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Quantum field theory in curved spacetime
Assignment 7 – June 16

Exercise 16: Euler-Heisenberg Lagrangian

Motivation: In semi-classical gravity, one tries to also compute the backreaction of the quantum fields on the

geometry. Here, we use QED as a toy model for this kind of computation, treating the electromagnetic field as a

classical background, just as one does in QFT in curved spacetime. If you think Schwinger, you’re exactly right

(this reference may be more understandable).

Note: This sheet is a longer one, but every single sub-exercise is doable with the hints that are
given. The derivation is pretty technical. If you want to skip a step, the result of the sub-exercise
is usually provided, so you can continue on with the next sub-exercise. The physical interpretation
of what we compute here is in sub-exercises (l) and (m). So if you’re first and foremost interested
in exploring the physics, concentrate on those.
The QED partition function on a flat background reads

Z =

Z
DAD ̄D e

iSQED , (16.1)

with the QED action
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Here, F ⌘ Fµ⌫F
µ⌫
/4, where Fµ⌫ is the field-strength tensor of the gauge field Aµ. Besides, /D

denotes the covariant Dirac operator involving the covariant derivative

Dµ = @µ + ieAµ, (16.3)

and e and m are the charge and the mass of the (Grassmann-valued) fermion  , respectively.
We want to compute the one-loop effective Lagrangian for constant Fµ⌫ by integrating out the
fermion. For constant field strength, the effective Lagrangian is related to the effective action as

�[A] =

Z
d4
xLe↵(F ) = V Le↵(F ), (16.4)

where V denotes the spacetime volume.

(a) At one-loop order, we can treat the electromagnetic field as a non-dynamical background,
and integrate over the fermion field. Define the effective action �[A] for the background field
A as

Z =

Z
DAe

i�[A]
. (16.5)

Show that the resulting one-loop correction to the effective action reads

�(1)[A] = �i log det(i /D �m). (16.6)

This is the fermion determinant, encoding all one-loop corrections from virtual electrons in
the background field.
Hints:

https://journals.aps.org/pr/abstract/10.1103/PhysRev.82.664
https://arxiv.org/abs/1202.1557


• Gaussian path integrals are analogous to ordinary Gaussian integrals.
• Without gravity, constants in the effective action, even if they are infinite, do not

contribute to the physics, and can be neglected. You can do this in every part of this
sheet.

(b) As it is simpler to compute determinants of scalars, let’s rewrite the determinant. Show
that we can express the one-loop contribution to the effective action as

�(1)[A] = �
i

2
log det( /D

2

+m
2). (16.7)

Hint: Use the fact that the operator i /D � m is hermitian. For Hermitian O, it is known
that log detO = log[det(O†

O)]/2.

To simplify the problem, we use the proper-time representation of the effective action by expressing
the Logarithm as

logO = �
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s
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�sO + const. (16.8)

(c) Demonstrate that the proper-time representation of Eq. (16.7) reads
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Computing the effective Lagrangian comes down to evaluating the trace of the operator U = e
�iHs

,

with the analogue of a Hamiltonian
H ⌘ /D

2

. (16.10)
This is why Eq. (16.8) is called proper-time representation: The operator D

2 is the generator of
translations in ds2 = ⌘µ⌫dxµdx⌫

. Therefore, the operator U is a translation in proper time and s,

the Schwinger proper time, is the translation parameter.

(d) Show that
H = D

2 +
e

2
Fµ⌫�

µ⌫
⌘ Hkin +Hspin, (16.11)

where �µ⌫ = i[�µ, �⌫ ]/2, and Hkin and Hspin denote the kinetic term and the coupling of spin
to the electromagnetic field, respectively.

The purpose of this exercise is to compute the trace for Fµ⌫ =const. Then, the spin-interaction
Hamiltonian commutes with the kinetic term such that

tr
�
e
�sH

�
= tr

�
e
�sHkin

�
tr
�
e
�sHspin

�
. (16.12)

(e) Show that
tr
�
e
�

es
2
Fµ⌫�

µ⌫�
= 4 cos(esa) cosh(esb), (16.13)

where

a
2 =

p
F2 + G2 � F , b

2 =
p

F2 + G2 + F , (16.14)

where we defined G ⌘ Fµ⌫F̃
µ⌫
/4, and the dual field strength F̃

µ⌫ = ✏
µ⌫⇢�

F⇢�/2. Inasmuch
as a = 0 if ~E = 0 and b = 0 if ~B = 0, we can understand a to largely measure electric
contributions to the field strength, while b largely measures the magnetic ones.
Hints:



• Hspin is position independent, so what do we have to trace over?
• On the way, derive that (F�)2 = 8(F + i�

5
G). You can use the fact that
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and that (�5)2 = 1 and tr�5 = 0.

• The result of the trace has to be Lorentz invariant. Are there any Lorentz invariants
which contain odd powers in Fµ⌫?

Time for the last step. The trace of Hkin is best computed in Euclidean signature and afterwards
analytically continued back. This amounts to the transformation t ! �ix0, @t ! i@0. Thus, we
transform

D
2 = ⌘

µ⌫
DµD⌫ ! ��ABDADB ⌘ �(DA)

2
, (16.16)

where indices A,B are four-dimensional Euclidean indices. Note that raising and lowering of
indices is not required in Euclidean signature

(f) Show that the operator Hkin can be split into two commuting operators Hkin,a and Hkin,b by
an orthogonal transformation such that

tr
�
e
�sHkin

�
= tr
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e
�sHkin,a

�
tr
�
e
�sHkin,b

�
. (16.17)

From here on, we will treat these two Hamiltonians jointly by using the shorthand notation
I = a, b, to mean either of the two.
Hints:

• Antisymmetric matrices, like FAB, can be put into Darboux-form, i. e. into non-mixing
2-by-2 antisymmetric blocks, by an orthogonal transformation.

• Use without proof that in four dimensions and in Euclidean signature, the matrix
Fµ⇢F

⇢⌫ has the eigenvalues �a
2 and �b

2
.

• If FAB =const, we can express the gauge field in a Landau-type gauge (show that!),
where

A = ax0dx1 + bx2dx3. (16.18)

.

An operator trace formally amounts to a sum over all eigenvalues of an operator, including the
multiplicity if the operator has degenerate eigenstates, namely

tr
�
e
�sHkin,I

�
=

X

n

MI,ne
�sEI,n , (16.19)

where the EI,n are the eigenvalues of Hkin,I , and MI,n is the multiplicity of eigenstate |EI,ni (recall
that I = a, b) and n can collectively stand for different quantum numbers. Note, though, that
operators can have continuous spectra.

(g) Compute the eigenvalues of Hkin,I .

Hint: You can reduce the problem to that of a one-dimensional quantum harmonic oscillator.



(h) There is something fishy going on with these eigenvalues. What is the multiplicity?

Don’t despair! We have seen this kind of infinity before. Recall that we want to obtain the
effective Lagrangian – not the effective action. Let us, for the moment, put our theory into a box.
What we found is that the multiplicity scales with the side length of that box.
The number of allowed values of k provides the multiplicity but k also shifts the centre of motion
of the harmonic oscillator. Put the two two-dimensional systems into quadratic boxes of side
length L positioned such that the edges are at (x0, x1) = (0, 0) and (x0, x1) = (La, La) as well as
(x2, x3) = (0, 0) and (x2, x3) = (Lb, Lb), with periodic boundary conditions. As a result, the whole
theory is confined to a hypercube of box length L

(i) Estimate the number of states at fixed n, i. e. MI,n. by requiring that the centre of motion
for allowed k has to be inside the box. You should obtain

MI,n =
eIL

2

2⇡
. (16.20)

This appears to be sleight of hand, but is actually exact in the limit L ! 1 that we will take
in the end. Why? Hint: To answer the "why"-question, consider that  ̄ is the eigenfunction
of the one-dimensional harmonic-oscillator Hamiltonian with shifted centre of motion.

(j) Show that
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e
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e
2
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, (16.21)

where VE = L
4 is the volume of the hypercube – the E here stands for Euclidean signature.

Wick rotate back to Lorentzian signature, and provide the resulting effective Lagrangian
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where Lcl = �F .

Hint: Electric and magnetic fields behave differently under Wick rotation, namely ~EE = i ~EL

but ~BE = ~BL, where E stands for Euclidean and L for Lorentzian signature. How does the
volume change under Wick rotation?

(k) The integral in Eq. (16.22) is divergent for s ! 0, i. e. in the UV. Renormalize it by
subtracting solely the divergent part, i. e. do minimal subtraction. You should obtain
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(l) Time for physics: Before we tackle the full integral, let’s do a simplification. Consider
only magnetic fields so that G = 0 and F > 0. Expand in F inside the integral and compute
the lowest-order contribution, namely
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Why and in which regime can we expand inside the integral? Have a closer look at the
resulting term: What kind of interaction did we get, i. e. what does backreaction do to the
background fields? What would you expect at higher orders in the expansion? What does
this mean for gravity?



The integral Eq. (16.23) covers the whole positive real line, where the integrand has an infinite
number of poles. Thus it requires some work to be well-defined. Call the integrand
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We can render the integral well defined by shifting the poles into the complex plane, i. e. by
considering s ! s+ i✏ and computing

Z
1

0

dsf(s+ i✏), (16.26)

understood as a contour integral.

(m) Compute the imaginary part of the effective Lagrangian. You should obtain

ImLe↵ = �
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Hint: The integrand is such that f̄(z) = f(z̄) for complex z, so the integral you have to
evaluate is

Im
Z

1

0

dsf(s) =
1

2i

Z
1

0

ds (f(s+ i✏)� f(s� i✏)) . (16.28)

This combined integral can be solved with the residue theorem.
Think before reading on: What could it mean that the imaginary part of the effective
action is non-zero?

(n) Consider the time evolution of the vacuum. If we treat the electromagnetic field as a classical
background, the amplitude describing vacuum being unchanged is given by the partition
function

h0in|0outi =

Z
D ̄D e

iSQED . (16.29)

How does the probability of the vacuum staying the vacuum relate to the effective action?
What does it mean if that probability is smaller than one? What does the quantity

� =
2Im�[A]

V
= 2ImLe↵ (16.30)

measure?
Hint: Revisit the motivation at the top of the sheet.


