A∂BΦ(x, z) = (ηαβ∂α∂β − ∂2
z )Φ(x, z) (2.2)

It is customary to call the extension in the 5’th dimension of AdS5 bulk and the 5th variable z
the holographic variable, since the Yang-Mills theory in the 4-dimensional space can be viewed as
a hologram of the theory in 5 dimensions.

2.1 The scalar particles

We shall proceed in 5 steps:
1) Derive the wave equation
2) Discuss general properties of the solutions
3) Solve the wave equation
4) Modify pure AdS5

5) Compare wit data
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2.1.1 Action and wave equation

We now use the results of section 1.2.2. We start with a Lagrangian for a scalar (or pseudoscalar)
field Φ(x, z). Here x refers to the 4 Minkowski space-time coordinates, z is the 5th coordinate
in AdS5. Since scalar particles are no natural ingredients in a gauge theory we allow for a term
without derivatives, µ2Φ2, which looks like a mass in the 5 dimensional space. The value of µ2 will
be fixed later, it should be noted that is is just a parameter and has nothing to do with masses in
Minkowski space.

Our Lagrangian is thus

L =
√
|g|1

2
(gMN∂MΦ∂NΦ− µ2Φ2) (2.3)

In AdS5 we have (see 1.51)

{gAB} =
L2

z2
{ηAB} {gAB}−1 = {gAB} =

z2

L2
{ηAB} (2.4)

It is convenient for further calculations to write

L2

z2
≡ e2A(z) with A(z) = − log z + log L (2.5)

We then have

√
|g| =

√√√√√√√√√√√√√√

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−e2A(z) 0 0 0 0
0 −e2A(z) 0 0 0
0 0 −e2A(z) 0 0
0 0 0 e2A(z) 0
0 0 0 0 −e2A(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= e5A(z) (2.6)

and

gMN = e2A(z)ηMN ; gMN = e−2A(z)ηMN L =
1

2
e3A(z)

(
ηMN∂MΦ ∂NΦ− e2A(z)µ2Φ

)
(2.7)

The ingredients of the Euler-Lagrange equations

∂A
∂L

∂(∂AΦ)
− ∂L

∂Φ
= 0 (2.8)

are

∂A
∂L

∂(∂AΦ)
= ∂A

(
eκA(z)ηAB∂BΦ

)
;

∂L
∂Φ

= −µ2Φe(κ+2)A(z); κ = 3 (2.9)

Since we have to deal with similar expressions in the following, the 3 in the factor e3A(z) is replaced
by κ. We obtain as wave equation:

eκA(z)
(
ηαβ∂α∂βΦ− ∂2

zΦ− κ∂zA(z)∂zφ + µ2e2A(z)Φ
)

= 0. (2.10)

(The greek letters run from 1 to 4, that is ηαβ∂α∂β = −∂2
1 − ∂2

2 − ∂2
3 + ∂2

4 is the usual d’Alembert
0perator in 4 space-time dimensions (see 2.2)).
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As mentioned above we make the ansatz (2.1 with ε(p) = 1 for a scalar field):

Φ(x, z) = e−ipxφ(z) (2.11)

and obtain for φ(z) the equation :

−∂2
zφ− κ(∂zA)∂zφ + e2A(z)µ2φ = p2φ (2.12)

In principle we hope to obtain the mass of the scalar particle in 4 dimensions from that equation,
namely discrete values of m2 = p2.

In order to get some better insight in the structure of the solutions, we shall bring this equation
into the form of a 1-dimensional Schroedinger equation:

−∂2
zψ + V (z)ψ = m2ψ (2.13)

For that we have in 2.12 to get rid of the single derivative term, −κ(∂zA)∂zφ We introduce

φ(z) = eg(z)ψ(z), (2.14)

where we can choose g(z) in such a way as to cancel the linear derivative. From product differen-
tiation we easily obtain:

∂zφ = eg(∂zgψ + ∂zψ)

∂2
zφ = eg

(
(∂2

zg + (∂zg)2)ψ + 2∂zg ∂zψ + ∂2
zψ

)
(2.15)

Inserting 2.15 into 2.12 we obtain, after dividing by eg:

−∂2
zψ − (2∂zg + κ∂zA)∂zψ −

(
∂2

zg + (∂zg)2 + κ(∂zA)∂zg
)
ψ + e2Aµ2ψ = m2ψ (2.16)

If we insert
∂zg = −κ

2
∂zA (2.17)

we see that indeed the linear derivative vanishes and we obtain finally

−∂2
zψ +

(
κ

2
∂2

zA + (
κ

2
∂zA)2

)
ψ + e2A(z)µ2φ = m2φ (2.18)

That is we have the form of eq. 2.13 with the potential

V (z) =
(

κ

2
∂2

zA + (
κ

2
∂zA)2

)
+ e2A(z)µ2. (2.19)

If we insert A(z) = − log z + log L (see eq. 2.5) we obtain for the potential in 2.13

V (z) =
1

4z2
(4µ2L2 + (κ + 1)2 − 1) (2.20)

and
φ(z) = eg(z)ψ(z) = (z/L)κ/2ψ(z). (2.21)

It should be emphasized, that the equation 2.13 which looks like a Schrödinger equation is the
result of a fully relativistic procedure.

Unfortunately this potential 2.20 vanishes for z → ∞, it is therefore not confining. Therefore
we have to modify the metric in the AdS5. There are two major strategies: One is to introduce
a “hard wall”, that is to confine the space to values z ≤ z0, where z0 ≈ 1/ΛQCD seems to be a
natural choice. This is the hard-wall model. It is simple, but has certain deficiencies which
however can be cured by another model. In that model an additional field is introduced which
breaks the maximal symmetry in AdS5, and hence the conformal symmetry in QCD. This is the
so called soft-wall model.

21



2.1.2 Scaling behaviour

Before we come to explicit solutions, we shortly discuss the behaviour of the solution for small
values of z. I had mentioned in section 1.3.1 that z is like a scaling variable. Small scales in QCD
correspond to small values of z. For small scales (that is small distances, high energies) dilation
symmetry is valid in QCD and therefore the Field Φ should have the same scaling behaviour in z
as the corresponding QCD operator.

A fermion field in a 4-dimensional space has the conformal dimension 3/2 (see sect. 1.3.1), that is
it scales like 1 ψ → λ−3/2ψ. A scalar field in QCD is composed of a quark and an antiquark field,
therefore its conformal dimension is 3. We therefore expect that2 Φ(x, z) ∼ z3.. This is assumed
in many older papers. But in the newer papers normally one assumes that the scaling is not given
by the canonical conformal dimension, but by what is called the “twist dimension”. The
twist is conventionally defined as canonical dimension minus spin, that is for the quark-antiquark
operator product ψ̄(x)Oψ(x), with O = 1 or O = γ5, the twist dimension is 3−2 1

2
= 2. Therefore

in newer papers a behaviour Φ ∼ z2 for scalar operators in AdS5 which correpond to scalar QCD
operators is generally assumed. Another argument for this scaling behaviour will be given in the
section 2.2.

In order to find the scaling behaviour of the solutions of 2.13 we make a power series expansion
of ψ(z) starting with z`:

ψ(z) = z` + O(z`+1) (2.22)

and obtain then for the small z behaviour of ψ from eq. 2.13 :

(−`(`− 1) + V (z))z`−2 + O(z`−1) = 0 (2.23)

and with the potential 2.20 we obtain:

ψ ∼ z` with − `(`− 1) +
(4µ2L2 + (κ + 1)2 − 1

4
= 0 (2.24)

that is

` =
1

2
+

√
µ2L2 + κ + 1 (2.25)

From eq. 2.14,2.17 and 2.21 we obtain for the anti-de-Sitter metric:

φ ∼ eg(z)ψ(z) ∼ zκ/2ψ(z) ∼ z(κ+1)/2+
√

µ2L2+κ+1. (2.26)

For scaling with dimension `d we must therefore have

2 +
√

µ2L2 + κ + 1 = `d that is µ2L2 = `d(`d − κ− 1) (2.27)

For scaling according to canonical conformal dimension `d = κ and therefore µ2L2 = −κ, for
scaling according to “twist dimension” (`d = 2) we have µ2L2 = −κ − 1. From string theory
one has a stability condition, namely that µ2L2 ≥ −4 (Breitenlohner-Maison bound). For scaling
with twist dimension we just exhaust this stability limit, since in the case considered here we have
κ = 3.

1Then the action for am massless fermion, A =
∫

d4x ψ̄(x)γµ∂µψ(x) is dilatation invariant
2In that case Φ′(λz) = 1

λ3 (λz)3 = Φ(z)
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2.1.3 Solution

Equations with 1/y2 potentials are likely to be brought into the form of Bessel’s differential
equation. The generic form of the Bessel equation is

(
− ∂2

y −
1

y
∂y +

ν2

y2

)
Jν(y) = Jν(y); (2.28)

the solution Jν(y) is the Bessel function of order ν (BesselJ[ν, z] in mathematica). For small y it
behaves as

Jν(y) = yν
(
1 + O(ν2)

)
. (2.29)

(There is another solution which is singular at y = 0 which does not concern us here.) We bring
by the same procedure as discussed before the Bessel equation into the form of a Schrödinger eq.
2.13 by introducing

Jν(y) = y−1/2 ψν(y) (2.30)

Inserting that into the Bessel eq. 2.28 we obtain for ψ(z) the equation:

(−∂2
y +

4ν2 − 1

4y2
)ψ(y) = ψ(y) (2.31)

This is close to our equation 2.13. Indeed, if we put y = zm we obtain after multiplication with
m2:

(−∂2
z +

4ν2 − 1

4z2
)ψ(mz) = m2ψ(mz) (2.32)

and we obtain our equation 2.13 with the potential 2.20 if we put

ν2 = µ2L2 + (κ + 1) (2.33)

The final solution for the scalar field is thus given by, see 2.30 and 2.21:

ψ(z) ∼ z1/2Jν(mz); φ(z) ∼ eg(z)ψ(mz) ∼ z(κ+1)/2Jν(mz) (2.34)

As expected, this equation allows a solution for any m and therefore does not yield a discrete
hadron spectrum. Therefore we have to modify somehow the pure AdS5 theory.

2.1.4 The hard wall model

In this model the AdS5 is confined to values

0 ≤ z ≤ z0 (2.35)

and one demands that at the ”hard wall” the function φ(z) vanishes[8, 9, 10]:

φ(z0) = 0. (2.36)

We impose this boundary condition on the solutions of 2.12, that is:

φ(z0) = z
(κ+1)/2
0 Jν(z0) = 0 (2.37)
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Figure 2.1: Bessel functions J1(x) (solid) and J2(x) (dashed)

ν jν,1 jν,2 jν,3 jν,4 jν,1 jν,2 jν,3 jν,4

approx. exact
0 2.41 5.52 8.65 11.79 2.40 5.52 8.65 11.79
1 3.83 7.02 10.17 13.32 3.83 7.02 10.17 13.32
2 5.16 8.42 11.62 14.80 5.14 8.42 11.62 14.80
3 6.45 9.78 13.02 16.22 6.38 9.76 13.02 16.22
4 7.73 11.11 14.39 17.63 7.59 11.06 14.37 17.62
5 9.00 12.42 15.74 19.00 8.77 12.34 15.70 18.98

Table 2.1: The 1.,2.,3. and 4. zero of Bessel functions Jν as calculated with equation 2.39 and
the exact values

This boundary condition 2.36 selects discrete values of m determined by the zeros of the Bessel
functions (see figure 2.1). Denoting by jν,s the s’th zero of the Besselfunction Jν(x) we obtain the
relation

m = jνs/z0 (2.38)

The value of ν

The zeros of the Bessel functions can for not so high ν quite well be approximated by

jν,s ≈ (s +
ν

2
− 1

4
)π − 4ν2 − 1

8π(s + ν
2
− 1

4
)
− . . . . (2.39)

The first 4 zeros calculated with this formula, together with the exact numbers are given in table
2.1 for ν = 1 . . . 5.

We see that a general feature of the string picture is realized: We obtain not only one scalar
(pseudoscalar) meson, but a whole series, corresponding to the zeros of the Bessel function with
the same index ν. These higher resonances correspond to string excitations, as they are also seen
in the Veneziano model as daughter trajectories (see figure 1.2).

Comparison with experiment

Although the pion plays a very special role in QCD as the pseudo-Goldstone boson of sponta-
neously broken chiral symmetry, we start with the discussion of pseudoscalar particles3 . Besides
the pion at 140 Mev/c2 there are radial excitations with the same quantum number as the pion
at 1320 and 1812 MeV /c2. It is certainly hopeless to reproduce the small mass of the pion, since
the pion is as Goldstone Boson a special case, but with z−1

0 ≈ ΛQCD ≈ 300 MeV (for 3 flavors)

3In order to treat this problem more realistically, in [9] and [10] a much richer field containt in AdS5 is assumed
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Experiment π 140MeV π 1300± 100MeV π 1812± 14MeV
ν = 1; z−1

0 = 167 MeV 639 1173 1700
ν = 0; z−1

0 = 207 MeV 501 1140 1797

Table 2.2: Experimental and hard-wall masses of the pion resonances. ν = 1 corresponds to
canonical scaling, ν = 0 to scaling with the “twist dimension” (`d = 2).

Experiment f0 980 ±10 MeV 1400 ±100 MeV 1505 ±6MeV 1724 ±7 MeV
a0 980 ±1.2 MeV 1474 ±19 MeV

ν = 1; z−1
0 = 150MeV 576 1055 1529 2003

ν = 0; z−1
0 = 174MeV 418 958 1502 2074

Table 2.3: Experimental values and a fit of hard-wall masses to the f0 /a0 masses

also the masses of the radial excitations are far to high. On the other hand there is no a priori
reason to set z−1

0 exactly equal to ΛQCD and so we may fit z−1
0 .

In table 2.2 we display fits to the masses for the choice ν = 1 (canonical scaling) and ν = 0 (twist
scaling) according to a least square fit. The agreement is satisfactory.

It is tempting to assume that the resonances corresponding to the different values of ν correspond
to orbital excitations. Then we would get a similar pattern as the Veneziano model. There are
however crucial differences: 1) The radial and the supposed orbital exciatations are not linear in
m2, but approximately linear in m. 2) The “daughters” have not the same mass as the mothers
since eg. j0,2 6= j1,1. These deficiencies are not present in the soft wall model.

The weakness of the linear increase is especially to be felt in the case of the scalar mesons f0 (I=0,
J=0, P=+) and a0 (I=1, J=0, P=+), where 4 resonances have been observed. This can be seen
from table 2.3.

2.1.5 The soft wall model

This model was proposed by Katz et. al[11]. Here an additional field is inserted, which breaks
the dilatation symmetry (called dilaton field). That is, instead of the Lagrangian 2.3 we have:

L = e−D(z)
√
|g|1

2
(gMN∂MΦ∂NΦ− µ2Φ2) =

1

2
eκA(z)−D(z)(ηMN∂MΦ∂NΦ− µ2e2A(z)Φ2) (2.40)

We see that eκA(z) has been replaced by eκA(z)−D(z). Following the same procedure as in section
1.2.2 we come to the wave equation:

eκA(z)−D(z)
(
ηαβ∂α∂βΦ− ∂2

zΦ− (κ∂zA(z)− ∂zD(z))∂zφ + µ2e2A(z)Φ
)

= 0 (2.41)

instead of 2.10 and to
−∂2

zφ− (κ∂zA− ∂zD)∂zφ + e2A(z)µ2φ = p2φ (2.42)

instead of 2.12. That is we indeed had to only to replace in equations 2.15 to 2.19

κ∂zA(z) → κ∂zA(z)− ∂zD(z) (2.43)

.

We then obtain the Schroedinger-like wave equation 2.13 with the potential:

V (z) =
(

1

2
(κ∂2

zA− ∂2
zD) + (

1

4
(κ∂zA− ∂zD)2

)
+ e2A(z)µ2. (2.44)
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If we insert A(z) = − log z + log L (see eq. 2.5) and set D(z) = λ2z2 we obtain for the potential
in 2.13:

V (z) =
1

4z2
(4L2µ2 + (κ + 1)2 − 1) + λ4z2 + (κ− 1)λ2 (2.45)

and
φ(z) = eg(z)ψ(z) = (z/L)κ/2 eλ2z2/2ψ(z). (2.46)

Here we see that the potential 2.45 is rising with z2, it looks like an oscillator potential and we
have good reasons to expect a discrete spectrum for m2.

Before we compare with experiment, we shall shortly discuss the harmonic oscillator in 2 dimen-
sions.

Harmonic oscillator in 2 dimensions

The equation for the quantum mechanical oscillator in 2 dimensions is
(
−1

2
(∂2

1 + ∂2
2) +

1

2

(
(x1)2 + (x2)2

))
f = Ef (2.47)

In polar coordinates it is (see exercise)
(
−1

2
(∂2

r +
1

r
∂r +

1

r2
∂2

φ) +
1

2
r2

)
f(r, φ) = Ef(r, φ) (2.48)

With the ansatz f(r, φ) = f(r)e−iφ` we obtain:

(
− 1

2
(∂2

r +
1

r
∂r − `2

r2
) +

1

2
r2

)
f(r) = Ef(r) (2.49)

This equation has a discrete spectrum with eigenvalues

En` = 2n + ` + 1 (2.50)

and normalized eigenfunctions

fn`(r) = e−r2/2r`

√
2 n!

(` + n)!
L`

n(r2) (2.51)

where L`
n are the associated Laguerre polynomials (LaguerreL[n, `, r] in Mathematica). A few

example are:

L`
0(x) = 1; L`

1(x) = 1 + `− x; L`
2(x) =

1

2

(
`2 − 2x` + 3` + x2 − 4r + 2

)
(2.52)

Finally we can bring 2.49 into the Schrödinger-like form:
(
−∂2

r +

(
r2 +

4`2 − 1

r2

))
ψ = 2Eψ (2.53)

by putting
f(r) = r−1/2ψ(r) (2.54)

Therefore the solution of 2.53 is

ψ(r) = e−r2/2r`+1/2L`
n(r2) (2.55)
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Experiment π 140MeV 1300± 100MeV 1812± 14MeV
` = 1; λ = 373 MeV 745 1054 1291
` = 0; λ = 424 MeV 850 1201 1471

Table 2.4: Experimental and soft-wall masses of the pion resonances

Results

We now come back to our soft wall potential 2.44 which we insert into eq. 2.13

We then obtain after some rearrangements the equation:

(
− 1

λ2
∂2

z +
4`2 − 1

4 λ2 z2
+ λ2z2

)
ψ(z) =

(
m2

λ2
− (κ− 1)

)
ψ(z) (2.56)

where we have put
`2 = µ2L2 + κ + 1 (2.57)

Introducing the new variable u ≡ λz we obtain

(
−∂2

u +
4`2 − 1

4 u2
+ u2

)
ψ(u) =

(
m2 − (κ− 1)λ2

)
ψ(u) (2.58)

By comparison with 2.53, 2.51, and 2.50 we obtain discrete values for the mass:

m2 = 2En`λ
2 + 2λ2 = (4n + 2` + 4)λ2 (2.59)

and we obtain for the solution of the original wave equation 2.41, using 2.55 and 2.46:

φ(z) ∼ (λz)1/2(λz)κ/2eλ2z2

ψ(λz) ∼ z(κ+1)/2+`L`
n(λ2z2) (2.60)

Note that though there is no exponential decay of φ(z) it is nevertheless normalizable, since now
in the scalar product the dilatation field e−λ2z2

is present.

The associated Laguerre Polynomials are finite for zero argument. Therefore we see that ` = 1
corresponds to canonical scaling and ` = 0 to scaling according to the twist dimension. The values
n = 0, 1, 2, . . . give the masses of the radial exciations. As we can see, the soft wall model has
the desired feature that the radial exciations are indeed proportional to the squared mass, but a
direct comparison of the predicted and observed masses for the pions shows that agreement for
the the soft wall model is worse than for the hard wall modell, as can be inferred from table 2.4.

The situation is different for the scalar mesons f0 (I = 0, J = 0, P = +) and a0 (I = 1, J =
0, P = +). Here 3 radial excitations are observed above the lowest state at 980 MeV. The
experimental values and the theoretical results from the soft wall model are displayed in table 2.5.
The agreement is satisfatory.

It is noteworthy that there is no good fit to the scalar mesons possible in the hard wall model, as can
be seen from table 2.3. On the other hand, the high mass of the 3rd recurrence of the π (π(1800))
makes it plausible, that one resonance is missing and the π(1800) is in fact the 4.recurrence and
not the 3. one. Then the soft wall fit to the π -resonances would be much better and the soft wall
model would be superior not only from a conceptual but also from a phenomenological point of
view.
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Experiment f0 980 ±10 MeV 1400 ±100 MeV 1505 ±6MeV 1724 ±7 MeV
a0 980 ±1.2 MeV 1474 ±19 MeV

` = 1; λ = 410MeV 1004 1296 1534 1740
` = 0; λ = 450MeV 900 1273 1558 1800

Table 2.5: Experimental and soft-wall masses of the f0 /a0 masses

2.1.6 Master formulæ

Here we collect some formulæ which will be used throughout the lectures. If we start with the
wave equation

−∂2
zφ− (κ∂zA− ∂zD)∂zφ + e2A(z)µ2φ = m2φ (2.61)

with
A = − log z + log L, D = −λ2z2. (2.62)

We can bring 2.61 into the Schrödinger-like Form:
(
−∂2

z + V (z)
)
ψ = m2ψ (2.63)

with the potential

V (z) =
4(µL)2 + (κ + 1)2 − 1

4z2
+ λ4z2 + (κ− 1)λ2 (2.64)

and the wave function φ is related to ψ by:

φ(z) = zκ/2 eλ2z2/2 ψ(z) (2.65)

For the hard-wall model (λ = 0, 0 ≤ z ≤ z0) follows:

φ(z) = z(κ+1)/2Jν(mz)

ν2 = (µL)2 +
(κ + 1)2

4

ν +
κ + 1

2
= `d; `d =

{
2 for twist scaling
3 for canonical scaling

mν,s = jν,sz
−1
0 (2.66)

jν,s is the s’th zero of the Bessel function Jν

For the soft-wall model (λ 6= 0, 0 ≤ z ≤ ∞) follows:

φ(z) = z(κ+1)/2z`Ln
` (la2z2)

`2 = (µL)2 +
(κ + 1)2

4

` +
κ + 1

2
= `d; `d =

{
2 for twist scaling
3 for canonical scaling

m2
ν,s = (4n + 2` + (κ + 1))λ2 (2.67)

2.2 Vector particles

The Lagrangian for a vector field in AdS5 is

L =
√
|g|1

4
(gMM ′

gNN ′
FMN FM ′N ′) = eA(z)−D(z) 1

4
(ηMM ′

ηNN ′
FMN FM ′N ′) (2.68)
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where, as in 2.5

A(z) = − log z + log L and

D(x) =

{
0 for the hard wall model
λ2z2 for the soft wall model

(2.69)

Here we started from a gauge theory in AdS5 and have introduced no 5-dimensional mass [9, 11].
The field tensor in AdS5 is defined analogously to the one in electrodynamics

FMN = ∂MAN − ∂NAM (2.70)

where we can use normal covariant derivatives because of the antisymmetric construction, see
1.40.

We proceed in a similar way as in electrodynamics (sect. 1.2.2) and obtain:

∂

∂(∂KAL)
L = eA(z)−D(z)ηMKηNL(∂MAN − ∂NAM) (2.71)

and fom that we obtain the Euler Lagrange equation:

∂K
∂

∂(∂KAL)
L = eA(z)−D(z)

(
δ5
K(∂zA− ∂zD)ηMKηNL(∂MAN − ∂NAM)

+ηMKηNL(∂K∂MAN − ∂K∂NAM)
)

= eA(z)−D(z)
(
(∂zA− ∂zD)ηM5ηNL(∂MAN − ∂NAM)

+ηMKηNL(∂K∂MAN − ∂K∂NAM)
)

(2.72)

Since we have in Minkowski space three vector particles (spin components) and 5 components of
the potential, AK , we have two gauge conditions free. We choose

A5 = 0 and ηMK∂KAM = 0 (Lorenzgauge) (2.73)

This simplifies 2.72 to:

∂K
∂

∂(∂KAL)
L = eA(z)−D(z)

(
(∂zA− ∂zD)ηM5ηNL∂5AN + ηMKηNL∂K∂MAL

)
(2.74)

from which we obtain in our notation, where greek indices run from 1 to 4 and ∂5 ≡ ∂z:

ηνλ
(
ηµκ∂µ∂κAν − ∂2

zAν + (∂zA− ∂zD)∂zAν

)
= 0 (2.75)

Now we make the ansatz (2.1):
Aλ = e−ipxελ(p)φ(z) (2.76)

where ε(p) is the polarization vector of a transverse vector field, i.e. ε.p = 0, and we obtain for
φ(z) the wave equation:

(−∂2
z − (∂zA− ∂zD)∂z)φ = m2φ (2.77)

where m2 = p2. This is the equation 2.61 from sect. 2.1.6 with the special value κ = 1 and µ = 0.
We can therefore directly use the results collected there.
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Exp. ρ(770) ρ(1465± 25) ρ(1720± 20) ρ(1900)∗ ρ(2150)∗

ω(782) ω(1420± 25) ω(1670± 30)
h.w. z−1

0 = 181 692 1268 1828 2407 2976
s.w. λ = 478 956 1352 1656 1912 2138

Table 2.6: Experimental and theoretical masses of the ρ/ω resonances; all masses are in MeV; *
denotes a not fully established resonance. h.w. is the hard wall model with ν = 1 and z−1

0 =
181MeV; s.w. the soft wall model with ` = 1 and λ = 478 MeV

2.2.1 Hard wall model

Here we have D(z) = 0 and from sect. 2.1.6, 2.64 with λ = µ = 0 we get :

V (z) =
4− 1

4z2
. (2.78)

with solutions
ψ(z) = (zm)1/2J1(mz); φ(z) = eg(z)ψ(z) = zmJ1(mz) (2.79)

So the treatment with a massless vector field in 5 dimensions leads to a z2 dependence for small
z. This corresponds to the twist dimension, not the canonical dimension.

We demand that the holographic wave function vanishes at the hard wall, φ(z0) = 0. The masses
mn of the vector meson resonances are then determined by the zeros of the first Bessel function;

mnz0 = j1,n (2.80)

We now compare the hard wall model with experiment. There are 5 ρ and 3 ω resonances
observed. The masses and comparison with the model is presented in table 2.6. The result for the
well established resonances is neither good nor very bad.

2.2.2 Soft wall model

Here we have κ = 1, D(z) = λ2z2 and we obtain the potential:

V (z) =
1

2

(
1

z2
− 2λ2

)
+

1

4

(
− 1

z
− 2λ2z

)2

=
3

4z2
+ λ4z2 (2.81)

with the solution

ψ(z) = e−λz2/2(λ z)1/2L1
n(λz) φ(z) ∼ (λ z)1L1

n(λ2z2) (2.82)

and
m2

n = 2En1λ
2 = 4(n + 1)λ2 (2.83)

Comparison with experiment, table 2.6 is more favourable for the soft wall model than for the
hard wall model, especially for the higher, unfortunately not fully established resonances. It is
very comforting, that the parameters for scalar and vector mesons coming from the least square
fit are similar, namely λ = 478 and 450 MeV, (note that ` = 0 for scalar particles gives the same
scaling as ` = 1 for vector particles, see 2.82 and 2.60).

It should be noted, that the reproduction of radially excited states is a notoriously difficult task in
QCD. I should also mention that the determination of orbital exciations will give better results.
As we shall see later, the mass of a particle with spin S will be given by:

mn,S = 4(n + S)λ2 (2.84)
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This result needs a lengthy calculation, since we cannot avoid the covariant derivatives for Spin
lager than 1. We will make this calculation later.

The soft wall model is sometimes referred to as a modification of the metric. This is however
excluded by the comparison of the scalar with vector mesons. If we modify the metric by intro-
ducing:

gMN = eA(z)−D(z)ηMN (2.85)

then we would obtain as factor of the derivative terms of the Lagrangian eκ(A(z)−D(z)) instead
of eκA(z)−D(z) with κ = 1 for vector mesons and κ = 3 for scalar mesons. The strength of the
harmonic oscillator potential would therefore be 3 times higher for scalar then for vector mesons
and correspondingly the masses multiplyed by a factor

√
3. We therefore have to interpret the

factor e−D(z) as a field which influences all states equally.

2.3 Form factors

In this section we investigate the behaviour of form factors in the AdS/CFT model(following [7] and
the literature quoted there). The electromagnetic form factor of a scalar particle with momentum
transfer q = p− p′ is in AdS/CFT defined analogously to the form factor in 4-dimensions:

F (Q2)(2π)4δ4(p′ − p− q) ε.(p′ − p) =
∫

d4xdz
√
|g|gLL′Φ∗

p′(x, z) i∂↔L Φp(x, z)AL′(x, z) (2.86)

where Φp are the solutions of wave equation 2.13 discussed in section 2.1:

Φp(x, z) = e−ip.xφ(z) (2.87)

and {AL} is an external field, corresponding to the electromagnetic field in 4 dimensions with
polarization vector {εL}. This field obeys the analog of the Maxwell equations, therefore it has
the same wave equation as the vector meson field (see 2.2), that is the Lagrangian is the same as
given in 2.68.

We choose the gauge
A5(x, z) = 0 (2.88)

and make for the remaining four components the ansatz:

Aλ = e−iq.xJ(Q2, z)ελ where Q2 = −q2 (2.89)

ε is here the polarization vector in 4 dimensions, with q.ε = 0. Note that in the space like region
accessible in the usual scattering experiments Q2 ≥ 0.

Aλ(x, z) is the extension of an external (classical) electromagnetic potential therefore the boundary
conditions will be different from the ones for the particle (quantum) fields. The formfactor is
defined with respect to unit field strength, that is

J(Q2, 0) = 1 (2.90)

and furthermore the total “charge”, that is the field strength at Q2 = 0 shall stay normalized
inside the “bulk”:

J(0, z) = 1. (2.91)
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2.3.1 Hard-wall model

The equation for J(Q2, z) is the same as for a vector meson, but p2 = m2 is replaced by −Q2. In
the hard wall model we had for z ≤ z0 no modification of the Lagrangian and had obtained the
equation (see 2.77, 2.78)

(−∂2
z +

3

4z2
)ψ(z) = m2 ψ(z) (2.92)

therefore in the case considered here we get (with J = z1/2ψ):

(−∂2
z +

3

4z2
)ψ(z) = −Q2 ψ(z) (2.93)

The solution of 2.92 was (mz)1/2J1(mz), where J1 was the regular solution of the Bessel differential
equation (

−∂2
y −

1

y
∂y +

ν2

y2

)
Jν(y) = Jν(y). (2.94)

In order to solve 2.93, where the left hand side has a negative sign, we have to look at the modified
Bessel equation (

− ∂2
y −

1

y
∂y +

ν2

y2

)
Kν(y) = −Kν(y); (2.95)

the solution Kν(y) is the modified Bessel function of order ν (BesselK[ν, z]) which is singular at
z = 0.

The reason for choosing the singular solution instead of the regular are the boundary conditions
2.90, 2.91. Exactly as in the case of the vector mesons (see previoue section), we can construct
the solution J(Q2, z) from the solution of a Bessel equation, but this time the modified Bessel
equation 2.95, as

J(Q2, z) = zQ K1(Q, z) (2.96)

(compare with 2.79) The modified Bessel function behaves for ν ≥ 1 as

Kν(z) = 2ν−1(ν − 1)!z−ν (2.97)

and therefore J(Q2, z) given by 2.96 is finite at z = 0 and has the right normalization. Therefore
2.96 is the final result. If we had chosen the regular solution of 2.95 we had obtained a vanishing
value at z = 0.

We obtain thus in the hard wall model:
∫

d4xdz
√
|g|gLL′Φ∗

p′(x, z) i∂LΦp(x, z)AL′ =

(2π)4δ4(p′ − p− q) ε.(p′ − p)
∫ z0

0
dz

L3

z3
(φ(z))2 (Qz)K1(Qz) (2.98)

where for (pseudo)scalar mesons we have

Φ(z) =
1

N2
ν,s

(mz)2Jν(mz) (2.99)

The normalization of the wave functions has to be chosen in such a way, that the form factor is
equal to 1 for Q2=0, that is:

N2
ν,s =

∫ z0

0
dz

L3

z3
(mz)4(Jν(mz))2 =

j2
ν,s

z2
0

∫ jν,s

0
dy y (Jν(y))2 (2.100)
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where we have used that
m = jν,s/z0,

see 2.38, (jν,s is the s’th zero of Jν which is larger than 0). Using the relation

∫ y0

0
dy y (Jν(y))2 =

1

2
y0

2
(
Jν(y0)

2 − Jν−1(y0)Jν+1(y0)
)

(2.101)

we obtain

N2
ν,s = −j4

ν,sL
3

2z2
0

Jν−1(jν,s) Jν+1(jν,s) (2.102)

The final form of the wave function is:

φ(z) =
1

N2
ν,s

(mz)2Jν(mz) with m = jν,s/z0 (2.103)

and for the form factor:

F (Q2) =
∫ z0

0
dz

L3

z3
(φ(z))2 (Qz)K1(Qz)

=
1

N2
ν,s

∫ z0

0
dz

L3

z3
(mz)4(Jν(mz))2(Qz)K1(Qz) (2.104)

For ν = 0 we can use J−1(y) = −J1(y) and therefore we have

N2
0,s =

j4
0,sL

3

2z2
0

J1(j0,s)
2 (2.105)

.

It is very interesting to investigate the behaviour of the form factor for large values of Q2. For
large values of y the modified Bessel-K is exponentially falling off:

K1(Qz) =

√
π

2Qz
e−Qz

(
1 + O(

1

Qz
)

)
(2.106)

Threrefore the main contribution to the integral 2.104 comes from small values of z where

Jν(Qz) = (Qz)ν 1

2νν!
+ O

(
(Qz)ν+2

)

Therefore we obtain, after substituting y = Qz:

F (Q2) =
m4L3

N2
ν

1

Q2

(
m

Q

)2ν ∫ z0Q

0
dy y2

(
y2ν

22ν(ν!)2

)
K1(y)

(
1 + O

(
1

Q2

))
(2.107)

The integral can be performed analytically and we obtain a power behaviour in Q2:

F (Q2) =

(
1

z0 Q

)2+2ν −4(ν + 1)(jν,1)
2ν

Jν−1(jν,1) Jν+1(jν,1)

(
1 + O(

1

Q2
)

)
(2.108)

It is remarkable that a stringlike theory gives a power behaviour for a form factor, since an
extended charge distribution leads generally to an falloff faster than any power, and a power-like
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Figure 2.2: The form factor of a (pseudo)scalar particle (see sect. 2.1.4 and 2.1.5) times Q2 in the
hard wall model with ν = 0; z−1

0 = 207 MeV (long dashes), ν = 1; z−1
0 = 167 MeV (short dashes)

and in the soft wall model with ` = 0, λ = 424 MeV (solid line). The data for the π-meson agree
with the models quite well (see [7], fig 4), the error bars for large Q2 are very large, furthermore
the asymptotic value of Q2 F (Q2) depends crucially on the input parameters, as can be inferred
from 2.108

behaviour is generally related to point-like constituents. So we see that the string theory in 5
dimensions has as holographic limit in 4 dimensions indeed a theory with point-like constituents.

But there is even more physics in 2.108: As early as 1973 Brodsky and Farrar [12, 13] had
postulated the scaling law that for a hadron with n constituents the form factor scales like

F (Q2) ∼ 1/(Q2)n−1 (2.109)

This is due to the fact that at least (n − 1) gluons have to be exchanged in order to distribute
the momentum transfer to the constituents, and each gluon propagator contributes a factor 1/Q2.
Since the pion has two constituents (a quark and an antiquark) the formfactor is supposed to
decrease as 1/Q2, The scaling behaviour 2.109 together with 2.108 therefore lead to the requirement
ν = 0, that is scaling of the scalar operator according to the twist dimension (`d = 2). The
formfactors for the ground state with ν = 0 (twist scaling) and ν = 1 (canonical scaling are
displayed in fig. 2.2 and 2.3.

2.3.2 Soft-wall model

Here we go back to the wave equation for the vector meson in the soft-wall model, 2.77, and
replace m2 by −Q2, obtaining:

(−∂2
z − (∂zA− ∂zD)∂z + Q2)J = 0 (2.110)

for the soft wall model we have (∂zA− ∂zD) = −1
z
− 2λ2z and hence

(−∂2
z + (

1

z
+ 2λ2z)∂z + Q2)J = 0 (2.111)

For the vector meson the solution had as variable (λ2z2), therefore we make for J the ansatz:

J = J(Q2, y) with y = λ2z2 (2.112)
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Figure 2.3: The ground state form factor of a (pseudo)scalar particle in the hard wall model with
ν = 0 (long dashes), ν = 1 (short dashes) and in the soft wall model with ` = 0 (solid line),
parameters as in the previous figure.

Using
∂zJ = 2λ2z∂yJ ; ∂2

z = 2λ2∂yJ + 4λ4z2∂2
yJ

we obtain from 2.111 after dividing by 4λ2:

y∂2
yJ − y∂yJ − Q2

4λ2
J = 0 (2.113)

This equation is a special case of Kummer’s equation:

y∂2
yw + (b− y)∂yw − aw = 0 (2.114)

It has as a regular solution the hypergeometric function U(a, b, y) (in mathematica: Hypergeo-
metricU[a,b,y]), therefore a solution of our original equation 2.111 (or equivalently 2.113) is

U(
Q2

4λ2
, 0, λ2z2)

Some useful relations for the function U are:

U(
Q2

4λ2
, 0, 0) =

1

Γ(1 + Q2

4λ2 )
(2.115)

U(0, 0, z) = 1 (2.116)

lim
Q2→∞

Γ(1 +
Q2

4λ2
)U(

Q2

4λ2
, 0, λ2z2) = QzK1(Qz) (2.117)

From this we obtain:

J(Q2, z) = Γ(1 +
Q2

4λ2
)U(

Q2

4λ2
, 0, λ2z2) (2.118)

is the solution with the right boundary conditions 2.90, 2.91.

Because of the asymptotic relation 2.117 the behaviour of the form factor at large values of Q2

is the same for the soft wall model as for the hard wall model, and especially the gratifying
asymptotic power behaviour in 1/Q2 of the form factor from the hard-wall model (see 2.108) is
also valid for the form factor of the soft-wall model.
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Figure 2.4: The form factor in the soft wall model for the ground state (n = 0, ` = 0, λ = 434
MeV, solid line) and for the first radial excitation (n = 1, ` = 0, λ = 434 MeV, dashes).

The general solution is thus:

F (Q2) =
∫

dz

(
L3

z3

)
e−λ2z2

(φ(z))2Γ(1 +
Q2

4λ2
)U(

Q2

4λ2
, 0, λ2z2) (2.119)

For the soft wall model we had found the wave function of scalar mesons (see 2.60) (where ` = 0):

φ(z) =
1

Nnl

z2+`L`
n(λ2z2) (2.120)

The normalization condition F (0)=1 yields:

N2
n,` =

∫
dz

L3

z3
e−λ2z2

z4+2`
(
L`

n(λ2z2)
)2

. (2.121)

This gives as form factor for (pseudo)scalar mesons:

F (Q2) =
L3

N2
n,`

1

λ2+2`

∫
dy y2`+1

(
L`

n(y2)
)2

e−y2

Γ(1 +
Q2

4λ2
)U(

Q2

4λ2
, 0, y2) (2.122)

In fig. 2.4 The form factor for the ground state (n = 0, ` = 0) and the first radial excitation
(n = 1, ` = 0) are displayed. As one expects, the excited state is more extended and therefore its
form factor falls of more rapidly.

It is remarkable that in the soft wall model the expressions for the form factor 2.119 can be
continued into the time like region (Q2 < 0). In figure 2.6 the form factor for the ground state
is displayed. One sees the pole of the ρ intermediate state, compare fig. 2.5, but not the poles
corresponding to the excited states.

The form factor of the first radial excitation, displayed in fig. 2.7, shows the coupling to the radial
excitations of the ρ-meson.

The model thus predicts that the excited ρ states are not coupled to the two pion state. Indeed
, the ρ(1700) couples dominantly to the ρ π π channel and also for the ρ(1450) the π π channel is
at least not dominant. Also in the experimental points of the form factor for the timelike region
the higher ρ states are by far not so strongly present as the ground state (see [7] Fig. 5 e.g.)
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Figure 2.5: The contribution of the ρ resonances to the form factor
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Figure 2.6: The logarithm of the form factor evaluated for the ground state in the soft wall model
(n = 0, ` = 0, λ = 434 MeV), note the pole at 2 λ2, corresponding to the ρ pole, and the absence
of poles at the ρ excited states, in order to get the ρ-pole at the right position one had to choose
λ = mρ/2
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Figure 2.7: The logarithm of the form factor evaluated for the 1. excited state (n = 1, ` = 0, λ =
434 MeV) in the soft wall model, note the poles corresponding to the ρ and the first two excited
states of the ρ
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Q2 = −4λ2

n 0 1 2 3
0 -0.5 0.5 0 0
1 0.5 -1.5 1 0
2 0 1 -2.5 1.5
3 0 0 1.5 -3.5

Q2 = −8λ2

n 0 1 2 3
0 0 -0.5 0.5 0
1 -0.5 2 -3 1.5
2 0.5 -3 7 -7.5
3 0 1.5 7.5 15

Q2 = −12λ2

n 0 1 2 3
0 0 0 -0.5 0.5
1 0 -1 3.5 -4.5
2 -.5 3.5 -11 18
3 0.5 -4.5 18 -40

Table 2.7: The integral Kk
n,n′ (2.125) for k = 1 (ρ(770)), k = 2 (ρ(1450)), k = 3 (ρ(1700)) . One

can read from this table, that in the model the 2nd excited state of the π, the π(1800) (n=2),
does not couple to the ρπ, since K1

0,2 = 0, but that the π(1300) does, since K1
0,1 = 0.5

The residues of the poles can be obtained using the relations:

Γ(1− z) =
1

Γ(z)

π

sin(πz)
and

U(−k, 0, z) = (−1)kk!L−1
k (z) (2.123)

We give here the expression not only for diagonal form factors but also for transition form factors
from the radial state n to n′.

F k
n,n′ = (Q2)(q2 − 4λ2 k) = −k 4λ2 L3

Nn,`Nn′,`

1

λ2
Kk

n,n′ (2.124)

with
Kk

n,n′ =
∫

dy y
(
L(0)

n (y2)
)

e−y2

L
(−1)
k (y2) (2.125)

The results for Kk
n,n′ for k = 1 (ρ(770)), k = 2 (ρ(1450)), k = 3 (ρ(1700)) are displayed in table

2.7.

2.4 Light cone wave functions

Much what we know about the inner structure of the hadrons we have learned from form factors.
So it is not astonishing that we can also learn something about the hadron structure from the
form factores which were theoretically derived expressions in the last section.

We follow the procedure of [7]. The form factor is calculated in terms of light cone wave functions
(Drell-Yan West formula). The so obtained expressions are compared with the ones obtained in
the previous section and from the comparison conclusions on the light cone wave functions as
obtainable by AdS/CFT are drawn.

2.4.1 Light cone wave functions

We introduce the light cone coordinates:

x+ = x4 + x3, x− = x4 − x3, ~x⊥ = {x1, x2} (2.126)

p+ = p4 + p3, p− = p4 − p3, ~p⊥ = {p1, p2}. (2.127)
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spectator
ys, x ~p⊥ + ~k⊥ y, (1− x) ~p⊥ − ~k⊥

Figure 2.8: The form factor in the parton model

The light-cone wave functions are constructed by quantizing at fixed light-cone time x+ = 0.
Therefore the light-cone states refer to a reference frame, in which the longitudinal momentum p3

goes to infinity. We denote a hadron with longitudinal momentum p+ and transverse momentum
~p⊥ by |p+, ~p⊥〉. For simplicity we consider first a Fock state of a hadron consisting of only two
partons (a quark and an antiquark) and we suppress spin indices. Then we have:

|p+, ~p⊥〉 =
1

N

1

(2π)2

∫
dx d2k⊥ ψ(x,~k⊥)|xp+, x~p+ + ~k⊥, (1− x)p+, (1− x)~p⊥ − ~k⊥〉 (2.128)

where the two partons have longitudinal momentum x~p+ and (1− x)~p+ and transverse momenta

x~p⊥ + ~k⊥ and (1 − x)~p⊥ − ~k⊥, respectively, The integration over the longitudinal momentum
fraction x runs always from 0 to 1.

The form factor is defined as (cf. 2.86):

F (q⊥ 2) = δ(p+
′ − p+)δ2(~p⊥ ′ − ~p⊥ − ~q⊥)〈p′+, ~p⊥ ′|J(q⊥)|p+, ~p⊥〉 (2.129)

J is scalar operator multiplying the polarization vector of the external field, A = ε J .

2.4.2 The form factor in light-cone formulation

We want now to calculate the form factor in the parton model, according to graph 2.8.

In position space, the two parton state is given by :

〈ys, y|xp+, x~p+ + ~kp, (1− x)p+, (1− x)~p⊥ − ~k⊥〉 =
1

(2π)3
exp[ixp+y−s − i(~k⊥ + x~p⊥)~ys,⊥ + i(1− x)p+y− − i(−~k⊥ + (1− x)~p⊥)~y⊥] (2.130)

The partons are supposed to be point-like particles, therefore the operator J(~q⊥) is in position
space

|y, ys〉e−i~q⊥~y⊥〈y, ys| (2.131)

and we obtain

F (Q2) =
∫

d3y d3ys〈p′+, ~p⊥ ′|y, ys〉e−i~q⊥~y⊥〈y, ys|p+, ~p⊥〉 (2.132)

where Q2 = −q2 = ~q⊥ 2.
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First let us consider the case where the electromagnetic current is attached to parton with space
coordinates y and charge e1, ys are the coordinates of the spectator parton.

First we collect the δ-distributions resulting from the y and ys integration in 2.132:

(2π)6δ(xp+ − x′p′+)δ
(
(1− x)p+ − (1− x)′p′+)

)
δ2(−~k⊥ − x~p⊥ + ~k⊥ ′ + x′~p⊥ ′)

δ2
(
~k⊥ − (1− x)~p⊥ − ~k⊥ ′ + (1− x′)~p⊥ ′ − ~q⊥

)

= (2π)6 δ(p+ − p′+)δ2(~p⊥ − ~p⊥ ′ − ~q⊥)
1

p+

δ(x− x′)δ2
(
~k⊥ ′ − ~k⊥ − x(~p⊥ − ~p⊥)

)
(2.133)

Inserting now 2.128 into 2.132 and making use of the δ-distributions we obtain finally, with
N2 = p+, taking into account the contributions of both quarks:

F (Q2) = (e1 + e2)
1

(2π)2

∫
dx d2k⊥ ψ∗(x,~k⊥ − x~q⊥)ψ(x,~k⊥) (2.134)

The total charge e1 + e2 = 1.

For comparison with the form factor of the previous section it is convenient to go to position space
and introduce the impact parameter distribution ψ̃(x,~b⊥):

ψ(x,~k⊥) =
∫

d2b⊥e−i~b⊥.~k⊥ψ̃(x,~b⊥) (2.135)

and obtain from 2.134:
F (Q2) =

∫
dxd2b⊥e−ix ~q⊥~b⊥|ψ̃(x,~b⊥)|2 (2.136)

We want now to compare this expression for the form factor with the one obtained from AdS/CFT,

2.104, 2.122. We consider the case where ψ̃(x,~b⊥) depends only on b = |~b⊥|, not on the angle.
Then we can perform the angular distribution in 2.134 and obtain:

F (Q2) =
∫

dx bdbdθeix|~q⊥|b cos θ|ψ̃(x, b)|2 = 2π
∫ ∫

dx bdbJ0(xQb)|ψ̃(x, b)|2. (2.137)

This is the Drell-Yan West formula in position space. Here we have used

∫ 2π

0
dθeiy cos θ = 2πJ0(y). (2.138)

Hard-wall model

We first consider the hard wall model. Here we had found (2.104) :

F (Q2) =
∫ z0

0
dz

L3

z3
φ(z)2(Qz)K1(Qz). (2.139)

We have somehow to match the J0(xQb) in the DYW form factor 2.137 with the QzK1(Qz) from
the AdS form factor 2.139. For that we use the relation:

Qz K1(Qz) =
∫ 1

0
dxJ0

(
Q z

√
x

1− x

)
. (2.140)

We insert 2.140 into 2.139

F (Q2) =
∫ 1

0
dx

∫
0z0dz

L3

z3
(φ(z))2 J0

(
Qz

√
x

1− x

)
(2.141)
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We see that it is advantageous to substitute the integration variable z by b = z√
x(1−x)

obtaining

F (Q2) =
∫ 1

0
dx

∫ z0/
√

x(1−x)

0
db

L3

x(1− x)b3

(
φ(

√
x(1− x) b)

)2

J0 (xQ b) (2.142)

Comparing this equation 2.142 with 2.137 we find a solution,

2π|ψ̃(x, b)|2 =
1

x(1− x)

L3

b4
|φ(b

√
x(1− x))|2 (2.143)

For the scalar mesons we have found, see 2.103:

φ(z) =
1

N2
ν,s

(mz)2Jν(mz) with m = jν,s/z0 (2.144)

and therefore we have for the impact parameter distribution:

√
2π |ψ̃(x, b)| =





m2L3/2

Nν,s

√
x(1− x) |Jν(m

√
x(1− x) b)| for

√
x(1− x) b < z0

0 else
(2.145)

The solution is, as mentioned, not unique. A requirement for the solution is that it is symmetric
under interchange of x and (1− x) since both partons have to be treated on the same footing.

Soft-wall model

Before we discuss further the results, we compare with he soft-wall model. There we had found:

F (Q2) =
∫

dz

(
L3

z3

)
e−λ2z2

(φ(z))2Γ(1 +
Q2

4λ2
)U(

Q2

4λ2
, 0, λ2z2) (2.146)

Here we have no relation corresponding to 2.140, but we know that for large Q2 the function
J(Q2, z2) obtained in the soft wall model agrees with that of the hard wall model (see sect. 2.3.2,
esp. 2.117.) Therefore we can for large Q2 use 2.143 also for the soft wall model.

2π |ψ̃(x, b)|2 =
1

x(1− x)

L3

b4
e−λ2b2x(1−x)|φ(b

√
x(1− x))|2 (2.147)

with (see 2.120 and 2.121)

φ(z) =
1

Nn`

z2+`L`
n(λ2z2); N2

n,` = L3
∫

dz e−λ2z2

z2+2`
(
L`

n(λ2z2)
)2

(2.148)

for spinless mesons (where ` = 0).

For the ground state we then obtain:

√
2π ψ̃(x, b) =

√
2λ

√
x(1− x)e−λ2b2x(1−x)/2 (2.149)

In fig. 2.9 we display this functions ψ̃(x, b) in 3D-plots. Since the variable b is multiplied by
x(1 − x) the light-cone wave function can extend to very large values and in the limit x → 0 or
x → 1 they are not confined. The difference between the hard and the soft wall model becomes
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Figure 2.9: The light-cone wave function ψ̃(x, b) for the hard wall (H.w.) and soft wall (s.w.)
model. The transverse separation is in GeV−1 (5 GeV−1 ≈ 1 fm).
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Figure 2.10: The light-cone wave functions for x=0.5, solid line: soft wall model, dashed line:
hard wall model
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clear in figure 2.10 where ψ[b, 1
2
] is displayed for both models. As expected, the soft wall leads

also to a softer decay of the wave function with increasing b.

The expression 2.147 is justified only for large values of Q2. but Q2 does not occur at all in eq.
2.149. Brodsky and Téramond argue, that the result of AdS with dilatational symmetry breaking
modifications and the Drell Yan West form factor refer to different representations. The modified
AdS/CFT result refers to a Heisenberg represenation with dressed quarks, whereas the light-cone
calculations have to be done in the interaction representation and at high values of Q2 the two
representations converge.

In order to see the difference, we compare the form factor as obtained directly in AdS/CFT (sect.
2.3.2) with the result obtained by applying the light-cone wave function 2.149 to the Drell-Yan
West formula 2.136. We then obtain:

FDY W (Q2) =
1

2π
2λ2

∫ 1

0
dx x(1− x)

∫
d2b⊥ eix ~q⊥.~b⊥e−λ2b2x(1−x) (2.150)

The Fourier transform of the Gaussian is easily obtained by quadratic completion:

For convenience we derive the important formula:

∫
d2x exp(−α2~x 2 − i~x.~k) =

∫
d2x exp

(
−α2

(
~x 2 − i

~x.~k

α2
−

~k 2

4α4

)
−

~k 2

4α2

)

= e
~k 2/(4α2) 2π

∫
dy ye−α2y2

=
π

α2
e
~k 2/(4α2) (2.151)

We obtain:

FDY W (Q2) =
∫ 1

0
dx e

− x Q2

4λ2(1−x) (2.152)

In fig. 2.11 we display the form factor for the soft wall model 2.119 and the one of 2.152. The
discrepancy seems not very large, but there is a conceptual problem. The derivative of the form
factor with respect to Q2 at Q2 = 0 is proportional to the charge radius, that is a physical quantity.
If we calculate this quantity from FDY W we obtain:

−
(

∂FDY W

∂Q2

)

/Q2=0

=
∫ 1

0
dx

x

4λ2(1− x)
(2.153)

which is a divergent integral!

On the other hand the asymptotic behaviour for large Q2 is satisfactory. Due to the exponential
falloff in 2.152 the main contribution for large Q2 comes from small values of x. Introducing the
variable y = Q2x we obtain the reasonable result:

F (Q2) ∼ 1

Q2

∫ Q2

0
dy e

y

4λ2(1−y/Q2) ∼ 4λ2

Q2
. (2.154)

Before discussing these problems in some detail, we shortly quote the results for Fock components
with more than two partons.

More than two partons

If we have n partons in the Fock state, then we have n− 1 independent longitudinal momentum
fractions xi, n − 1 independent transverse momenta ~k

(j)
⊥ and correspondingly n − 1 transverse
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Figure 2.11: Solid line: The form factor in the soft wall model for the ground state , obtained
directly from AdS/CFT. Dashed line: the form factor obtained from the soft-wall light-cone
function according to eq.2.152

extensions ~b
(j)
⊥ and the Drell-Yan West relation for the form factor is:

F (Q2) =
∑
n

n−1∏

j=1

∫
dx(j) d2b

(j)
⊥ exp


−i~q

(j)
⊥ .

n−1∑

j=1

x(j)~b
(j)
⊥




∣∣∣ψ̃(x(j),~b
(j)
⊥ )

∣∣∣
2

(2.155)

Where the
∑n−1

j=1 x(j) ≤ 1. We obtain, if there is no angular dependence and we can use 2.140:

2π
∣∣∣ψ̃(x(j),~b

(j)
⊥ )

∣∣∣
2

= x(1− x)
1

ζ4
|φ(ζ)|2 (2.156)

with

ζ2 =
1− x

x

∣∣∣∣∣∣

n−1∑

j=1

x(j)~b
(j)
⊥

∣∣∣∣∣∣

2

(2.157)

Note that here for more than two partons the variable x has no direct meaning in the light-cone
frame.

2.4.3 Extension to massive quarks

The light-cone wave functions depend on the variable
√

x(1− x) b, b = |~b⊥|, a dependence which

is exactly that of the Brodsky-Lepage wave functions[14]. These authors considered also light-
cone wave functions for finite quark masses, it seems therefore appropriate that the procedure
developped there is also applied to the wave functions considered here. For that purpose it is
necessary to go back to transverse-momentum space. If we take into account that the wave
function ψ̃(x, b) is of the form

ψ̃(x, b) = g̃(x, b
√

x(1− x) ) (2.158)

Therefore the Fourier transform will depend on the variable |~k⊥|/ (x(1− x)):

∫
d2b⊥e−i~b⊥.~k⊥ g̃(x, b

√
x(1− x) ) =

∫
d2b′⊥ exp


i

|~k |√
x(1− x)

b′ cos(θ)


 g̃(b′)

x(1− x)

= g

(
x,

k2
⊥

x(1− x)

)
(2.159)
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where we have introduced the integration variable b′ = b
√

x(1− x).

The variable
k2
⊥

x(1−x)
has a physical meaning, namely it indicates the virtuality of the quarks. More

precisely: The square of the total energy of a two partons with mass mi is given by

E2
p = (E1 + E2)

2 =
(√

x2p2
3 + k2

⊥ + m2
1 +

√
(1− x)2p2

3 + k2
⊥ + m2

2

)2

=

(
p3 +

k2
⊥ + m1

2xp3

+
k2
⊥ + m1

2(1− x)p3

+ O

(
1

p2
3

))2

(2.160)

= p2
3 +

k2
⊥ + (1− x)m2

1 + xm2
2

x(1− x)
+ O

(
1

p3

)
(2.161)

If the partons were on mass shell, this would be just the square of the energy p2
4 of the hadron,

but the latter is given by:
p2

4 = p2
3 + m2

h (2.162)

and therefore we have, up to terms of O
(

1
p2
3

)

E2
p − (p2

4 −m2
h) =

k2
⊥ + (1− x)m2

1 + xm2
2

x(1− x)
(2.163)

For massless partons the right hand side of this equation is just the variable obtained above. This
makes the following prescription for incorporating masses plausible: For a hadron with two quarks

of mass m1,m2 replace the variable obtained from AdS5, that is
k2
⊥

x(1−x)
by

k2
⊥+(1−x)m2

1+xm2
2

x(1−x)
, which

means replacing in 2.159

g

(
x,

k2
⊥

x(1− x)

)
by g

(
x,

x, k2
⊥ + (1− x)m2

1 + xm2
2

x(1− x)

)
(2.164)

The mass-modified light-cone wave function in impact space is obtained by transforming back the
modified function g.

ψ̃(x, b) =
e

1
λ2 (m2

1+m2
2)

N(m1,m2)

1

(2π)2

∫
d2k⊥e−i~b⊥.~k⊥g

(
x,

k2
⊥ + (1− x)m2

1 + xm2
2

x(1− x)

)
(2.165)

where the factor in front of the r.h.s. must be chosen in such a way that the form factor at Q2 = 0
is equal to 1.

For the soft wall model the result is especially simple: Using 2.151 we obtain for the Fourier
transform of the wave function 2.149:

ψ
(
x,~k⊥

)
=

2
√

π

λ

√
x(1− x) exp

(−1

2λ2

k2
⊥

x(1− x)

)
(2.166)

the expression
k2
⊥

x(1−x)
of the left hand side is according to our prescription replaced by

k2
⊥

x(1− x)
+

(1− x)m2
1 + xm2

2

x(1− x)
(2.167)

that is the function ψ is in that case just multiplied by the factor e−
1

2λ2

m2
1(1−x)+m2

2x

x(1−x) , and we obtain,
performing the Fourier transform back to impact space:

ψ̃(x, b, m1,m2) =
e

1
λ2 (m2

1+m2
2)

N(m1,m2)
e−

1
2λ2

m2
1(1−x)+m2

2x

x(1−x)

√
x(1− x)e−λ2b2x(1−x)/2. (2.168)
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Figure 2.12: The mass modified soft wall light-cone wave function ψ̃(x, b, m1,m2) for the D (m1 =
0, m2 = 1.2 GeV) and the J/ψ (m1 = m2 = 1.2 GeV) meson. The transverse separation is in
GeV−1.

Examples of the mass-modified functions ψ̃(x, b, m1,m2) are displayed in figure 2.12.

It should be noted that for finite values of the mass the integral for the mean square radius 2.153
is not divergent. There is however a serious drawback in what concerns the behaviour for large
Q2. If we introduce mass terms according to 2.168, expression 2.152 is modified to

F (Q2) =
e

2
λ2 (m2

1+m2
2)

N(m1,m2)2

∫ 1

0
dx e

− x Q2

4λ2(1−x) e
− m2

1
λ2x

− m2
2

λ2(1−x) (2.169)

The asymptotic behaviour for large Q2 can be evaluated analytically, using
∫ ∞

0
dy e−a2y−b2/y = 2

b

a
K1(2ba) (2.170)

which leads to:

F (Q2) ∼ e
2

λ2 (m2
1+m2

2)

N(m1,m2)2

1

Q2

∫ ∞

0
dy e−y/(4λ2)−m2Q2/(λ2y)

∼ e
2

λ2 (m2
1+m2

2)

N(m1,m2)2

4m

Q
K1

(
mQ

λ2

)
(2.171)

that is the form factor in this approach vanishes for large Q exponentially,as
√

mλ2

Q3 e−mQ/λ2
.

In figure 2.13 we show different results for the form factor in the soft wall model. The solid line is
the direct result from AdS/CFT,(2.139), the long dashes are the result of the DYW formula with
the light-cone function 2.149 and the dotted line is obtained with a mass modified light-cone wave
function 2.168 with m1 = m2 = λ/2. We see that a finite mass improves the results for Q2 values
below ca. 3λ2, but makes the result worse for larger values of Q2. This is another motivation for
introducing Q2 dependent masses if going from the perturbative to the non-perturbative regime.
Such Q2 dependent masses have been motivated by QCD sum rules in [15]. They are particularly
important for a non-perturbative treatment of γ∗γ∗ interactions [16, 17].

2.5 Mesons with higher Spin

A state with higher spin S in AdS5 can be expressed by a tensor field symmetric in the indices

ΦM1M2...MS
(2.172)
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Figure 2.13: Different results for the form factor in the soft-wall model;solid line:
AdS/CFT,(2.139); long dashes :DYW formula with the light-cone function 2.149; the dotted
line DYW with a mass modified light-cone wave function 2.168 with m1 = m2 = λ2/2

and the Lagrangian is correspondingly:

L =
1

2

√
||g|| e−D(z)

(
gNN ′

gM1M ′
1gM2M ′

2 . . . gMSM ′
SDNΦM1M2...MS

DN ′ΦM ′
1M ′

2...M ′
S

+µ2(z)gM1M ′
1gM2M ′

2 . . . gMSM ′
SΦM1M2...MS

ΦM ′
1M ′

2...M ′
S

(2.173)

+ terms with different contractions
)

There are now two strategies possible to derive wave equations:
1) One starts in AdS5 with a massless theory. Then the mass µ2(z) term appearing above is nec-
essary in order to cancel contributions of the covariant derivatives from the different contractions.
One chooses a convenient representation for the fields in which only ordinary derivatives appear
in the Lagrangian, then there is no mass term present and one can calculate the mass spectrum
without further assumptions.
2) If one allows a mass term, one can start with ordinary derivatives from the beginning, since
the mass term will be fixed anyhow, in our case by the scaling behaviour.

We start with the second approach, which is simpler.

2.5.1 Finite AdS5 mass

We make the usual ansatz (see refmasterfield):

ΦM1M2...MS
(x, z) = e−ip.xφ(z)εM1M2...MS

(2.174)

where εM1M2...MS
is a symmetrical polarization tensor. We put again A(z) = − log z + log L and

D(z) = λ2z2, where λ = 0 for the hard wall model. We get by the variational principle the wave
equation in the same way as the one leading to 2.12:

e(3−2S)A(z)−D(z)
(
−∂2

z − ∂z (κA(z)−D(z)) ∂z + e2A(z)µ2
)
φ(z) = m2φ(z) (2.175)

with κ = 3− 2S. We can now use again the results collected in sect. 2.1.6
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Hard-wall model

Here we have λ = 0 and the boundary condition φ(z0) = 0. The solutions are:

φ(z) ∼ zκ/2+1/2Jν(mz) = z2−SJν ∼ z2−S+ν (2.176)

and
ν2 = µ2L2 + (κ + 1)2/4 = µ2L2 + (S − 2)2 (2.177)

The value of the mass µ has now to be determined by the scaling behaviour. The canonical
dimension of the operator is `d,c = 3 + M where M is the number of derivatives in the operator.
Since we can make spin 1 out of the quark spins, the minimal value of M is S − 1, that is the
minimal value for `d,c = 3 + (S − 1) (for S 6= 0). The twist is defined as canonical dimension -
spin, that is, we have for twist scaling always `d,t = 2.

In order to get twist scaling we therefore must choose ν = S. This is for S=1 and S=0 in
agreement with our previous results, but now we have a good motivation to identify ν = S. It
leads to

m = z−1
0 ζS,n (2.178)

φ(z) ∼ z2

µ2L2 = 4(S − 1) (2.179)

(remember: ζS,n is the n′th zero of JS(y), n refers to the radial exciations). This is similar to the
approach adopted in [7], but see the discussion at the end of this section.

If we want canonical scaling we must choose ν = 2S and therefore have in this case :

m = z−1
0 ζ2S,n (2.180)

φ(z) ∼ z2+S

µ2L2 = 3S2 + 4S − 4

Soft-wall model

Here we have
φ(z) ∼ zκ/2+1/2ψ(λz) ∼ zκ/2+1/2+`L`

n(λ2z2) ∼ z2−S+`L`
n(λ2z2) (2.181)

and the hadron mass is given by (compare 2.59)

m2 = (4n + 2` + 2 + (κ− 1)) λ2 = (4n + 2` + 4− 2S)λ2 (2.182)

If we choose twist scaling (like z2) we must chose ` = S and from 2.182 we obtain

m2 = 4(n + 1)λ2 (2.183)

φ(z) ∼ z2

µ2L2 = 4(S − 1)

For that case the mass is independent of the spin, a certainly unreasonable result.

If we choose canonical scaling, then we have 2− S + ` = 2 + S and we obtain

m2 = (4n + 2S + 4)λ2 (2.184)

φ(z) ∼ z2+S

µ2L2 = 3S2 + 4S − 4
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Now we get a reasonable result for the mass, but we do not get agreement with the previous case
for the vector meson.

Therefore it seems very advisable to consider a massless theory in AdS5, since then the scaling
behaviour is fixed a priori.

2.5.2 No Mass in AdS5

Here the procedure is the following[11]: A special gauge and a special representation of the fields
is chosen that one has to replace the covariant derivatives in the Lagrangian by ordinary ones.

The field ΦM1M2...MS
allows gauge transformations of the form

δΦM1M2...MS
= DM1ξM2...MS

+ symmetrizing terms (2.185)

where the gauge function ξM2...MS
is symmetric in the indices. We choose the gauge in which

Φ5... = 0, that is if at least one of the indices of ΦM1M2...MS
is 5 then the field is gauged to zero.

Even if the gauge is fixed in this way, we still have some gauge freedom left. We exemplify that at
the example of the spin 2, that is we consider the field ΦM1,M2 and search for gauge transformation
with gauge functions ξ5 = 0 and which leave Φ5µ = 0 invariant:

δΦ5µ = D5ξµ + Dµξ5 = 0 (2.186)

As we shall see immediately, it would be a fatal error to omit the second term.

We first have to obtain the covariant derivatives in AdS5. Using the expressions 1.52 derived
earlier

DMVN = ∂MVN − ΓL
MNVL

ΓL
MN =

1

2
gLK (∂MgKN + ∂NgKM − ∂KgMN)

=
−1

z

(
δ5
MδL

N + δ5
NδL

M − ηL5ηMN

)
(2.187)

we obtain:

D5ξµ = ∂zξµ − Γρ
µνξρ = ∂zξµ +

1

z
ξµ

Dµξ5 = ∂µξ5 − Γρ
µ5ξρ =

1

z
ξµ (2.188)

We see that the covariant derivative of a quantity which is identically zero (ξ5) can be different
from zero. We obtain then:

δΦ5µ = ∂zξµ +
2

z
ξµ = 0 (2.189)

This leads to the solution:
ξµ(x, z) = e2A(z)ξ̃µ(x), (2.190)

(as usual A(z) = − log(z) + log(L)).

We rescale our spin field
ΦM1,M2 = e2A(z)Φ̃M1,M2 (2.191)
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then we have:

δΦ̃µ1,µ2 = e−2A(z)δΦµ1,µ2

= e−2A(z) (Dµ1ξµ2 + Dµ2ξµ1)

= e−2A(z)+2A(z)
(
∂µ1 ξ̃µ2(x) + ∂µ2 ξ̃µ1(x)

)
(2.192)

where we have used 2.190. The gauge variation of the rescaled field Φ̃µ1,µ2 is independent of z.
The action 2.174 expressed by these rescaled fields is independent under the gauge transformations
2.190 which implies that the Lagrangian can contain only normal derivatives. We only indicate
the argument schematically. The variation of the action under the gauge transformation 2.186 is

δA =
∫

ddxdz . . . (D δΦ).D Φ + D Φ.D(δΦ)

=
∫

ddxdz . . . (∂x (δΦ).∂x Φ + ∂xΦ.∂x(δΦ)− ∂z (δΦ).∂z Φ− ∂zΦ.∂z(δΦ)) (2.193)

+possibly terms from parallel transporters (2.194)

The ordinary part of the derivatives with respect to x, ∂x vanishes by partial integration over x,
and the differentiation with respect to z does not contribute, since because of 2.192 ∂zδΦ = 0 .
If we had also parallel transporters acting on the rescaled fields, they would yield non-vanishing
contributions to the variation of the action and hence violate gauge invariance, therefore they
cannot be present.

This procedure is easily extended to arbitrary S ≥ 2 and leads to

ΦM1M2...MS
= e2(S−1)A(z)Φ̃M1M2...MS

(2.195)

The Lagrangian 2.174 in the rescaled fields is then:

L =
1

2

√
||g|| e−D(z)gNN ′

gµ1µ′1gµ2µ′2 . . . gµSµ′Se4(S−1)A(z)∂N Φ̃µ1µ2...µS
∂N ′Φ̃µ′1µ′2...µ′S (2.196)

collecting the coefficients of A(z) we obtain:

κ = 5− 2− 2S + 4s− 4 = 2S − 1 (2.197)

which agrees with the special case of spin 1, obtained in sect. 2.2.

We now can use again the expression of 2.1.6 for the potential in the Schrödinger-like equation,
but now with µL = 0 and obtain

Hard wall model

ν =
κ + 1

2
= S and φ̃ ∼ zκ/2+1/2Jν(mz) ∼ z2S (2.198)

which implies (see 2.195)
φ(z) = e2A(z)(S−1)φ̃(z) ∼ z2S−2S+2 (2.199)

that is we get exactly the same result as for the twist scaling, 2.179 (but with µL = 0).
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Soft wall model

Here we get

` =
κ + 1

2
= S and φ̃(z) ∼ zκ/2+1/2+` ∼ z2S (2.200)

(see 2.195 and 2.182. This implies:

m2 = (4n2 + 2` + κ + 1) = (4n + 4S)λ2 (2.201)

φ(z) ∼ z2

This result is very gratifying. It agrees with the result for the vector mesons (S=1) obtained
previously (section 2.2.2) and has the properties expected from a string theory. The spin is
proportional to the squared mass and the daughters have the same mass as the parents (see figure
1.2). This is a bonus in the bottom up approach, since it shows that the modification of the AdS5

theory by the dilaton field is compatible with essential features of a string-like theory.

We finally compare the two models with experiment. In figure 2.14 the Spin of the observed
ρ, ω, a, and f mesons is displayed versus the squared mass. Full symbols indicate well estab-
lished resonances, open symbols not confirmed ones (according to the Particle Data Group[18]).
Especially if one concentrates at the confirmed resonances, one sees clearly the structure of the
linear mother trajectory and also indications of equally spaced daughter trajectories.

We compare this plot with the hard wall model (z−1
0 = .189 GeV) and the soft wall model (λ = 0.5

GeV). As can be seen from figure 2.15, the soft-wall model gives a rather decent fit to the data,
whereas the hard-wall model would fail. Brodsky and Téramond argue that it is rather the angular
momentum than the spin which should be identified with the ν in the hard wall model.Therefore
we have plotted in figure 2.15 the predictions of the hard wall model in a plot where the angular
momentum is plotted against the mass square. The agreement is satisfactory also there, but note
that here the ρ has L= 0, since it has natural parity and therefore should be treated as a scalar
particle, which is is in contrast to the soft wall model. Also the radial excitations are at far to
high energies .

2.6 Fermions in AdS/CFT

We now treat spinors and therefore we have to find the Dirac operator in the 5 dimensional AdS
metric. For that we have to solve first three problems:
1) Find Dirac-Matrices in a 5-dimensional Minkowski space
2) Find Dirac-Matrices in non-Euclidean geometry
3) Find the covariant derivative of a spinor

It will turn out that the first two problems are very easy to solve, therefore we shall treat them
explicitly. For the last problem I shall only quote the main results and the solution for AdS5.

Before we come to our special problems, let me make a few remarks indicating why Riemannian
geometry is not sufficient to treat spin in a general way. Riemannian geometry, which we considered
so far, is well suited for point mechanics. A classical particle is sufficiently described by its position
and velocity. But if we move a spin along a curve, we have not only the velocity (tangent vector),
but also the spin direction which may change. In a curved space, the direction of the tangent
vector will change if it is moved along a closed curve, the change will be determined by the
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parallel transporters. If also the spin direction changes, we say that the space has torsion, and
the analogue of the parallel transporters are the spin connections. Therefore we expect that the
covariant derivative, as discussed up to now, will not be sufficient for wave equations involving
spin.

Parallel to the approach to non-Euclidean geometry based on the metric tensor is one based
on the ‘vielbein’ (many-leg) formalism. The vielbein at a point P can be seen as the coordinate
system at that point for a system in which the metric tensor is just the Minkowski tensor (the so
called inertial system4). This vielbein contains all the information contained in the metric tensor,
and more: In each point there is an infinity of equivalent inertial coordinate systems, all related
through Lorentz transformations. The spin connections gives us information, how the vielbein is
rotated if it is moving along a curve. It turns out that the vielbein is essential for Dirac equations
in non-Euclidean geometry. Especially it will allow us to solve the problem to find γ matries in
non-Euclidean geometry.

2.6.1 Dirac equation in AdS5

The fact that the solutions of the Dirac equation

(iηαβγα∂β + m)ψ(x) = 0 (2.202)

fulfill the energy-momentum relation of special relativity,

(−ηαβ∂α∂β + m2)ψ(x) = 0 (2.203)

follows from the anticommutation relation:

[γα, γβ]+ = 2ηαβ (2.204)

This can be easily seen by applying the Operator (−iηαβγα∂β + m) on 2.202.

We therefore look for 5 Diracmatrices ΓA which fulfill the relation 2.204 in a 5 dimensional
Minkowski space. One can easily see that the 5 Matrices

Γµ = γµ Γ5 = −iγ5 (2.205)

where γ5 is the usual gamma matrix of the 4-dimensional Minkowski space with (γ5)
2 = 1 and

[γ5, γµ]+ = 0. This solves the first problem.

The property γ2
5 = 1, implies γ†5 = γ5. Therefore Γ†5 = −Γ5 or Γ0Γ

†
5Γ0 = Γ5. This is important for later calculations.

Without deeper insight we can guess immediately, that

Γ̃A =
L

z
ΓA (2.206)

are the required matrices in AdS5, since they satisfy the relation:

[Γ̃A, Γ̃B]+ = 2
L2

z2
ηAB, (2.207)

and the r.h.s. is just the AdS5 metric.

But we want to derive the relation in more generality. For that we need the concept of the vielbein.

4In such a sytem in general relativity there are no forces proportional to the mass
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The vielbein

We consider a d-dimensional space. As mentioned above it is always possible to find a special
coordinate system in which the metric tensor is at a certain point P the Minkowski tensor. Let
ξα be the coordinates of this point in this frame. The vielbein is a set of d vectors,

vα
µ = ∂µξ

α (2.208)

where x are the coordinates of the point P in this general frame with metric tensor gµν(x). The
following relation holds:

ηαβvα
µvβ

ν = gµν (2.209)

Proof: We consider two coordinate systems with coordinates x and x′ and metric tensors gµν(x), g′αβ(x′).
The length of the line element is given by:

(ds)2 = g′αβ dx′α dx′β = g′αβ ∂µx′αdxµ ∂νx
′βdxν =

(
g′αβ ∂µx′α ∂νx

′β
)

dxµdxν (2.210)

from which follows immediately:
gµν =

(
g′αβ ∂µx′α ∂νx

′β
)

(2.211)

If we take as coordinates x′ the inertial coordinates ξα which by definition have the metric tensor ηαβ we
get immediately 2.209.

If we define generally
γ̃µ = vα

µ γα (2.212)

the newly defined gamma-matrices fulfill, see 2.204 and 2.209, the relation:

[γ̃µγ̃ν ]+ = 2gµν (2.213)

For AdS5 the inertial coordinates are ξA = 1
z
xA therefore we have there

vA
M = ∂M

L

z
xA =

L

z
δA
M (2.214)

and we see that 2.206 is indeed a special case of 2.212.

The spin connection

The covariant derivative for a spinor is given by:

Dµψ =
(
∂µ +

i

4
ωαβ

µ σαβ

)
ψ with σαβ =

1

2i
[γα, γβ] (2.215)

σαβ is the generator for Lorentz transformations of a spinor and the spin connection indicates the
behaviour of the vielbein if transported.

ωαβ
µ =

1

2

(
vα

ν ∂µg
νν′vβ

ν′ + vα
ν gσσ′vβ

σ′Γ
ν
σµ − (α ↔ β)

)
(2.216)

For AdS this simplifies considerably and the only non-vanishing contributions are

ω5α
µ = −ωα5

µ =
1

z
δα
µ (2.217)
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In the last equation, as usual in our AdS- notation, Greek indices run from 1 to 4.

The spin connection ωαβ
µ can be determined from the requirement that the fully covariant derivative of a vierbein

vanishes:
Dµvα

ν = ∂µvα
ν − Γλ

µνvα
λ + ωα

µβvβ
ν = 0 (2.218)

multiplying the expression with gνρvγ
ρ yields:

2ωαγ
µ = gνν′ (−vγ

ν′∂µvα
ν + vγ

ν′v
α
λΓλ

µν

)− (α ↔ γ) (2.219)

The Dirac operator in AdS5

We now put pieces together. Denoting by ΣAB = 1
2i

[ΓA, Γb] we obtain from 2.215 and 2.217:

DM = ∂M +
i

4z
(Σ5m − ΣM5) (2.220)

from which:

Dµ = ∂µ − 1

2z
ΓµΓ5

D5 = ∂z (2.221)

From this we obtain for the Dirac operator:

i Γ̃M DM ′ −m5 =
i

L
(zγµ∂µ − d

2
Γ5 − zΓ5∂z)−m5 (2.222)

where we have used: Γ̃M = zΓM , Γµ = γµ, γµγµ = d(= 4). In order to make some relations
more evident and show their general nature, we shall here always write d for the dimension of the
physical Minkowski space. In our case we have of course d = 4. The sign of the AdS mass m5 is
not fixed.

2.6.2 Action and wave equation

The action is given by (we insert the Dilaton field D, which in the hard wall model is put to zero):

A =
1

2L

∫
ddx dz

√
|g|e−D(z) Ψ̄

(
i(zγµ∂µ − d

2
Γ5 − zΓ5∂z)−m5L

)
Ψ + h.c.

=
1

2L

∫
ddx dz

√
|g|e−D(z)

(
Ψ̄

(
i(zγµ∂µ − d

2
Γ5 − zΓ5∂z)−m5L

)
Ψ

−i∂µΨ∗γµ†γ0Ψ +
id

2
Ψ∗Γ†5γ

0Ψ + iz∂zΨ
∗Γ†5γ

0Ψ−m5LΨ̄Ψ

)

=
1

2L

∫
ddx dz

√
|g|e−D(z) ×

(
izΨ̄γµ∂µΨ− iz∂µΨ̄γµΨ− izΨ̄Γ5∂zΨ + iz∂zΨ̄Γ5Ψ− 2m5LΨ̄Ψ

)
(2.223)

derivatives act always only on the expression directly to their right.

We see that the term coming from the spin connection is canceled in the action density. We
can perform a partial integration in x and z in order to get rid of the derivatives of Ψ̄. This is
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straightforward for the x integration, for z we have to take int o account the z dependent factor√
|g| = edA(z)−D(z) and the boundary conditions.

Doing this we arrive at:

A =
z

2

∫
ddx dz edA(z)−D(z)Ψ̄

(
iγµ∂µ − iΓ5∂z +

i

2
Γ5

(−d

z
− ∂zD(z)

)
− m5L

z

)
Ψ

+

[
z

∫
ddx edA(z)−D(z)Ψ̄Γ5Ψ

]z0

0

(2.224)

For the soft wall model z0 = ∞. We vary with respect to Ψ̄ and deduce the Dirac equation in
AdS5: (

iγµ∂µ − iΓ5∂z +
i

2
Γ5

(−d

z
− ∂zD(z)

)
− m5L

z

)
Ψ = 0 (2.225)

We realize, that for the unmodified model D(z) = 0 the operator in this equation is just the Dirac
operator (2.222), the spin connection term which was canceled in the action reappears in the wave
equations, through the partial integration over z. This is not an accident: The spin connection is
the gauge potential of the local Lorentz symmetry and as in U(1) or SU(N) gauge symmetry the
wave equation can be obtained by replacing the normal by the covariant derivative.

We now make the ansatz corresponding to 2.1:

Ψ(x, z) = e−ip.xu(p)φ(z) (2.226)

with
iγµ∂µe

−ip.xu(p) = mhe
−ip.xu(p) (2.227)

where u(p) is the Dirac spinor of a free spin 1/2 particle with momentum p in Minkowski space.
In order to solve the equation we split the the field into a right (−) and left (+) handed one:

Ψ±(x, z) = e−ip.xu±(p)φ±(z) (2.228)

with u± = 1
2
(1± γ5)u that is

γ5u± = ±u±. (2.229)

We now insert D = −λz2 into 2.225 and use Γ5 = −iγ5 obtaining:

(
mh − m5L

z

)
(φ+(z)u+ + φ−(z)u−) +

(
∂z − d

2z
+ λ2z

)
(φ+(z)u+ − φ−(z)u−) = 0 (2.230)

From which we obtain, comparing the coefficients of u+ and u−:

(
∂z − d + 2λ2z2 + 2m5L

2z

)
φ+ = −mhφ−

(
∂z − d + 2λ2z2 − 2m5L

2z

)
φ− = mhφ+ (2.231)

2.6.3 Spin 3/2

Before we compare with experiment I shall make some short remarks on the spin 3/2. Generally
fermions with higher spin can be described by an object with mixed spinor and tensor indices[19], to
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wit ψα,{µ1...µn}, where α is a spinor index and the µi are vector indices, {...} indicates symmetrization
of the indices. Spin 3/2 particles satisfy the Rarita-Schwinger equation. In the normally quoted
form it is:

εµνρσγ5γν∂ρψσ + mψµ = 0. (2.232)

This looks not very convenient for extension to more then 5 dimensions. In the original paper
by Rarita and Schwinger[19], there is however no γ5 but their expression suggests the alternative
form:

γ[µγnuγλ]∂ν + mγ[µγλ]ψλ = 0 (2.233)

where [...] means anti-symmetrization of the indices. This form is indeed easily extended to non-
Euclidean geometry[20], see 2.212, 2.206:

(
Γ̃[M Γ̃N Γ̃L]∂N + mΓ̃[M Γ̃L]

)
ψL = 0 (2.234)

Introducing
ψ̂A = vM

A ΨM (2.235)

and choosing the gauge Ψ5 = 0 it has been shown[20] that ψ̂A satisfies indeed an equation of the
form 2.225.

This can be made at least plausible from the general form of wave equations for higher-spin
fermions. They are[19]:

(iγρ∂ρ −m)ψ{µ1...µn} = 0; γµ1ψ{µ1...µn} = 0 (2.236)

It is plausible that the general solution is obtained from the Dirac equation with covariant deriva-
tive, but all tensor indices refering to the inertial frame, that is we introduce:

ψ̂{A1...An} = vM1
A2

. . . vMn
An

ψ{A1...An} (2.237)

which satisfy the Dirac equation with the operator 2.222:
(
i Γ̃M DM ′ −m

)
ψ̂{A1...An} = 0. (2.238)

In AdS we have ψ̂{A1...An} = znψ{A1...An}

2.6.4 The hard- and soft-wall model

The hard-wall model

Here we have no dilaton, that is we put λ = 0. We obtain from 2.231 the equations:

(−∂2
z +

d

z
∂z +

1

4z2

(
4(m5L∓ 1

2
)2 − (d + 1)2

)
φ±(z) = 0 (2.239)

These equations have been discussed with different emphasis by Téramond and Brodsky[8] and
Hong et al.[21]. Whereas Hon et al. consider a model in AdS including chiral symmetry breaking
and assuming that the mass of the nucleon is an effect of this breaking, Téramond and Brodsky
take a very pragmatic approach and proceed in line with their treatment of Meson spectra. We
shall follow this latter approach.
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Téramond and Brodsky started from the Dirac operator in the 10 dimensional space AdS5 ⊗ S5

(see sect. 1.1.2). This amounts to an replacement of the AdSd+1 mass m5 by m5 + Λk where
Λk = (d + 1)/2 + k, k = 0, 1, . . . are eigenvalues of the Dirac operator on Sd+1.

Comparing eq. 2.239 with the wave equations of mesons, 2.175 with the equations of sect. 2.1.6,
we see that we have to insert the following parameters:

κ = d; ν2
± = (m5L)2 ∓m5L− d2 + 2d

4
+

(d + 1)2

4
= (m5L∓ 1

2
)2 (2.240)

Therefore we obtain the following solutions and spectra (now with d = 4):

φ±(z) = z(d+1)/2Jν± = z5/2Jνpm = z5/2J|m5L∓1/2|(mh z); mh± = j|m5L∓1/2|,sz
−1
0 (2.241)

We shall discuss the result together with that of the soft-wall model.

Soft-wall model

We start again from 2.231 and obtain:

(
−∂2

z +

(
d

z
+ 2λ2z

)
∂z − 1

z2

(
d2

4
+

d

2
− (m5L)2 ∓m5L

)
− λ4z2 − (d− 1)λ2

)
φ±(z) = 0 (2.242)

It is already arousing suspicion that in this equation the dilaton term has the wrong sign. We
bring this equation into the Schrödinger-like form in the usual way and obtain, see sect. 2.1.6:

V±(z) =
4(m5L∓ 1

2
)2 − 1

4z2
+ (d− 1)λ2 + λ4z2 − λ4z2 − (d− 1)λ2 (2.243)

The usual dilaton term is canceled by the term λ4z2 in 2.242. Therefore the dilaton does not lead
to confinement in the spin 1/2 case!!!

On second thought this is not so astonishing. We know that fermion mass terms break chiral
symmetry and the dilaton, as we have introduced it, does not break chiral symmetry, no wonder
that it does not lead to a fermion mass.

Chiral symmetry breaking “dilaton”

To find some way out we go back to the Dirac equation 2.225 which we write in the form:

(
iγµ∂µ − γ5∂z − γ5

d

2z
− γ5λ

2z − m5L

z

)
Ψ = 0 (2.244)

The linear term λ2z comes with a γ5 and therefore does not mix right and left handed spinors,
this is the reason, why it does not create a discrete spectrum for the fermions. If we just omit the
γ5 in front of the linearly rising term, we have inserted a chiral symmetry breaking term and can
expect to obtain a spectrum also for spin 1/2 particles.

The resulting wave equation can be obtained easily. Now the new dilaton term acts like a mass
term and we have to replace only the mass term in 2.239 according to:

m5L

z
→ m5L + λ2z2

z
(2.245)
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which leads (see sect. 2.1.6) to:

V (z) =
4(m5L∓ 1

2
+ λ2z2)2 − 1

4z2
=

4(m5L∓ 1
2
)2 − 1

4z2
+ 2(m5L∓ 1

2
)λ2 + λ4z2 (2.246)

We see that we can get confinement for both signs of λ2, only the relative sign to m5 matters.

As in the previous discussions of the soft wall model, we can bring the Schroedinger-like equation,
by substituting u = |λ|z and dividing through |λ2| into the form:

(
−∂2

u +
4`2
± − 1

4u2
+ u2

)
ψ±(u) =

(
m2

h/|λ2| − 2(m5L∓ 1
2
) λ2

|λ2|
)
ψ±(u) (2.247)

with `± = |m5L∓ 1
2
|.

The solutions are

φ(z)± ∼ z2+1/2ψ±(|λ|z) ∼ z5/2+`±e−‖la
2|z2/2L`±

n (|λ2|z2) (2.248)

and the hadron mass is given by (compare 2.59)

m2
h± =

(
4n + 2`±(1 + sign(m5L∓ 1

2
)sign(λ2)) + 2

)
|λ2| (2.249)

Here sign(x) = x/|x|, the sign of the real quantity x. We see two special points compared to
the results for bosons: 1) The exponential decrease is also present in the full holographic wave
function φ(z) and 2) The AdS5 mass m5 and λ2 must have the same sign in order to get a
reasonable spectrum.

The sign ambiguity allows to obtain solutions which are both left and right handed. If we change
the sign of m5 and simultaneously that of λ2, the results 2.241, 2.248 and 2.249 remain valid,
only left and right handed solutions are interchanged. We therefore can stick to positive values of
m5 and λ2. The corresponding negative values just serve to complete the solution by the missing
handed part.

2.6.5 Discussion and comparison with experiment

In order to fix the values for m5L we ave again to discuss scaling. The canonical scaling dimen-
sion of a fermion operator without derivatives is 9/2, subtracting the spins we obtain the twist
dimension 3. The behaviour both for the hard- and soft-wall model, obtained above (2.241,2.248)
is

φ ∼ z5/2+|m5L∓1/2| (2.250)

which is half integer.

We therefore assume, as in [7], the minimal scaling to be 7/2, the smallest half-integer greater
than 3. This yields as minimal value |m5L| = 3/2. As mentioned we can concentrate on positive
values of m5L. For the spin 3/2 the expression for φ̂ was the same as for the nucleon. Since
φ = z−1φ̂ (see 2.235) we see that in order to obtain for the spin 3/2 resonances the same scaling
behaviour as for the nucleons, one has to choose m5L by one unit higher, that is m5L ≥ 5/2.

Brodsky and Téramond[7, 8] argue that the angular momentum in the hadron, L, is given by

L = m5L−m5L/minimal, (2.251)
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L m5L ν baryon states mean mass H W

0 3/2 1 N1/2+(939) 0.94 0.94

0 5/2 2 ∆3/2+(1232) 1.23 1.26

1 5/2 3 N1/2− −N5/2−, 1520-1700 1.64 1.56
1 7/2 3 ∆1/2−(1620), ∆3/2−(1700)
2 7/2 3 N3/2+(1720), N5/2+(1680)

2 9/2 4 ∆1/2+ −∆7/2+, 1900-1950 1.92 1.86

3 9/2 5 N7/2−(2190), N9/2−(2250) 2.2 2.15
4 9/2 5 N9/2+(2220)

4 11/2 6 ∆11/2+(2420) 2.42 2.43
5 13/2 7 N11/2−(2600) 2.6 2.71

Table 2.8: Experimental and theoretical hard wall masses for baryons according to the scheme
proposed by Brodsky and Téramond, see 2.252. Displayed is L, the value of the internal angular
momentum, m5L, ν, the observed baryon states with indication of spin and parity and masses in
MeV, the mean mass of all states with the same ν, and the fitted masses in the hard-wall (H W)
model, the last two columns are given in GeV; the best fit parameter for the hard-wall model is:
z−1
0 = 0.244 GeV and for the soft-wall model λ = 0.21 GeV.

that is

ν = m5L− 1/2 = L + 1 for the n

ν = m5L− 1/2 = L + 2 for the ∆ (2.252)

In the usual quark model the nucleon n1/2+ and the ∆3/2+ have L = 0, since their internal parity is
positive, the N1/2−(1535), N3/2−(1520) have L = 1, since their internal parity is negative. For one
value of m5L there are therefore 2 values of ν and possible. In ref. [7] it is assumed that the odd
L values (unnatural parity) are on the ν = m5 + 1/2 branch, the even ones on the ν = m5 − 1/2
branch. In table 2.8 masses and quantum numbers nucleon- and Delta-resonances are displayed
together with the L, m5L, ν values and the fitted masses according to this scheme.

An important touchstone for nonperturbative methods is the ratio of the nucleon to the ρ-meson
which is experimentally:

R =
m2

N

m2
ρ

≈ 3/2 (2.253)

In the hard wall model we have to decide which way to follow. If we follow the classical assignment
both the ρ and the n have the holographic wave function φ(z) ∼ J1(mz) and therefore the mass
is given by j1,1z

−1
0 . If one assumes a universal z0 one obtains therefore 1 for the mass ratio. If

one argues that the ρ has a holographic wave function φ(z) ∼ J0(mz)5, because it has angular
momentum L= 0, then one obtains R ≈ j2

1,1/j
2
0,1 = 2.52.

In the soft wall model the ` value and hence the wave function is also the same, but for vector
mesons the mass was given by:
m2

M = (4n + 2` + 2)λ2 whereas for nucleons the relation is
m2

N = (4n + 4` + 2)λ2,
yielding the ration 1.5 ! This result is clearly in favour of the (modified) soft-wall model.

5in that case the ρ would scale like z
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Figure 2.16: Plot of all non-strange baryon resonances, Spin versus mass squared. The full sym-
bols denote well confirmed resonances (**** and ***), the open symbols represent ** resonances
according to ref. [18]
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Figure 2.17: Nonstrange baryon resonances compared with theoretical predictions according to
the soft wall model, with λ2 = 0.22 GeV2

If we plot all non-strange baryon resonances in a S vs mass-squared plot, we see again a rather
distinct stringlike picture, see fig. 2.16. It is roughly in agreement with the results of the soft wall
model, see fig. 2.17.

One can calculate form factors and light cone wave functions for baryons in the same way as for
mesons[7].
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