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Problem 8: Linear Response

We consider a Hamiltonian HS = HS ,0 + VS(t), where HS ,0 is the full interacting Hamiltonian
and VS(t) an external perturbation of the form VS(t) = F(t)B̂S with F(t) a classical �eld and
B̂S a (bosonic) quantum mechanical operator. We will measure the reaction of the observable
AH(t) in the Heisenberg picture at time t. �e density matrix without perturbation is denoted
by ρS ,0 = Z−1 exp(−βH0) and the density matrix with perturbation is called ρS(t).

Remark: �e labels of the operators denote the S = Schrödinger picture, H = Heisenberg pic-
ture, and D = Interaction picture (in terms of the “interaction” VS(t)).

• �e von-Neumann equation is given by iħ∂tρS(t) = [HS , ρS(t)]−. Show that the evolu-
tion equation of the densitymatrix in the interaction picturewith the boundary condition
limt→−∞ ρS(t) = ρS ,0 is given by

∂tρD(t) = i

ħ
[ρD(t),VD(t)]− . (1)

Solve equation (1) by iteration.

• Derive the linear response formula for the density matrix by truncating the iteration at
�rst order,

ρS(t) = ρS ,0 − i

ħ ∫
t

−∞

dt′ exp(− i
ħ
HS ,0t) [VD(t′), ρS ,0]− exp( i

ħ
HS ,0t) . (2)

• Use the above result and show that the change of the observable AH with time can be
written as

⟨AH(t)⟩ − ⟨AH(0)⟩ = 1

ħ ∫
∞

−∞

dt′F(t′)Gret
AB(t, t′) (3)

with Gret
AB(t, t′) = −iθ(t − t′)Tr{ρS ,0[AH(t), BH(t′)]−} and the Heisenberg picture is de-

termined byHS ,0. As an explicit example, derive the linear response of the magnetization
M = 1

Vm to an external magnetic �eld B(t) which is coupled to the magnetic moment
m =

gJ µB
ħ ∑i Si .
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Problem 9: Diffusion equation in 1d

Solve the one-dimensional di�usion equation

(∂t − D∂2x)GR(xt, x′t′) = δ(x − x′)δ(t − t′) (4)

in Fourier space (k,ω). �en Fourier transform to real space (x , t) using contour integration:
determine whether you have to close the contour for ω integration above or below so that e−iωt

is bounded for t ≷ 0; then apply the residue theorem on the di�usion pole in the complex ω
plane. You may set x′ = t′ = 0.

Problem 10: Kramers-Kronig relation

�eretardedGreen’s function is analytic in the upper half plane, therefore its real and imaginary
parts are connected by the Kramers-Kronig relation

ReGR(k,ω) = P ∫
∞

−∞

dE

π

ImGR(k, E)
E − ω

(5)

where P denotes the Cauchy principal value. Derive this identity using a contour that runs
along the real line, circumvents the pole at E = ω and is closed by a semicircle at in�nity:

Re E

Im E

ω

Problem 11: Quasiparticle

With the help of ARPES (angle-resolved photo-emission spectroscopy) one canmeasure the spec-
tral functionA(k0, E)of an electron at a givenwavenumber k0. In one such experimentA(k0, E)
shall have the form of a Lorentz curve with the maximum at energy є0 and width γ (full width
at half height).

(a) What is the properly normalized spectral function A(k0, E) if the whole spectral weight
is contained in this Lorentz peak?

(b) Determine the retarded Green function GR(k0,ω).
[Hint: One can, e.g., evaluate the integral in the Lehmann representation as a contour integral.

What di�erence does it make how the contour is closed?]

(c) Compute GR(k0, t). How large is the lifetime of the quasiparticle qualitatively (physical
interpretation ∼ time between scatterings)? Under which condition on є0 and γ is this a
“good” quasiparticle, where one can observe several oscillations in time before it decays?
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