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Classroom Exercise 1: Dirac δ-function Part 1: Basic properties

Motivation: The goal here is to remind you of some basic properties of the Dirac delta function which is actually
a generalised function or a distribution. It might be obvious already that understanding the properties of this
distribution is very important for Quantum Field Theory since it appears in the commutation relations. Additionally
it is very important for modelling point-like sources, e.g. in electromagnetism, or in solving differential equations
with the method of Green’s functions.

In this lecture (and in others), you have seen the Dirac delta function δ(x). It is intuitively
understood as the zero function with an infinitely high spike at x = 0,

δ(x) =

{
0 , x ̸= 0

+∞ , x = 0
(1.1)

with the normalization condition
∫∞
−∞ δ(x)dx = 1. The above intuition helps us understand the

fundamental property of this “function”

f(0) =

∫ +∞

−∞
δ(x)f(x)dx , (1.2)

where f(x) is “well-behaved” function often called test-functiona. In reality however, such a func-
tion does not exist as an ordinary function but only as a generalized function or a distribution.
In other words, δ(x) is defined as a mathematical object that makes sense only inside an integral
with the property (1.2).

a) Using the defining relation (1.2), change of variables and partial integration, show the fol-
lowing identities, all meant to hold inside an integral:

i) δ(x) = δ(−x) , ii) f(a) =

∫ +∞

−∞
δ(x− a)f(x)dx

iii) δ(kx) =
δ(x)

|k|
, iv) xδ(x) = 0 .

b) Assuming that the smooth test functions f(x) and its derivatives fall off sufficiently fast in
the limit x → ±∞ such that they are integrable, show that

d

dx
Θ(x) = δ(x) , with Θ(x) =

{
1 , x > 0
0 , x < 0

. (1.3)

The function Θ is often called the “step” or “Heaviside” function.

Finally, another way to define distributions is by limits of sequences of regular functions δn(x). For
a sequence of functions δn(x) to be a δ-function, they need to be normalized to 1 and additionally
satisfy the following:∫ +∞

−∞
δ(x)f(x)dx ≡ lim

n→∞

∫ +∞

−∞
δn(x)f(x)dx = f(0) . (1.4)



In practice, such a sequence converges to the δ-function if

lim
n→∞

δn(x) =

{
∞ x = 0
0 , x ̸= 0

(1.5)

and if also integrates to one, i.e.
∫ +∞
−∞ δn(x)dx = 1,∀n.

c) Calculate the sequence

δn(x) =
1

2π

∫ n

−n

eixtdt , (1.6)

and show that it converges to the δ-function as in (1.5). Do you recognize the limit n → ∞
of the integral (1.6)? Hint: for the normalization you will need that

∫ +∞
0

sin(x)
x

dx = π
2
.

aHere the term “well-behaved” corresponds to a class of smooth functions whose derivatives are rapidly de-
creasing. These are usually called Schwartz functions. We will not be interested in the details of these functions
that are important for a rigorous definition of distributions but instead consider all formal manipulations here as
permissible for all test functions.

Exercise 1: The Dirac delta Part 2: Lorentz invariance

Motivation: In this exercise we expand on the classroom exercise by deriving an important property of the δ-
function. The property of composition with a function g(x) is important to understand the Lorentz invariance of
the momentum integrals that appear again and again in quantum field theory. It is also important to understand
the normalization of the one particle states. Feel free to read the classroom exercise and consult its results that you
are going to derive in class.

Let g(x) be a smooth function with a simple zero at x = x0, i.e.

g(x0) = 0 , g′(x0) ̸= 0 , (2.7)

that is also monotonic, i.e. g′(x) ̸= 0 , ∀x.

a) Using change of variables and the above identities show that

δ(g(x)) =
δ(x− x0)

|g′(x0)|
. (2.8)

Such an identity generalizes to functions that have multiple zeros x1, . . . , xn and that are not
necessarily monotonic. Let g(x) be a smooth function with finite number of roots (x1, . . . , xn),
then we generally have

δ(g(x)) =
∑
i

δ(x− xi)

|g′(xi)|
. (2.9)

A rigorous proof is not difficult but requires the use of a partition of unity and the inverse
function theorem. We will discuss such a proof in the solutions. For now do the following:

b) Think of the δ-function as “function” that is zero everywhere apart from where its argument
is zero and convince yourself that for a general g(x) with a finite number of roots, the identity
(2.9) holds.



c) Use the generalized identity to show the following,∫
d3p

(2π)3
1

2ωp⃗

f(p) =

∫
d4p

(2π)4
(2π)δ(p2 −m2)Θ(p0)f(p) , (2.10)

where p denotes the 4-momentum pµ = (p0, p⃗) and f(p) a (Lorentz) scalar function. Is the
integral in the left-hand side invariant under the proper orthochronous Lorentz group?

d) Show that for the one dimensional case the quantity Epδ(p − q) is Lorentz invariant,with
Ep =

√
p2 +m2, i.e. show that

Epδ(p− q) = Ep′δ(p
′ − q′) , (2.11)

where Ep′ and p, q′ are the Lorentz transformed energy and momenta. Hint: Calculate p′−q′

in terms of p and q, as well as Ep′ in terms of Ep and p. Apply the δ-function identities
we have already discussed. This relation straightforwardly generalizes to the 3-dimensional
case as

Epδ
(3)(p− q) = Ep′δ

(3)(p′ − q′) (2.12)

Exercise 2: Quantization of the scalar field

Motivation: This exercise serves as a revision of the quantization of the free scalar field. It is good practice to
repeat the important calculations involving commutators and creation/annihilation operators.

We work in the Schrödinger picture where all field operators are time-independent. For the free
scalar field you assumed the canonical commutation relations

[ϕ(x⃗),Π(y⃗)] = iδ(3)(x− y) , (3.13)
[ϕ(x⃗), ϕ(y⃗)] = 0 = [Π(x⃗),Π(y⃗)] . (3.14)

a) Show that the commutation relation of the Fourier transforms ϕ̃(p⃗), Π̃(p⃗) is the following:[
ϕ̃(p⃗), Π̃(q)

]
= i(2π)3δ(3)(p⃗+ q⃗) , (3.15)

b) Calculate the Hamiltonian in Fourier space and write it in terms of creation/annihilation
operators, a†p⃗ and ap⃗, following the quantization of the harmonic oscillator in quantum me-
chanics. What are the forms of ϕ̃(p⃗) and Π̃(q)?

c) Use the equations for ϕ̃(p⃗) and Π̃(q) in terms of the creation/annihilation operators and
Eq. (3.15), to show the commutation relations[

ap⃗ , a
†
q⃗

]
= (2π)3δ(3)(p− q) , (3.16)

[ ap⃗ , aq⃗ ] = 0 =
[
a†p⃗ , a

†
q⃗

]
(3.17)



Exercise 3: Noether’s theorem Part 2: the O(N) model

Motivation: In a previous exercise you derived the Noether charges associated to Lorentz symmetry. However, we
can build theories with multiple scalar fields in such a way so that we have extra (internal) global symmetriesa.
Such theories have extra conserved currents and charges and they will be extremely important. One example that
is relevant to condensed matter physics is the O(N)-model.

Let us consider an example of a free theory with three real scalar fields (ϕ1, ϕ2, ϕ3), organised as
a triplet

Φ =

ϕ1

ϕ2

ϕ3

 , ΦT =
(
ϕ1 ϕ2 ϕ3

)
. (4.18)

One can build a relativistic theory of the “multi-field” Φ in complete analogy with the real scalar
field theory by writing the Lagrangian

L =
1

2
(∂µΦ)

T (∂µΦ)− 1

2
m2ΦTΦ ≡

∑
I

1

2

(
∂µΦ

I
) (

∂µΦI
)
− 1

2
m2ΦIΦI (4.19)

a) Write the equations of motions for the “multi-field” components ΦI, and convince yourselves
that this theory is a theory of three free scalar fields.

b) Show that the Lagrangian is invariant under the field transformation Φ → RΦ ≡ RIJΦJ ,
where R are operators symmetry group acting on the fields represented as 3× 3-matrices, if
RTR = 1. What is its infinitesimal transformation? Write it in terms of the generators of
the symmetry group Ta, how many are there?

Apart from Poincaré invariance, we identified an extra internal global symmetry as the group of 3
dimensional rotations O(3) in the space spanned by the fields (ϕ1, ϕ2, ϕ3). These are not rotations
in position space, but rotations in an internal space, i.e., they relate the three real scalar fields ϕ1,
ϕ2 and ϕ3 to each other in exactly the same way as a rotation in position space relates the three
components of spatial vectors. This model is often called vector model or O(3)-model and it is
a very important for condensed matter applications. For example, it describes magnetic systems
where the spin variables can take any orientation, its discretized version is the Heisenberg model.
We can now apply Noether’s theorem and compute its associated conserved current and charge.

b) Show that the Noether currents corresponding to the O(3) symmetry take the form

jµa = i (∂µΦ)TaΦ ≡ i
(
∂µΦI

)
(Ta)

IJ ΦJ ,with I, J = 1, 2, 3 (4.20)

and show that it is indeed conserved if the fields satisfy their equations of motion.
aInternal in the sense that they are not associated to some spacetime transformation.


